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I. Introduction 

Various aspects of reinjection of cooled geothermal water into 
the geothermal reservoir have been studied by many authors. 
question of practical relevance is the calculation of reinjection 
pressures required. These pressures on the one hand determine the 
pumping requirements which are important inputs to the technical and 
economical feasibilities of the project. On the other hand, they 
may also be used as baseline data. As time goes on, if the pressure 
measured becomes much in excess of the calculated values, some kind 
of plugging may be occurring and remedial action would have to be 
taken. 

One 

For isothermal cases where the injected water is at the same 
temperature as the reservoir water, the pressure change is simply given 
by the Theis solution in terms of an exponential integral. 
shows that this pressure change is directly proportional to the 
viscosity. 
temperature. 
viscosity changes by a factor of 3 (whereas the density of water changes 
by about 2 0 % ) .  

The solution 

It turns out that the viscosity is a strong function of 
Over a range of temperatures from 100°C to 25OoC, the 

This is illustrated in Figure 1. 

The injection of cold water into a hot reservoir is a moving 
boundary problem. On the inside of a boundary enclosing the injection 
well, the parameters correspond to that of the injected cold water; 
and on the outside, the parameters correspond to that of the reservoir 
hot water. 
conduction between the hot and cold water. 
depends on the aquifer heat conductivity and capacity, and it increases 
with time as the boundary (or cold temperature front) moves outward 
from the injection well. 

The boundary is, of course, not sharp because of heat 
The width of the boundary 

There exist numerical models to solve such a problem. In an earlier 
work, we made a simple study using numerical model "CCC" developed at 
the Lawrence Berkeley Laboratory. 
shown in Figure 1. 
a problem when several approximations are applied. 
obtained in terms of well-known functions or in terms of one integral. 
These calculations are checked against numerical model results. 

A sample of calculated results is 
"he present work is an analytic calculation of such 

Solutions are 
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Figure 1 also indicates that the temperature boundary effects 
show up in the pressure change as a function of time. 
pressure data may be analyzed to obtain reservoir transmissivity, 
storativity, and other reservoir parameters. For such purposes, the 
numerical modeling approach is limited in its utility because of the 
complexity of calculations. 
prove more advantageous for such a well-test analysis. 

Thus, the 

The present analytical approach will 

Derivation of the governing equation, 
will be given in the following section where the 

this function will be represented by a Fermi-Dirac function, whose 
parameters are determined based upon physical considerations. The 
solution for the pressure change is analytic except for the final 
step, where a numerical integration is called for. We discuss the 
results and implications of our calculations in Section IV. 
and concluding remarks are contained 

including temperature effects, 
ermeability-viscosity 

ratio is assumed to be an arbitrary function of r 5 /t. In Section 111, 

Summary 
in Section V. 

11. Derivation 

We start with the three equations: 

(1) a Eq. of continuity a , ( P @ )  = - v P!, 

Darcy's law 

( 3 )  BP 
Eq. of state P = A(T)e , 

where the pertinent variables are p(density) , +(porosity), :(velocity) , 
k(permeability), p(viscosity), B(compressibi1ity) and P(pressure). A new 
variable K is defined in terms of the permeability and viscosity (K = k/p). 
The porosity and compressibility of the medium is assumed to be constant 
in the following derivation. 
and combining equations (l), (2) ,  and ( 3 ) ,  one obtains: 

Working in the cylindrical coordinates 

For water, the percentage variation of density with temperature is much 
smaller than the corresponding viscosity variations over the same temperature 
range. 
with other terms in the equation. 
pressure is "smooth, It  it is customary to neglect the ( a P / a r ) Z  term. 
Then, Eq. ( 4 )  reduces to: 

Under these conditions, we may consider ahA / a t  to be small compared 
Furthermore, when the variation of 
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I d e a l l y ,  f o r  incompress ib le  f l u i d ,  t h e  f l u i d  f r o n t  p ropaga tes  as 
r2 / t ,  and i t  i s  t h e r e f o r e  expedien t  t o  apply  t h e  Boltzmann t r a n s-  
format ion  and change t h e  v a r i a b l e s  from (r,t) t o  ( z  = r 2 / t , t ) .  
One o b t a i n s  from (5) t h e  f i n a l  equa t ion  t h a t  governs t h e  p r e s s u r e  
as a f u n c t i o n  of z = r2/t; 

where t h e  c o n s t a n t  B$ is  now w r i t t e n  as c .  
f o r  Eq. (6)  are: 

