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In recent years, a number of numerical simulators for
geothermal reservoirs have been developed. The general purpose of
these is to aid reservoir engineers in (i) determining characteristic
parameters of reservoirs (most important among those being the reserves
of fluid and heat), and (ii) simulating the performance of reservoirs

upon production and injection.

The various simulators differ in the approximations made
in the underlying physical model (e.g., dependence of rock and fluid
properties upon thermodynamic variables) , in the geometrical definition
of the reservoir (one-, two—, or three-dimensional, regular or
irregular shape), in the choice of thermodynamic variables, and in
the mathematical techniques used for solving the coupled mass and

energy transport equations,

Criteria for desirable performance of numerical simulators
depend in part upon the particular problems to be investigated.
Different problems will often differ in the required level of detail
to be resolved, and in the optimum balance of speed and accuracy
of computation. Much can be learned about two-phase flow in porous
media from model studies for idealized systems. Such studies can be
performed with less-than-three~dimensional models, and algorithms
which are based on regular grid spacings will be perfectly acceptable.
For modeling natural geothermal reservoirs, on the other hand, it is
important that irregular three-dimensional geometries may be handled

easily.

In comparison with other two-phase simulators which have
been discussed in the literature; the main distinctive feature of
SHAFT78 is that it uses an integrated finite difference method (IFD).
W solve finite difference equations that are obtained by integrating

the basic partial differential equations for mass and energy flow over
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discrete surface and volume elements. This method is as easily
applicable to irregular geometries of actual reservoirs as it is to
idealized, regular geometries; yet the relative simplicity of the

finite difference method is retained in the theory and algorithms.

The purpose of this paper is to give a brief review of
the basic concepts associated with SHAFT78 and the IFD approach, and
to present comparisons of SHAFT78 calculations with some analytical
solutions. The comparisons include both single-phase and two-phase
water problems and demonstrate the accuracy and calculational

stability of the algorithm.

The governing equations for mass and energy transport in
porous media when both rock and fluid are in local thermodynamic

equilibrium can be written

5’—%% = -V.T+gq (1a) (Mass)
Y =_V
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Under suitable assumptions, we get the integrated form of

equations (1)
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The solution to equations (3) is computed on a polyhedral

partitioning of the reservoir whose connected components share a common
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polygonal interface. Volume and interface averages are computed using
standard finite difference techniques.l’2 The fluid parameters are
obtained by bilinear interpolation (triangular interpolation near the
saturation line and in the liquid region)lusing an inverted form of the
1967 ASME Steam Tables.

It is clear on examination that equations (3) are nonlinear
and coupled. These are solved by reduction to an appropriate linear
approximation at each time step. Accuracy controls are set to allow
only small variations in all parameters over a given time step. The
energy equation is solved first using density changes predicted by
the behavior of the system in the previous time step. Thus, a good
estimate for the expected change of fluid energy over the energy time
step can be made, which is subsequently corrected during the density
time steps. Special interpol-ation procedures and automatic time-step

controls ensure high accuracy of the calculation even when phase
transitions occur (elements crossing the saturation line).z

An iterative strategy is employed in solving the discretized
version of equations (3) after the first-order explicit solution has
been generated in each time step. The time-averaged flux terms F

. + _ ]
(density) or FQHQ FvHv F Uave (energy) are written as

F = F(t +9At)=F+0Atg—1; (4)

and an iteration is performed over the whole mesh to minimize the

. 1,8
residual term.”’

SAMPLE PROBLEMS

In order to evaluate the SHAFT78 program, calculated results
were compared to numerical calculations reported in the literature
(e.g., Toronyi7 and Gargs), and to analytic solutions. The remainder
of this paper is devoted to a comparison of the computed solutions

with the analytic results.

