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(1) Introduction

In evaluating geothermal resources we are primarily interested in data
on the distribution of temperature and fluid conductivity within the reservaoir,
the total volume of the productive formations, recharge characteristics and
chemical quality of the thermal fluids. While geophysical exploration hy
surface methods may furnish some data on the temperature field and give in-
dications as to the reservoir volume, they furnish practically no information
on the fluid conductivity and production characteristics. Such information
will generally have to be obtained by tests performed within the reservoir,
primarily by production tests on sufficiently deep wells. Reservcir testing
is therefore one of the most important tasks in a general exploration program.

In principle, reservoir testing has much in common with conventional
geophysical exploration. Although the physical fields applied are to some
extent different, we face the same type of selection between controlled and
natural drives, forward and inverse problem setting, etc. The basic philosophy
(Bodvarsson,, 1966) is quite similar.

In the present paper, we will discuss some fundamentals of the-theory
of reservoir testing where the fluid conductivity field is the primary target.
The emphasis is on local and global aspects of the forward approach to the
case of liquid saturated (dominated) Darcy type formaticns. Both controlled
and natural driving pressure or strain fields are to be considered and
particular emphasis will be placed on the situation resulting from the effects
of a free liquid surface at the top of the reservoir.

(2) Relations governing the pressure field in Darcy type formations

Let p(t,P) be the pressure field at time t and at the point P in a Darcy
type domain B with the Boundary surface ©. Consider a general setting where
the permeability k is a linear matrix operator and the kinematic viscosity of
the fluid v is also taken to be variable. It is convenient to introduce the
fluid conductivity operator ¢ = k/v and express Darcy's law

a = =-CVp (])
where g is the mass flow density. Moreover, let o be the fluid density, s the
capacitivity or storage coefficient of the formation and f be a source density.

Combining (1) with the equation for the conservation of mass, we obtain the
diffusion equation for the pressure field

pS3P + n(c)p = f (2)
where 7(c) = -v(cv) is a generalized Laplacian operator. Appropriate boundary
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conditions that may be of the Dirichlet, Neumann, mixed or more complex convol-
ution type, have to be adjoined to equation (2). The case of a homogeneous/
isotropic/isothermal formation results in the simplication n(c) = cm = -¢cv?
where ¢ is a constant. Moreover, stationary pressure fields satisfy the potent-
ial equation

n(c)p = f. (3)
The eigenfunctions un(P) of m(c) in B satisfy the equations
m{clu,. = ru n=1,2, ... (4)

OO |

where the constants i, are the eigenvalues and the boundary conditions on I are
homogeneous of the same type as those satisfied by p(t,P) in (2) and (3).

(3) Types of solutions

Itis of interest to consider some general expressions for the solutions
of equations (2) above. The key to the equation is the causal impluse response
or Green's function G(t,P,Q) which represents the pressure response of the causal
system to an instantaneous injection of a unit mass of fluid at t = 0+ at the
source point Q. This function satisfies the same boundary conditions as the
eigenfuctionsun(P). Solutions to (2) in the case of a general source density
f(t,P), non-causal initial values and general boundary conditions can then be

expressed in terms of integrals over the Green's function (Duff and Naylor,
1966).

Two fundamental types of expressions for the Green's function are available.
First, in the case of simple layered domains B with a boundary  composed of a

few plane faces, G(t,P,Q) can be expressed as a sum (or integral) over the
fundamental source function

p = (8os)~2(nat)-3/2exp(-rgo/4at)U, () (5)

and its images. The symbol U+(t) is the causal unit step function and rp, is
the distance from Q to P. Whenever applicable, sums of this type represe4t the
most elementary local and/or global expressions for G(t,P,Q).

