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1.0 Introduction
The simulation of geothermal reservoirs involves the solution of the equa-

tions describing multiphase, non-isothermal flow in porous media. These equa-
tions are highly nonlinear, particularly as the solution encounters the boundary
of the two-phase region. There are essentially as many ways of accommodating
this nonlinearity as there are numerical models of geothermal reservoirs. How
ever, there is no universally accepted method for establishing the relative
accuracy of these techniques. Well-established methodologies such as Fourier
analysis and comparison against analytical solutions are simply not applicable
to nonlinear systems. A necessary but not sufficient condition for convergence
is the conservation of mass energy and momentum. This information is generally

provided as an integral part of the numerical solution.

2.0 Governing Equations
One possible form of the equations governing mass and energy transport in

geothermal reservoirs is:
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3.0 Nonlinear Coefficients

These equations are formulated in terms of two dependent variables, h
f
and p.. The remaining thermodynamic properties, e.g., Pg» Pp» are expressed
in terms of hf and Pg through highly nonlinear relationships. The degree
of nonlinearity is apparent in Fig. 1, where a few of the nonlinear coeffici-

ents are presented:
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Note that at the boundary between the water and two-phase regions the nonlinear
coefficients are actually multi-valued, some with a range of several orders of
magnitude. Similar relationships are observed for the other nonlinear coeffi-
cients on Egns. (1) and (2). When these coefficients are not handled care-
fully, instability, oscillations, and non-convergence in the numerical solution
result in the neighborhood of the two-phase boundary.

Let us now examine this phenomenon in detail, using the hypothetical step-
function coefficient C(H) illustrated in Fig. 2. The behavior of C as a
function of the thermodynamic variable H exhibits two undesirable traits:

(a) the step does not propagate accurately as a function of H; (b) the value

of C is hypersensitive to the value of H. |If we assume a simple analytical
relationship for H, i.e., H(x,t) = (ax+b)(ct+d), we would observe the
propagation of C(x,t) illustrated in Fig. 3(a). However, when this contin-

uous solution is replaced by a finite element approximation, such as illustra-
ted in Fig. 3(b), the nonlinear coefficient is propagated as shown in Fig. 3(c).
The numerical scheme clearly introduces a serious error in the propagation of
this coefficient.
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4.0 The Inverse lteration Method

This numerical difficulty can be overcome if one employs a weighted-average
value of C(H). W will define C(H) at any node 1 by

C(H) = 0(c+-c') +c 0<o<1

when the step lies within the region of influence of node i. V¢ will address
the problem of computing ¢ later. A judicious choice of ¢ generates the
step function propagation illustrated in Fig. 4. Notice that now the step
travels with a velocity almost exactly equal to the original smooth velocity
shown in Fig. 3(a).

To demonstrate the hypersensitivity of C(H), a one-dimensional experiment
was conducted. A phase change from water to steam takes place at some point in
the domain. Because no constraints were imposed on the system, the solution
exhibited instability and oscillations at nodes near the region where the step
change in coefficients occurred. It was observed that on some time steps the
node nearest the step change in C(H), node k,, oscillated gxactly between
solutions located on either side of the step (# T e and H - E of Fig. 2).
The associated coefficient oscillation was between C+ and C . When the coef-
ficient was held arbitrarily to C+, a stable nongoscillatory solution was ob-
tained for node K. The solution, however, was H - g, which is compatible
wjth the coefficient C . When C(H) was arbitrarily held at C , a solution
H = ¢ was obtained; this is compatible with ghe coefficient C+. This per-
feet oscillation suggests _tl_hat H i‘e and H - ¢ do not represent the cor-
rect solution, and that C anc C are not the appropriate coefficients. The
correct solution at node k must be exactly at the coefficient step, i.e., H
and the correct coefficient value must lie between C+ and C . This hypothe-
sis was tested by trying different values of o, 0 <0 < 1, to getermine
whether there was one value which would yield a solution Hlk =H . Such a
value was indeed obtained, and demonstrated that it was possible to have a set
of C(H) and H which was self-consistent in the sense that they both were
located at the step function change. Thus it is possible to perform an itera-
tive search for a suitable ¢ wusing solution consistency as a constraint (see
Fig. 5).
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5.0 Summary

Whenever one encounters a geothermal reservoir problem wherein the geo-
thermal fluid flashes from water to steam, the governing equations become
highly nonlinear. Oscillatory and non-convergent solutions are sometimes
encountered for selected nodes and time steps. The correct solution may reside
exactly on the two-phase boundary and require coefficient values which are
neither those of the single-phase region nor the two-phase region, but rather
a weighted average of the two. An inverse iterative scheme based on the re-
quirement of self-consistency in the solution has been developed to identify

the value of the optimal weighting coefficient.

6.0 Notation
6.1 Letters

Nonlinear coefficient.

Gravitational acceleration.

Enthalpy.

Thermodynamic property used as independent variable.

Permeability.

w X I T 0

Relative permeability.

-

Hydrodynamic pressure.
Saturation.
Temperature.

Velocity.

Spatial increment.
Small increment.
Thermal conductivity.
Porosity.

Density .

Weighting factor for nonlinear coefficients.
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Viscosity
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6.2 Subscripts

Reservoir fluid

Nodal numbers.
Solid grains.
Steam phase.

Water phase.
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Fig. 1. Nonlinear coefficients for two-phase, non-isothermal problem (after

Voss, 1978).
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Fig. 2. Hypothetical step-function coefficient C(H) (after Voss, 1978).
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Fig. 3. (a) Smooth progression of nonlinear coefficient, (b) finite element
net in one dimension, (c) progression of nonlinear coefficient with
discretized operator (after Voss, 1978).
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Inverse iteration algorithm (after Voss, 1978).
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