SINGLE-PHASE VAPOR

3 .
In 1957 R.E. Kidder presented to the ASME the solution to
the problem of isothermal flow of a gas (obeying Darcy's and Boyle'$

laws) in the semi-infinite homogenous porous solid.
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Specifically, the problem solved was

with initial conditions

P(x,0) = Po 0<x<® (6)
and boundary conditions

P(0,t) = Py <Po  0<t<w (7)

SHAFT78 was run on a 30-element linear mesh with internode

distances of .2m, and large nodes at the boundaries of the grid with the

appropriate boundary conditions. Initial conditions were
P = 5MPa
(o]
T =300 %
o

with rock properties

rock ~ 0% “rock = 107 J/kgoC, p__ = 2200 kg/m3,¢= .

Three boundary conditions on the left of the grid

P1 = 4MPa
P1 = 2MPa
Pl = 1MPa

were chosen and the results are compared with the analytic solution

for each case in Figure 1.

The computed solution shows a slightly lower pressure drop
than the analytic solution; This is probably due to inaccuracies

introduced in the boundary approximations.
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SINGLE-PHASE LIQUID

To evaluate the performance of SHAFT78 in the liquid region,
the "Theis problem"4 was run on a 15-element mesh with a large element

at the outer boundary to simulate the reservoir conditions at infinity.

Reservoir conditions were

Thickness =100 m
Initial pressure = 20.37 MPa
Initial temperature = 180 °¢
Rock porosity =.2
Permeability = 10_13 m2
Rate of fluid withdrawal = 18 kg/s:m

The results are compared in Figure 2 to the analytic solution

of the line source problem (tD VS PD on a log-log scale)

P
VZP - Q}J_C_@_.. (8)
k or
P(r,0) = PO initial conditions (9)
Lim P(r,t) = P,
e (Constant flux
( boundary conditions with Darcy
Lim 2mrk %E . assumption)
e (10)

with solution given by the-exponential integral

2
- QU o.-r duc
P = Po + El{at ) } (11)

Agreement is close near the sink (to the right of the plot) with
deviations increasing to the left. The scatter of computed points

around the analytic solution seems to reflect a deviation from the
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solution at late times and large radius when the boundary approximation

becomes less accurate.

TWO-PHASE RESERVOIR

Garg derives an approximate diffusivity equation5 for
pressure in a two-phase reservoir initially at equilibrium pressure

Py s which is valid near the wellbore.

(k/V)
@ T 2.
ot #0, [(v'p] = 0 (12)

Here we have introduced the total kinematic mobility

k k

Ky oot v
W =k oy * 5 01 (13)

For a line source, we have the boundary conditions at the well

ke =3 wzbh (14)

and at infinity

Lim P(r,t) = P (15)
-0 0

The solution (after Carslaw and Jaeger) to the above equation is

q r2 9Cp
p(r,t) = Po + WIW; i {- it (k/\))'r} (16)

For sufficiently large t (argument of the exponential integral

less than 10_2) we have for the wellbore pressure

t(k/Vv).,
= - o 1.159 — T

pw(t) P(rw,t) P 21r(k/\))T {loglo(d)rzpc )y + .351} (17)
w T
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This implies that a plot of ‘Pw vs. log t should be a straight line,
with slope equal to l.lSq/27r(k/\))T

SHAFT78 was used to simulate the problem of a mass withdrawal
of .14 kg/s'm on a radial grid identical to that reported by Garg5
with

Ar Ar. = ... Ar = |m

1 2 11
1.28r )15 wee 5 Brgy = Lu2Br,g

1

Ar12

using rock properties

3 3
rock 2.65 x 10”7 kg/m

b = .2
1000 J/kg* oC

crock

I

o
Krock 5.25 W/m

Permeability (k) = o 132 (100 millidarcy)
The relative permeability curves used6 for the simulation are shown

in Figure 6A.