Second, the Green's function can be expanded in a series (in integral)
over the eigenfunctions of m(c). 1fp and s are constant, then

6(t,P,0,) = (1/p5) 2_u_(Pu_(Q)exp(-1 t/os). (6)

n

The series expansion (6) is of a more general applicability than sol-
utions of the type based on the fundamental source function (5). However,
because of quite poor convergence properties, (6) is largely of a more global
long-term relevance. It is less suited for the computation of local values.
The formal link between the two types of solution (5) and (6) is provided
by the Poisson summation formula (Zemanian, 1965).
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A different type of solution of (2) that is of interest in the present
context can be obtained by operational methods. Limiting ourselves to the
pure initial value problem with p(0,P) = pg(P) in the case of an infinite
domain, we can, since p, S and n{c) are independent of t, formally express the
solution of the homogeneous form of (2) as

p = exp[-tn(c)/es]p, (7)

where the exponential operator is to be interpreted as a Taylor series in the
operator n(cg)

exp[-tn(c)/ps] = 1 - [tn(c)/ps] + (1/2)[tn(c)/ps]?- . . . (8)

The series represents an iteration process where the convergence is limited
to (properly defined) small values of t. The practical applicability is there-
fore fundamentally different from (6). Moreover, it is of considerable interest
%g?t rather general situations with regard to n(c) can be admitted in (7) and

Three simple but fundamental physical parameters are associated with
processes governed bﬁ/ the diffusion equation (2). First, the local diffusivity
a = ¢/ps. Second, the skin depth d = (2c/psw)z which is a measure of the pen-
etration of a wave of anzgular frequency « (Bodvarsson, 1970). Finally, the re-
laxation time t, = 1/ak? which is a measure of the attenuation in time of a
one-dimensional wave like pressure field of wave number k. The time to is the
time during which the wave amplitude decreases from unity to 1/e. This para-
meter is obtained by inserting a solution of the form exp[(-t/t,)+ kx)] into the
one-dimensional form of (2).

(4) Effects of a free liquid surface

The presence of a free liquid surface in a reservoir requires the introduction
of a rather complex surface boundary condition. Let © now represent the free lig-
uid surface at equilibrium and o be the free surface in a perturbed state. The
boundary R is a surface of constant pressure which without loss of generality can
be taken to vanish. The free surface condition (Lamb, 1932) is then expressed

Dp/Dtlp=0=O (9)

where D/Dt is the mater a1 derivative. This is an essentia ly non-linear
condition which leads to a much more complex problem setting. Losing the prin-

ciple of superposition the construction of solutions to the forward problem
becomes a difficult task.

Bodvarsson (1977a) has shown that when R deviates only little from ¢, (9)
can be simplified and linearized. For this purpose we place a rectangular
coordinate system with the z-axis vertically down such that the (x,y) plane
coincides with £. Moreover, let the amplitude of 2 re ative to ¢ be U and the
scale of the undulation of 2 be L. Then provided |u/L <<1, the condition (9)
can be replaced by the approximation

(1/w)agp - 3,p =0, (10)
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where w = cg/¢ is a rew parameter, namely, the free sinking velocity of the
pore liquid under gravity (g = acceleration of gravity). Under these circum-
stances, the solution of the forward problem is (obtained by constructing a
solution to (2) which satisfies (10) at the free surface and appropriate
conditions at other sections of the reservoir boundary.

The presence of a first order derivative with respect to time in the free-
surface condition (10) obviously leads to an additional relaxation process
analog to the purely diffusive phenomena associated with the first order time
derivative in the basic equation (2). As we shall conclude below, the indivi-
dual time scales of the two phenomena are, however, quite different.