The boundary c o n d i t i o n s  

P = P  a t r = - a n d t = O ,  
0 

( i )  

i .e . ,  l i m  P (z )  = Po . 
Z” 

( i i )  Incompress ib le  f l u i d  flow through a c y l i n d r i c a l  s u r f a c e  
around a l ine  sou rce  i m p l i e s  

ap 
ar l im(2n rh )v  = - ( 2 r r h )  K - = Q 

r-w 

(7 )  

where Q i s  t h e  pumping rate  and h i s  t h e  a q u i f e r  t h i c k n e s s .  Applying 
t h e  Boltzmann t r ans fo rma t ion  on Eq. (8 ) ,  we o b t a i n ,  i n  t h e  v a r i a b l e  
z = r 2 / t :  

ap A .  
4~rh l i m  K ( z )  z - = - 

2% 
az 

We have now reduced t h e  p h y s i c a l  problem t o  t h e  s o l v i n g  of a f i r s t - o r d e r  
d i f f e r e n t i a l  equa t ion  f o r  dP/dz,  provided t h a t  t h e  r e l e v a n t  pe rmeab i l i t y -  
v i s c o s i t y  f u n c t i o n  of t h e  system i s  known. Grouping equa t ions  (61, 
(71 ,  and (9)  t o g e t h e r ,  w e  have: 

d h K ( z )  - ) - 0 ,  
C 

-t d z  dz z 4K(z) 
d2P/dz2 + (L +- 

ap 4_ 
a z  47rh ’ l i m  K(z)z  - = - 

2% 

l i m  P (z )  = Po. 
z- 
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111. S o l u t i o n  

We assume t h a t  K(z) = k/p may b e  r e p r e s e n t e d  by a Fermi-Dirac 
f u n c t i o n  g iven  by: 

(% - KI> 
K ( z )  = - 

- (z-d) /a  + KI' l+e 

The f u n c t i o n  t a k e s  on t h e  v a l u e s  of KI,  KR, and (KI + K R ) / ~  respec-  
t i v e l y  a t  z = 0 ,  z = O J ,  and z = d ( s e e  F igure  2 a ) .  
varies a p p r e c i a b l y  on ly  i n  t h e  neighborhood of z = d;  t h e  parameter 
a 
d i f f e r e n t  from KI and KR. 
f u n c t i o n  about  z = d .  
t h i s  p o i n t  may b e  shown t o  be  3.52 a ( s e e  F igure  2b) .  
h a v i o r  of K(z) may b e  unders tood as fo l lows :  
t h e  f u n c t i o n  t a k e s  on t h e  v a l u e  of K = k/u = KI, e q u a l  t o  t h a t  
o f  i n j e c t e d  water; and i t  t a k e s  on t h e  v a l u e  KR, e q u a l  t o  t h a t  
of t h e  r e s e r v o i r  a t  l a r g e  r a d i a l  d i s t a n c e s  from t h e  w e l l .  I f  
w e  assume a s h a r p  t empera tu re  f r o n t  between t h e  c o l d  i n j e c t e d  
water and t h e  h o t  r e s e r v o i r  water,  t h e n  t h e  l o c a t i o n  of t h i s  
t r a n s i t i o n  from KI t o  KR i s  given by: 

The f u n c t i o n  

c h a r a c t e r i z e s  t h e  range of z over  which K ( z )  i s  a p p r e c i a b l y  
The d e r i v a t i v e  dK/dz i s  a symmetrical 

The f u l l- w i d t h  half-maximum of dK/dz about  
This be- 

Near t h e  we l lbore  

2 'aC, Qt = ?rr h - 
pwcw 

where Pw, &, Pa, Ca are t h e  d e n s i t i e s  and h e a t  c a p a c i t i e s  of water 
and a q u i f e r ,  r e s p e c t i v e l y .  Eq. (12) i m p l i e s  a c o n s t a n t  v a l u e  f o r  
r2 / t  = d ,  g iven  by :  

which i s  t h e  same parameter  d used i n  t h e  Fermi-Dirac f u n c t i o n .  The f ac t  
t h a t  t h e  t empera tu re  f r o n t  i s  n o t  s h a r p  i s  accounted f o r  by t h e  width  of 
v a r i a t i o n  from KI t o  KR, g iven ear l ie r  by t h e  parameter  a .  

