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Introduction

The theory of pressure and water level oscillations of tidal origin in
Darcy type aquifers and petroleum reservoirs has been discussed in a number
of recent publications (see for example, Bredehoeft, 1967; Bodvarsson, 1970,
1977, 1978a, 1978b; and Arditty et al., 1978). There is a general agreement
that observational data on the tidal pressure phenomena may be applied to

obtain useful estimates of important reservoir parameters such as the perm-
eability.

A Simple Basic Model

In the simplest setting involving a single open well connected by a
small spherical cavity to a large homogeneous and isotropic reservoir, the
mechanism of the tidal well test is easily comprehended on the basis of the
model illustrated in Fig. 1 below. Let. the permeability of the porous
medium be k, the density of the fluid by p, its kinematic viscosity be v and
hence the fluid conductivity of the medium be c=k/v. Moreover, let s be the
hydraulic capacitivity or storage coefficient of the medium and the diffusivity
therefore a=c/ps=k/us where p is the absolute viscosity of the fluid. The
skin. depth of the medium at an angular frequency w is then d=(a/2w)2
(Bodvarsson, 1970). For the present purpose, concentrating first on cases
where boundary effects can be ignored, we assume that the skin depth of the
reservoir material at tidal frequencies is smaller than the extent of the
reservoir including the depth of the well. In other words, the reservoir
can be assumed to be infinite as viewed from the well-cavity. Introducing
a spherical coordinate system with the radial coordinate r and with the
origin placed at the center of the cavity, the fluid pressure field p(r,t)
in the porous medium i s governed by the diffusion equation (Bodvarsson, 1970).

8¢ - alap. *+ (2/r)a.dp = -(e/s)ayb (1)
where t is time, b(t) the tidal dilatation of :he medium and ¢ is the formation
matrix coefficient. Led ro be the radius of the cavity, f the cross section
of the well and g the acce?eration of gravity. The boundary condition at
r =rg is then

(f/g)ap - Feap = 0, (2)
where F = 4wry2 is the surface area of the cavity.
The expression for the oscillations of the water level in the well in
response to the dilatation is obtained by solving equation (1) with the
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boundary condition (2) and deriving the pressure at the cavity which is equal
to the pressure at the well bottom. To simplify our results without any
appreciable loss of generality, we can in most cases assume that the skin
depth of the medium is much larger than the dimensions of the cavity, that

is, d >> ro. Assuming therefore an infinite medium and that b and p « exp(iwt),
the solution of (1) in terms of amplitudes is (Bodvarsson, 1970)

p = (B/r)exp[-(1+i)r/d] - (eb/s), (3)
where B is a constant to be determined by the boundary condition (2?. Insert-

ing (3) into (2), we finally obtain for the amplitude of the water level in
the well

h = -(eb/ogs)T/(1+T), (4)
where b is the dilatation amplitude and T is the tidal factor,
T = -4ingscro/fu, (5)

An elementary potential theoretical argument shows that the admittance or
conductance of the cavity is

A = dncrg, (6)

and we can define the mass stiffness of the well
S =dp/dm = g/f, (7)
This quantity measuresthe increase in well bottom pressure when a unit

mass Of liquid is added to the well, Using these expressions, the tidal
factor can be expressed

T = -iAS/w (8)

which along with (4) is our final result for the above simple mode illust-
rated in Fig. 1.

It is to be noted that the above expression (8) will also hold for a
closed well situation. V¥ have then only to redefine the mass stiffness

S = dp/dm = 1/gM (9)
where M is the liquid mass in the well and g is the compressibility of the
liquid. In the case of a gas cap, (9) will have to be adjusted accordingly.
In the case of a closed well equation (4) will have to be expressed in terms
of the well-head pressure rather than a water level.