Results of our simulations for three different initial
conditions are given in Table 1 and Figures 3-5. P is seen to be a
linear function of log t, the slope of which gives a good estimate
of the total klnematlc mobility (k/\)) We have also plotted
P vs 108(t/r ) for the same 5|mulat|ons but including all elements,
not just the wellblock (Figures 3B, 4B, 5B). Again a straight line
results, with slope almost identical to that of the P vs. log t plots.
This result, which is outside the scope of Garg's theory, seems to
indicate that total kinematic mobilities could also be obtained
from observation well data rather than just from {lowing wellbore

data.

In addition, saturation vs log (t/r2) was plotted for 3 times
for each of the three cases just: discussed. As can be seen in Figure 7,
saturation appears to be a function of t/r2 only. At a position
proportional to Yt there appears a broad saturation front, which
becomes more diffuse as vapor saturation increases. Changing the
relative permeability curves (Figure 6B) has only a slight effect on

the saturation profiles. V¢ are still investigating these results.

-315-




mloa X 998L°¢ "90vLT1e
mlOﬁ X 9G6l°¢ *090Tv1 T = om
mloa X 8968°¢€ VATIA
mlOH X £6767°¢ “L7e6T mloa X 19T 5 mloa >~ 6£2% €
mloa X LY760°Y "9€ee o
NIOH X G6E66°¢ 0 BdN 9 8 = 4
mloa X 9TeT 1 ”mwwmq c = ow
mloa X 709711 89¢61
mloa X 6LyT°T _£toL N|OH < 9mZz T mloa X 0I9T 1T
mnoa X 965T°T SLLe o
m|0H X te9e1 0 Bdl 9 8 = d
. . o
mloa = §0T¢ ¢ _78T0T 6 = S
nloa = Ws1e ¢ ‘06YL mlOﬁ >~ G9T% T nlOH X 93Tz ¢
hloa >~ 611¢ ¢ 6881 X o
/0T = LTTE72 "0 BIL £ @ = ©
I jo1d jo01d o
Ve (oes) (_1/3) SoT sa g (3)8071 sa g (') Panssaid
30 auT], < L 1 o pue
enyea Tenjoy : woxy “(a/%) woxy ~(n/y) ( ' §) uorieanies TeTITUT
L
(A /3) SPTITITAON OTIewdury TeI0L 10F SITNSIY

T ®1qel

-316-



{14832¥3d) NOILWNNLYS ¥0dYA

S3AUND >HHJHm<m£«wa SALLYTI3Y ' UNYIS

q (IN20¥2d)} NOILWUNLYS ¥OdVA

0 001 08 02

G = NOILVYNLYS MIOA¥3ISIY IVILINI - W31904d Suv9 R )

(,4/1)
¢ g

000°001 — ooo.o~ lolele

SNT3 AJXOD N \l

=)

-9

ALITTAYIWYId 3ATLVIY

ALTTI8Y3W43d JATLVIY

53538 TIVILINI - W3T720¥d 9¥v9

!
£00°L  000‘00L
z8

(938) zm11

(vd 201) IHASSIYd

o~
©

T’ = NOILYY¥NLVS YIOA¥3SIY IVILINI

(g3/1) g

000°coL 000°01 000° L

[ |
3
(vd ,01) 3uNSSIUd

g*

(va~101? RS

v

ooa.on 0g2° L

o¥Y9 ¢ JN9id

(235) 31l v

00C*0t 000 1~
T

=

4
(vd 101) FINSSING T

58

EE "

Y.l
(vd LOlf33nn§S3ud

N
@

-317-



FAIdIVAL L2AAY)

VAPOR SATURATION

INIVIAL vAPOR SATURATION = ,9

o

<r

-
N
A,

T1 - 63 x 0% sec
T2 = 1.2 x 1o¥ see
T3 - 1.8 x 0% SEC

INITIAL VAPOR SATURATION = .5

..Tl = 2.9 x 10%ec
I~ Hlx 10" SEC,
13 = 6.2 x.lO“ SEC

INITIAL VAPOR SATURATION = ,1_

________——*"‘TI;:’3i3 x 107 sec

T = 4.7 x 104 sic

nn T3 I3« ]Qu SEC
10 100 1000 10,000 100,000
Time/ (Rap1vs) 2
9 = .14 x6/sec. meveR " RELATIVS PERMEABILITY
P, = 8.6 1A CURVES GIVEN IN F15, B4
To =30 e
ECUATIONS (FIG, OB)
FIGURE 7. proT OF ,VAPOR SATURATION
vs, T/RZ ON A LOG-LINEAR