Avdonin has  so lved  t h e  problem of t h e  p ropaga t ion  of t empera tu re  
f r o n t  w i t h  t h e  i n j e c t i o n  of h o t  water i n t o  co ld  water i n  a n  a q u i f e r .  
I n  t h e  l i m i t ,  where t h e r e  i s  no ve r t i c a l  h e a t  l o s s ,  Avdonin's s o l u t i o n  
i s  given by:  

T-TR --  e r f c  (0) 
T -T r ( V )  

- 

0 
I R  

where T = i n i t i a l  a q u i f e r  t empera tu re  

TI = t empera tu re  of i n j e c t i o n  f l u i d  

K = a q u i f e r  c o n d u c t i v i t y .  

R 

a 
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2 We note that in Eq. (14) the temperature again varies as r /t, 
Since the viscosity is a function of temp- as in the case of K(z). 

erature, one expects the variation of K(z) = k ( z ) / u ( z )  in Eq. (11) 
t o  be intimately related to (T-TR)/(T1-Tp) here. 
we may relate the widths of dK(z)/dz and' (d/dz) (T-TR) / (TI-TR). The 
full-width half-maximum of the curve d/dz(T-TR)/(TI-TR) is governed 
by a transcendental equation. However, in the limit of "narrow 
width," the full-width half-maximum can be shown to be 44~a/(Ca~a). 
Equating the two full-width half-maxima, we arrive at the simple 
expression : 

In particular, 

K a a = 1.605 - 
'ap a 

which relates the parameter a, in the theoretical model for K(z), to 
the physical property of the aquifer. 

Integrating Eq. (loa) and applying the boundary conditions ( l o b ) ,  
one gets 

Z 

_ - - -  dP 
dz 47rh K(z)z ex' (- nJ& d21) 

a _ _  Q 1 

0 

Integrating (16) and applying the boundary condition (~OC), we get 

Given the Fermi-Dirac function for K(z) (Eq. ll), we have 

Then, Eq. (17) reduces to 
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Eq. (19) is integrated numerically. Figures 3 and 4 show the variation 
of P(z)  - Po with z for various values Table 1 summarizes 
the parameters used. 

of d and a. 

IV. Results and Discussion 

The most interesting feature of these plots is that the curve 
follows, for small values of t/r2, a Theis line with parameters corresponding 
to those of the native hot water, and for large 
parallel to a Theis line with parameters corresponding to those of the 
injected water. 
be expressed in terms of the flowrate, heat capacities, and reservoir 
thickness (see Eq. 13). Thus, injection well test data can yield the 
transition point d and the separation A .  
when coupled with the two which are normally obtained (transmissivity kh 
and storativity $Bh) affords the 
h, $, and k separately, provided the heat capacities are known. 

t/r2 it approaches a line 

The transition occurs at z d, or t/r2 = l/d, where d may 

These two additional parameters, 

possibility of determining the parameters 

To make the solution more transparent, we break up the K function 
into three sections as shown in Figure 2 .  Thus: 

Here, (d - w, d + w) derines the interval in z where K changes from 
KI to KR, and Km represents the Fermi-Dirac function given in Eq. (11). 

Now Equation (17) gives the general pressure solution: 

With K given by Eq. (20), we have 

C J &dz'=- for z <d-w 
0 4Kz 

rZ 

dz d-w z < d+w (d-w) + - 1 4<D C = -  

4 K ~  0 

C dz' + - (2-d-w) 
4'k 

C 
= -  (d-w) + 

0 
4 K ~  
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Then, the solution is given for 

(a) z >diw 

P,(z) = P + C C1 Ei(- - 
o 4nhs 

where 

C Ei (- - z )  
4n5h 4 K ~  

P,(z) = P2(d-w) + 

For large z or small t/r2, the solution behaves as a constant times 
This con- the Theis solution using reservoir water parameters (Eq. 22). 

stant is approximately one, since w and a are "small" quantities des- 
cribing the transition width from KI to KR. 