For the sake of brevity, we shall limit the present discussion to the simplest
but practically quite relevant case of the semi-infinite liquid saturated homo-
geneous, isotropic and isothermal half-space. To consider the pure free-surface
related phenomena, we eliminate pressure field diffusion by neglecting the
compressibility of the liquid/rock system. In this setting we can combine
the potential equation (3) and the surface condition (10) Iin one single equation
confined to the & plane (Bodvarsson, 1978a), which expressed in terms of the
fluid surface amplitude u(t,x,y) = p/pg takes the form

.(1/w)atu + H%u = f/pgc (11)

1 1
where 13 = (-3xx-3yy)* iS the square root of the two-dimensional Laplacian and
f is an appropnat%‘Yy defined source density. To obtain the pressure field in
the space z>0, ths boundary values derived from (11) have to be continued into the
lower half-space on the basis of standard potential theoretical methods. The
fractional order of the Laplacian in (11) is quite unusual, but the operator
is well defined and poses no mathematical problems. For a further discussion

of such operators in a slightly different setting, we refer to a paper by
Bodvarsson (1977b).

Consider the attenuation of a wave formed pressure field of the form
exp[-(t/to)+ikx] where ty is the relaxation time and k is the wave number. Insert-
ing into equation (11), we find that to=1/wk. Comparing this result with the
case of the purely diffusive pressure field we find that the ratio of the free
surface/diffusion relaxation times is ak?/wk=k¢/gps. The assumptions of waves
of lengths 10 to 103 meters and porosities of 10~2 to 10-1, results in ratios
ranging from about 102 to 10°. The relaxation times of diffusion phenomena
are therefore orders of magnitude shorter than for free-surface Phenomena of
a comparable spatial scale. As a result, ve can conclude that in most cases
of practical relevance, the two phenomena can be separated and treated individually.

Some solutions of equations (11) of practical interest have been obtained
by Bodvarsson (1977a). Confining ourselves again to the simple semi-infinite
half-space, the most important result is given by the causal impluse-response
function G(t,S,Q,) which represents the response of the surface amplitude at
the point S = (x,y) in ¢ and time t>0+ to an instantaneous injection of a unit mass
fluid at a point Q in the half-space at time t=0+. The system is assumed to be
in equilibrium for t<0. Let Q = (0,0,d), the resulting expression for the sur-
face amplitude is

6(£,5,0) = (1/2nsp) (wtrd) [x2+y2+(wt+d)2]™ U, (t) (12)
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where U+(t) is the causal unit-step function. The impluse response is essentially
the key to the solution of (11) for more general conditions. The pressure field
in the half-space is obtained from (12) by a simple continuation technique

where the singularity at Q has to be taken into consideration. The long term
response of the surface amplitude to a periodic source function at Q is of
particular interest in the present context. Let the mass flow injected at

Q=(0,0,d) take the form exp(-iwt). The amplitude of the frequency response
is then obtained by

F(S,Q,w) =‘jr G(S,Q,t)exp(itw)dr (13)
0

The present results on the dynamics of the free surface amplitude provide the

basis for a technique of reservoir probing and testing which yields results on ¢ and ¢
that are supplementary to the conventional well test techniques (see Bodvarsson

and Zais, 1978, this volume).

(5) Testing with controlled signals

Local. Reservoir tests with controlled drive yielding mostly local
parameter values include primarily the driving po nt tests which are usually
referred to as pressure buildup and/or drawdown tests on single we 1s. Pioneer-
ing work on the development of this technique has been carried out at Stanford,
and there exists considerable literature (see e.g. Ramey, 1976). nterpretation
is based on appropriate solutions of equation (2).

Interference. The spatial scale of well-to-well interference tests depends
on the distances involved. Short distances tend to yield only local parameter
values whereas long distances may lead to results of a more global nature.

In the case of simple systems of sufficient extend, the interpretation is to be
based on the following concentrated source unit-step responses obtained on the
basis of equation (2) (Carslaw and Jaeger, 1959).

axi-symmetric point-symmetric
two-dimension three-diemsion
-(m/4nc)Ei(-F~ 1), (m/%Cr)er‘fc(F‘é) (14)

where F = 4at/r4 is the Fourier number and m is the appropriately defined
(constant) mass flow applied. Again, there is very considerable literature

on the subject (Matthews and Russell, 1967; Earlougher, 1977) mostlyv emphasizing
the two-dimensional axi-symmetric situation.