Interpretation of Well Data

In the relatively simple situation described above, the interpretation
of well data is based on equations (4) and (8). Invariably, o and f can be
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taken to be known. Since in most practical cases, the effective dilatation
«b and formation capacitivity s are of less interest than the formation fluid
conductivity c, the latter quantity is generally the primary target of any
interpretation of observational tidal well data. Equations (4), (8)and
;gi)s ow that ¢ has to be derived from the tidal factor T and that this
actor can be separated i1f we are able to observe the water level amplitude
at two different tidal frequencies. Since the tidal force field includes
a number of frequencies this will generally be possible. Being, in principle,
able to obtain T and thus on the basis of (8) the admittance A, the fluid
conductivity will have to be derived with the help of (6). In the rather
idealistic situation with a spherical well-cavity of known radius r,, we are
therefore, in principle, able to reach our goal of obtaining a numerical
estimate of c.

From the practical point of view, the procedure will, however, break
down if T >> 1. The factor T/(1+T) 1is then approximately equal to unity
and the water level amplitude h will be independent of the Tluid conductivity.
In practice, we can expect this difficulty to become serious when about
T >3.Since In most cases the factor 4rg/fw will be of the order of 107
(MKS), we see that the above inequality implies rqyc>3x10-7(MKS). For water
at 100°C with v = 3.10-7m2/s we obtain then in terms of permeability
rok > 3x10-7x3x10-7% 0.1 darcy-meters. Therefore, taking, for example,
ro = 0.5m, we find that the above difficulty becomes serious for permeabilities
in excessof 200 millidarcy. In other words, the tidal test based on open
well situations is sensitive only to small to medium permeabilities. Due to
increased stiffness S, the applicability in the case of closed wells is
more restricted.

Deviations from the basic model

_ Non-spherical well-reservoir connection. The assumption of a spherical
cavity 1s perhaps to most obvious idealization in the above basic model.
Unfortunately, the symmetry of the pressure field will be broken in the case
of a non-spherical cavity, and the above simple relations may, in principle,
not apply. However, provided the dimensions of a non-spherical cavity are
much smaller than the skin depth d of the medium, and this will mostly be the
case, the difficulties arising are not too important from the more global
point of view. The global pressure field at some proper distance from the
cavity will be approximately spherically symmetric and the above analysis
will Targely be valid. The most serious casualty is that the cavity admit-
tance is not given by the simple relation (6) and other analog relations
have to be relied on. In ﬁractlgal cases, there may be difficulties in
establishing the form of the cavity. Most frequently, however, the well- _
reservoir connection consists of an open section of the well. Let the radius
of the well be r, and the length of the open section be L. An elementary
potential theoretical exercise shows that when L>>ry the admittance can then be
(Sunde, 1968) approximated

A = 2mel/In{L/r)) (9)
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It is of interest to point out that an open section of L = 10m and ry = 0.1m
has approximatelythe same admittance as a spherical cavity of rq = 1.1 m

Multi-well setting. Another important deviation from the basic model
involves cases where there is more than one well opening into the reservoir.
This situation may lead to a well-well interaction and pressure field scat-
tering. The practical criterion for interaction is obtained by comparing
the well-well distance to the skin depth d of the medium. In general, two
wells will interact noticeably if the distance between the well-reservoir

cavities is approximately equal or less than the skin depth at tidal fre-
quencies.

~ The analysis of multi-well situations is more complex than the results
given above. In the case of spherical cavities,, the solution for the pres-

sure amplltude field will then have to be constructed as a sun over solutions
of the type (3), that is

Z (B /r Yexp[- ('|+1)r /d] - (eb/s), (10)

where the jth summand is centered at the Jthhwell cavity, rj is the distance
from the field point to the center of the cavity and the Bjs are inte-
gration constants. A boundary condition o;rL the type (2) applies at each
well-cavity and the constamis By are obtained by solving a set of linear
algebraic equations. An esti‘maij:e for the fluid conductivity can then be
obtained along similar lines as indicated above. V¥ will, however, refrain
from a further discussion. Obviously, neglecting well-well interaction M

multi-well situations leads to an underestimate of the formation fluid
conductivity c.
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Figure 1. Single well model.
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