On the other hand, for small z or large t/r2, pressure behaves as 
the Theis solution with injected water parameters, but with a constant 
shift, A ,  given by the first term in Eq. (24), i.e., 

A = P2(d-w)-Po 

d i w  
C 

- - 4_ 4 nh Ei (- e (diw)) -exp (- -(d-w) 4 K ~  4 kZ 
d-w 

where the second term may be obtained by numerical integration 
(see Eq. 19) or by assuminq the integrand to be approximately 
constant over the interval (d - w, d + w). 
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I n  well- test a n a l y s i s ,  F igures  3 and 4 may be used d i r e c t l y .  The 
e a r l y  d a t a  may f i r s t  be  compared wi th  t h e  curve  f o r  t / r2  = l / d  y i e l d i n g  
kh and $6h va lues .  Matching of l a t e r  d a t a  w i l l  g ive  parameter d from 
which h may be es t imated  ( s ee  Eq. 13) .  Thus, k, $6 ,  and h are evalua ted .  
Of course ,  i n  a c t u a l  f i e l d- d a t a  a n a l y s i s  o t h e r  p o s s i b l e  e f f e c t s  (e .g . ,  
boundaries)  may e n t e r  and g r e a t  care h a s  t o  be exe rc i sed .  

V.  Summary 

A governing equa t ion  is obta ined  assuming temperature-dependent 
v i s c o s i t y .  The s o l u t i o n  i s  obta ined by assuming t h e  parameter k / p  t o  
be  a Fermi-Dirac func t ion  of r2 / t .  The cons tan t s  i n  t h e  func t ion  are 
r e l a t e d  t o  t h e  co ld  water i n j e c t i o n  problem by a comparison w i t h  
Avdonin's s o l u t i o n .  The r e s u l t  d i s p l a y s  an  i n t e r e s t i n g  t r a n s i e n t  
p r e s s u r e  curve which i n i t i a l l y  (small  t / r2  va lues )  fo l lows t h e  Theis  
s o l u t i o n  w i t h  parameters  corresponding t o  reservoir h o t  water and 
a t  l a r g e  t / r 2  v a l u e s ,  t u r n s  and becomes p a r a l l e l  t o  t h e  Theis  
s o l u t i o n  w i t h  cold  water parameters .  Use of  t h e s e  r e s u l t s  f o r  
co ld  water i n j e c t i o n  well- test  a n a l y s i s  i s  b r i e f l y  d iscussed .  

Work performed under t h e  ausp ices  of t h e  U.S. Department of Energy. 

K(30O0C) 

Table 1 

Parameters  Used i n  Ca lcu la t ions  

Q = 80 kglsec  

h = 150 m 

c = $0 = 1.2168 x loF8 rns 2 /kg 

-10 3 5.4705 x 1 0  m s/kg 

-10 3 = 1.7857 x 10 m s /kg K(lOO°C) = 6) k loooc 

-4 2 3.2568 

5.2566 
d = {  4.2568 x 10 m / s  

1 O m l  -4 2 

1 2 . 0  
a = 1.0  x 1 0  m / s  

-329- 



2s 

20 

IS 

to 

3 

0 I I 

F 2  4 ? I @  2 4 7 I d  2 4 7 1  

K ( z )  

KI 

d K  

t/r2 ( scc/m* ) 

F I G U R E  1 

a 

I 
I 1 
I 
I 
I b I 

d z  

- 2  d 

F I G U R E  2 
XBL 791-7306 

550 

XK) 

250 

n 

2 0 0  '3; 
n 
Y 

1% a 
Q 

100 

50 

-330- 



4 00 

300 

h - 
v) cs - 200 
P, 

a 

IO0 

0 

A - 
Q) 
n 

n 
Y 

a 

4 00 

300 

200 

IO0 

0 

I I 

io3  105 
t ( s e d  

io4 

F I G U R E  3 

1 I 

I I 

103 104 105 IO t ( s e d  

F I G U R E  4 
-331 - 

, 


