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1.0 In t roduct ion  
The s imula t ion  of geothermal r e se rvo i r s  involves t h e  so lu t ion  of t h e  equa- 

t i o n s  descr ib ing  multiphase, non-isothermal flow i n  porous media. These equa- 

t i o n s  are h ighly  nonl inear ,  p a r t i c u l a r l y  as t h e  s o l u t i o n  encounters t h e  boundary 

of t h e  two-phase region.  There are e s s e n t i a l l y  as many ways of accommodating 

t h i s  non l inea r i ty  as t h e r e  are numerical models of geothermal r e s e r v o i r s .  How- 

ever, t h e r e  is  no un ive r sa l ly  accepted method f o r  e s t ab l i sh ing  t h e  re la t ive  

accuracy of t hese  techniques. Well- established methodologies such as Fourier  

ana lys i s  and comparison aga ins t  a n a l y t i c a l  s o l u t i o n s  are simply no t  app l i cab le  

t o  nonlinear  systems. A necessary but  n o t  s u f f i c i e n t  condi t ion  f o r  convergence 

is  t h e  conservat ion of mass energy and momentum. This information i s  genera l ly  

provided as an i n t e g r a l  p a r t  of t h e  numerical so lu t ion .  

2.0 Governing Equations 

geothermal r e s e r v o i r s  is: 

One poss ib l e  form of t h e  equations governing mass and energy t r anspor t  i n  
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3.0 Nonlinear Coef f ic ien ts  

These equations are formulated i n  terms of two dependent va r i ab l e s ,  hf 
are expressed and p f .  The remaining thermodynamic p rope r t i e s ,  e .g . ,  P s Y  Pw, 

i n  terms of hf  and pf through h ighly  nonl inear  r e l a t i onsh ips .  The degree 

of non l inea r i t y  is  apparent i n  Fig.  1, where a few of t he  nonl inear  coe f f i c i-  

e n t s  are presented: 
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Note t h a t  a t  t he  boundary between t h e  water and two-phase regions t h e  nonl inear  

c o e f f i c i e n t s  are  a c t u a l l y  multi-valued, some with a range of s e v e r a l  orders  of 

magnitude. S i m i l a r  r e l a t i onsh ips  are observed f o r  t h e  o ther  nonl inear  coef f i-  

c i e n t s  on Eqns. (1) and (2) .  When these  c o e f f i c i e n t s  are not  handled care-  

f u l l y ,  i n s t a b i l i t y ,  o s c i l l a t i o n s ,  and non-convergence i n  t he  numerical s o l u t i o n  

r e s u l t  i n  t h e  neighborhood of t h e  two-phase boundary. 

L e t  us now examine t h i s  phenomenon i n  d e t a i l ,  using t h e  hypothe t ica l  s tep-  

funct ion c o e f f i c i e n t  C(H) i l l u s t r a t e d  i n  Fig.  2 .  The behavior of C as a 

func t ion  of t he  thermodynamic v a r i a b l e  H exh ib i t s  two undesirable  traits:  

(a) t h e  s t e p  does no t  propagate accura te ly  as a funct ion of H ;  (b)  t h e  va lue  

of C is hypersens i t ive  t o  t he  value of H. I f  w e  assume a simple a n a l y t i c a l  

r e l a t i onsh ip  f o r  H,  i . e . ,  H(x, t )  = ( a x + b ) ( c t + d ) ,  w e  would observe t h e  

propagation of C(x, t )  i l l u s t r a t e d  i n  Fig.  3 (a ) .  However, when t h i s  contin-  

uous so lu t ion  i s  replaced by a f i n i t e  element approximation, such as i l l u s t r a -  

ted i n  Fig. 3 (b ) ,  t h e  nonl inear  c o e f f i c i e n t  i s  propagated as shown i n  Fig.  3 ( c ) .  

The numerical scheme c l e a r l y  introduces a s e r ious  e r r o r  i n  t h e  propagation of 

t h i s  coe f f i c i en t .  
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4.0 The Inverse  I t e r a t i o n  Method 

This numerical d i f f i c u l t y  can be  overcome i f  one employs a weighted-average 

va lue  of C(H). We w i l l  de f ine  C(H) a t  any node i by 

ow+-  c-) + c- Y 

when t h e  s t e p  l ies wi th in  t h e  region of inf luence  of node i. We w i l l  address 

t h e  problem of computing 0 later .  A jud ic ious  choice of 0 generates  t h e  

s t e p  funct ion  propagation i l l u s t r a t e d  i n  Fig. 4 .  Notice t h a t  now t h e  s t e p  

travels with a v e l o c i t y  almost exac t ly  equal  t o  t h e  o r i g i n a l  smooth ve loc i ty  

shown i n  Fig. 3 ( a ) .  

To demonstrate t h e  hype r sens i t i v i ty  of C(H), a one-dimensional experiment 

w a s  conducted. A phase change from water t o  steam takes p lace  a t  some poin t  i n  

t h e  domain. Because no cons t r a in t s  were imposed on t h e  system, t h e  s o l u t i o n  

exhibi ted i n s t a b i l i t y  and o s c i l l a t i o n s  a t  nodes near  t h e  region where t he  s t e p  

change i n  c o e f f i c i e n t s  occurred. It w a s  olbserved t h a t  on some t i m e  s t e p s  t h e  

node nea re s t  t h e  s t e p  change i n  C(H), node k ,  o s c i l l a t e d  exac t ly  between 

s o l u t i o n s  loca ted  on e i t h e r  s i d e  of t h e  s t e p  (H + E and H - E of Fig.  2 ) .  