SCALE FOR GARG PROBLEM,

w1 T T T

80 |- * °. -
4

Wk o SHAFT 18 " i

, CARC .

0 " l Jl

so T A
l' i 1 N ! 1

] 10 10 10} 1! 104

TIRE (SECONDS)
XBL 78t} - 2168
FIGURE 8. prAwDOWN FROM AN INITIALLY LIQUID

RESCRVOIR WITH A PROPAGATING TWO-
PHASE REGION,

-318-




Program SHAFT78 was also run to simulate a drawdown from a

liquid reservoir with initial conditions

T =300 °
(0]

P =9.0 MPa
(0]

k = 10714 p?

and the results are compared with Garg's reported results in Figure 8.

For this comparison, the Corey equation was used to generate

the relative permeability curves with the parameters

From the slope of the straight line portion of the curve we compute
a (k/\))T value of .86E-8 as compared to numerical values ranging
from 1.4E-8 to 1.9E-8. However, (k/\))T values computed from the
numerical simulation are decreasing with increasing time, while the
straight line portion of the curve appears to be flattening out as
time progresses. Thus, it appears that the computed (k/\))T values
are converging to the numerically generated values as the flash front

passes through the grid blocks.
CONCLUSION

The simulator SHAFT78 has been verified for a number of
one- and two-phase flow problems involving subcooled water, water/steam
mixtures, and superheated steam. The flow of water and steam in porous
media, boiling and condensation, and heat exchange between rock and
fluid are all described properly. No difficulties are encountered in

crossing the saturation line (phase transitions).

Our simulation results confirm Garg's method of deducing
total kinematic mobilities in two-phase reservoirs from production
well pressure decline. It is suggested that total kinematic mobilities
can also be inferred from observation well data. For uniform initial
conditions we observe a simple dependence of vapor saturation upon
production time and upon distance from the producing well. This as
yet unexplained phenomenon indicates an underlying simplicity of

two-phase porous flow,
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Apart from idealized model studies, SHAFT78 is also being

used for irregular three-dimensional systems. A simulation of production

and recharge in the Krafla geothermal field (lceland) is reported

elsewhere.9 At present, we are developing a history match for production

and injection in the highly irregular shaped field of Serrazzano
10

(ltaly).
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NOMENCLATURE

Latin — Upper Case

CT = total compressibility
F = mass flux per unit area, kg/mzs
H = enthalpy per unit mass, J/kg
K = rock heat conductivity, J/ms %¢
P = pressure, Pa = N/m2
PD = dimensionless pressure
PW = wellbore pressure, N/m2
PO = initial pressure, N/m2
Q = energy source term, J/mas
T = temperature, °c
U = energy per unit mass (specific energy), J/kg
- ; 3
Uvol_ energy per unit volume, J/m
S = volumetric vapor saturation
Latin — Lower Case
c = rock specific heat, J/°c kg
k = absolute permeability, m2
(k/v)T = total kinematic mobility, s
q = mass source term, kg/mSS
rW = wellbore radius, m
t = time, s
Greek
S] = time averaging factor (dimensionless)
p = density, kg/m3
$ = rock porosity, dimensionless
U = dynamic viscosity, Ns/m2
% = kinematic viscosity, Nsm/kg
Subscripts
ave = average (over volume or surface element)
L = liquid component
rock = referring to rock
v = vapor component
vol = volumetric measurement of the variable

(e.g., U,g = Energy/unit volume).
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