It is important to note that in the above expressions, the complementary
error function (erfc) and the exponential integral (Ei) will in the interval
0<F<0.5 yield very similar values when taken as functions of time at a fixed
field point. The short-term well interference test is therefore largely "blind"
with regard to the space dimensions involved. Although the value of the amp-
litude factor is observable, its structure depends critically on the space
dimension and this data does therefore not convey any information unless strong
assumptions are made with regard to the underlying model. Considerable caution
is therefore called for in the interpretation of well interference data, and it
would appear that too much confidence has been placed in the applicability of
the axi-symmetric two-dimensional Theis-type solution.
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Global. Tests of this nature can be carried out only when there is
sufficient data on the global characteristics of' the pressure/flow field. An
important case consists in the use of global free liquid surface data. A brief
review of the theory involved has already been given in section (5) above.
Forward solutions based on the type of Green's'function expression given by
(6) above are of particular relevance in global work.

(6) Testing with natural signals

Types of drive. Available natural driving strain or force fields are of
the following LF (Tow-frequency) to ULF (ultra-low-frequency) types (period
range in parenthesis): seismic strain (1 to 103s), hydroelastic oscillations
and noise (two-phase flow, etc.)(10 to 10%s), tidal strain (10% to 10%s),
atmospheric pressure variations (10% to 10%s), precipitation load (10% to 10°s)
and seasonal water-level variations (108 to 108s).

Local. The most obvious applications of natural drive are to the local
type of testing. For the sake of brevity, we will limit our attention to VLF
and ULF test signals where the mass forces on liquid columns in boreholes can
be ignored. Moreover, in the single borehole case the essential results are
obtained by deriving the pressure amplitude in an open hole (free liquid sur-
face) to a homogeneous harmonic formation dilatation drive of amplitude b
and angular frequency w. Responses to other types of signals can then be
easily derived with the help of a Fourier transform analysis. Under some
further plausible simplifying assumptions, the following essential results
for the pressure amplitude p in a single borehole of cross section f were
presented at the 1977 Stanford Symposium (Bodvarsson, 1977c and 1978a) , namely,

p = p,T/(1+T), where p, = eb/s, and T = -4ingr c/uf = -1AS/u. (15)

Here, pg is the static pressure amplitude, e the formation matrix coefficient
characterizing the relation between the imposed strain and the porosity, rg the
radius of the (spherical) well cavity, A = 4xryc the admittance of the cavity
and S = dp/dm = g/f is the mass stiffness of the well. The first two relations
in (15) are general, but the third one is obtained on_ the basis of the assumption
that d/rgo>>1 where d is the skin depth of the formation at tidal frequencies.

The case of pressure oscillations of tidal nature in closed we 1-
reservoir systems has been discussed recently by Arditty, Ramey and Nur (1978).

B){ a Broper definition of the well mass stiffness §, the relations 15) would
also be applicable to systems of this type.

The application of seismic signals in reservoir testing offers interesting
possibilities. Mainly because of vertical displacement oscillations, the
forward theory for this case is more complex than the results given above and
can therefore not be discussed in this brief note. The subject has been
investigated by Bodvarsson (1970). Forward solutions based on the iteractive
type of series given by (8) are of particular interest in the interpretation
of local tests based on natural drive.
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Interference and global. More global type interference tests can, in
principle, be carried on the basis of natural pressure or strain signals.
Because of the well/well pressure field scattering processes involved, the
theory cannot be discussed within the framework of this short note.

(7) Fractured reservoirs

The discussion above has been devoted entirely to formations which are
of the Darcy type or can be approximated by such media. Largely fractured
reservoirs have not received any attention. The theory of such cases differs
from the material presented above and will not be discussed here. It is of
interest to note that the mechanism of pressure field propagation in fractures
with elastic walls has been discussed by Bodvarsson (1978b).
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