The assoc ia ted  c o e f f i c i e n t  o s c i l l a t i o n  w a s  between C+ and C . When t h e  coef- 

f i c i e n t  w a s  held a r b i t r a r i l y  t o  

ta ined  f o r  node k. The s o l u t i o n ,  however, was H - E, which i s  compatible 

with t h e  c o e f f i c i e n t  C . When C(H) w a s  a r b i t r a r i l y  he ld  a t  C , a s o l u t i o n  

H = & w a s  obtained;  t h i s  is  compatible with t h e  c o e f f i c i e n t  C+. This per- 

feet o s c i l l a t i o n  sugges ts  t h a t  H + E and H - E do no t  represent  t h e  cor- 

rect  so lu t ion ,  and t h a t  C anc C are not  t h e  appropr ia te  c o e f f i c i e n t s .  The 

co r rec t  so lu t ion  a t  node k must b e  exac t ly  a t  t h e  c o e f f i c i e n t  s t e p ,  i . e . ,  H 

and the  co r r ec t  c o e f f i c i e n t  va lue  must l i e  between C+ and C . This hypothe- 

s i s  w a s  t e s t e d  by t r y i n g  d i f f e r e n t  values of 0, 0 < 0 < 1, t o  determine 

whether t he re  w a s  one va lue  which would y ie ld  a s o l u t i o n  

va lue  w a s  indeed obtained,and demonstrated t h a t  i t  w a s  poss ib l e  t o  have a se t  

of C(H) and H which w a s  s e l f- cons i s t en t  i n  t h e  sense  t h a t  they both were 

located a t  t h e  s t e p  funct ion  change. Thus i t  i s  poss ib l e  t o  perform an i tera-  

t i ve  search f o r  a s u i t a b l e  0 us ing  so lu t ion  consistency as a c o n s t r a i n t  ( s ee  

Fig.  5 ) .  

* * 
- 

C', a s t a b l e  non- osci l latory so lu t ion  w a s  ob- * 
- - 

* 
* * 

+ - 
* 

- 

- -  * 
HIk = H . Such a 
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5.0 Summary 

Whenever one encounters a geothermal r e se rvo i r  problem wherein t h e  geo- 

thermal f l u i d  f l a s h e s  from water t o  steam, the  governing equations become 

highly nonl inear .  Osc i l la tory  and non-convergent so lu t ions  are sometimes 

encountered f o r  s e l e c t e d  nodes and t i m e  s t e p s .  The co r r ec t  s o l u t i o n  may r e s ide  

exac t ly  on t he  two-phase boundary and r equ i r e  c o e f f i c i e n t  values  which are 

n e i t h e r  those of t he  single-phase region nor t h e  two-phase region,  bu t  r a t h e r  

a weighted average of t h e  two. An inverse  i t e r a t i v e  scheme based on t he  re- 

quirement of self- consis tency i n  t he  so lu t ion  has  been developed t o  i d e n t i f y  

the 
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value of t h e  optimal weighting coe f f i c i en t .  

Notation 

6 .1  Letters 

Nonlinear coe f f i c i en t .  

Grav i t a t i ona l  acce le ra t ion .  

Enthalpy. 

Thermodynamic property used as independent va r i ab l e .  

Permeabili ty.  

Re la t ive  permeabi l i ty .  

Hydrodynamic pressure .  

S a t u r  a t  ion.  

Temperature. 

Velocity.  

S p a t i a l  increment. 

S m a l l  increment. 

Thermal conduct ivi ty .  

Porosi ty .  

Density . 
Weighting f a c t o r  f o r  nonl inear  coe f f i c i en t s .  

Viscos i ty  
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6 .2  Subscr ip ts  

Reservoir f l u i d  

Nodal numbers. 

Sol id  gra ins .  

Steam phase. 

Water phase. 
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Fig. 1. Nonlinear c o e f f i c i e n t s  f o r  two-phase, non- isothermal problem ( a f t e r  

Voss, 1978) .  
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F i g .  2 .  Hypothetical step- function coef f i c ien t  C ( H )  ( a f t e r  Voss, 1 9 7 8 ) .  

L " 5 6 7 4 

I 2 3 4 5 6 7 8 
+--J 

5 --Q 
I 2 3 

b- = - L ., 0 

x . 0  x= L 

4 
a x  , t )  

Fig. 3 .  (a)  Smooth progression of nonlinear coef f i c i en t ,  (b )  f i n i t e  element 

n e t  i n  one dimension, (c) progression of nonlinear coef f i c ien t  with 

d i sc re t i zed  operator ( a f t e r  Voss, 1978). 
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STEP F u N c r W  
IN EACH REGION 
OF INFL-IJENCE 

Fig. 4 .  Propagation of nonl inear  c o e f f i c i e n t  us ing co r r ec t i on  procedure ( a f t e r  

NOTE T l tN  
VERY SYWLL 

Hr9S BEEN EXACERATED AND IS ACTUALLY 

Fig. 5 .  Inverse  i t e r a t i o n  algori.thm ( a f t e r  VOSS , 1978). 
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