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1. Introduction

During reinjection of coocled geothermal fluid into a reservoir,
chemical precipitation and other processes may occur changing the permea-
bility of the aquifer. In general, the permeability becomes a function
both of time and space. This will, of course, affect the injection well.
Some attempts+t have been made to analytically predict the pressure res-
ponse. The present paper describes our calculations which yield analytic
expressions, in terms of a single integral, for a wide class of physically
reasonable permeability functions. Results are presented for a few typi-
cal examples.

2. Governing Equations

Consider an aquifer consisting of a horizontal slab of thickness, h,
penetrated normally by a line source supplying a flow Q. The aquifer
medium is taken to be isotropic. In our simplified model we neglect gra-
vity, consider the system to be isothermal, and consider only a single
fluid phase. The governing equation is then given by

d
Boud 5= = ¥ -+ Kip (1)
if we assume that BVp * Vp << J=Y * KVp. Here B, = compressibility, u

viscosity. ¢ = porosity,are taken constant*, and K = permeability, p
pressure.

Given a permeability function of space and time, (I) yields the
pressure distribution that results. The present work solved equation (1)
for a large class of physically reasonable permeability function. In
particular, we look for a family of constant K surfaces in space-time
which may be physically reasonable. Let r, be the distance from the
line source to the fluid front. Since the volume of fluid pumped into
aquifer equals the volume of aquifer occupied, we see that the fluid
front propagates to
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ro(t) = Ct

where C is a constant. Thus if r is the distance of any point in the

* The same analysis can be casily adapted to the casc where U 1is not
a constant, but that K/u is in the form of the permeability functions
described below.

T For example, A. Sklar, Lawrence Livermore Laboratory Annual Report (1977)
unpublished.
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aquifer to the source, then points with r2/t < ¢2 will have permeability
Ko and if r2/t > c2 they will have permeability K,. Points with the same
value of the ratio r2/t will have the same permeability. We shall solve
equation (1) first for permeabilities of the form,

K(r,t) = Ky B(r2/t) (2)

where r is the cylindrical radial coordinate, and B is an arbitrary func-
tion. We shall then extend the class of solutions to those of the more
general permeability function

K(z,t) = Kg <« (t) B[r/ftoc(t')dt'] (3)
o]

where « is an arbitrary positive function of t.

3. Solution

To make equation (1) dimensionless, units are chosen so that B¢ = 1,

U =1, and limit K(x,t) = Ko = 1 then dimensionless quantities are:
r >0

m' = m{gm) r = r (cm)

t(sec)
. Vo=
c ! b Pt a
where typically a = Bgu¢ ~10 !3sec; b =/¥5~10° cm; ¢ = pab~10"20gm.

Thus (1) becomes

QB— L]
L-v-.pvp (4)

_ If we look at the solutions where p is a function of r only, p(x,t) =
p(r,t). Then

dp _ ,9°D 8 86]85
ot = Baxr *{r tsrlax ()
. r z = r2/t
Next we change variables & — w E , and apply the separation of

variables, ¢

plr,t) = P(z,w) = ¢(w)x(z) -

On substitution, we find ¢ (w) 1 and x satisfies

3% , 1 . 3tnB 1]gx o
zﬁf*[?* 5z @ 4Bz 3z  ° (6)

which is really a first order differential;equation for 9%/9dz.

It remains only to integrate the equation and impose the remaining
boundary conditions, which are
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p(r,o) = po p(e,t) = pg
Limit 2nrhK(g,t) 92 = -
r >0
limit 2mrhK(r,t) &2 = -9
t > o or

In terms of the variable z, these boundary conditions correspond to

o0 — y 1 _BX. = .ﬁ_
X(®) = pg limit z Nz = AT
zZ >0

Thus the solution of (6) after putting in units is,

o (1/4) T(2")

_ WO (1/4)I(0) [ ,
p(x,t) = py + 7— e f - - dz (7)
4ThK, . x? z'B(z")
Ko t
where I(z) =[? é%%r)

Finally, we obtain the solutions for the more general permeability
(3) from those solutions already obtained. The method depends on a property
of the differential equation

of 3%f K = 9K °f
3¢ = Klrt) 5=~ + [;'+ 5;] ™ (8)

and does not depend on the specific form of K other than its being a
function of r and t only (e.g., the same method could be used to generate
new solutions if [8) is initially solved for other forms of K).

To get the new solutions assume that (8) has been solved for f,
with a given K. Then consider the transformed function

f[r’ft «(t") dt‘]
(0]

where « is an arbitrary positive function. f_ does not satisfy (8) since

fq(r,t)

Hi

dfa _ of
T
Rather foc satisfies,
Afe 3% f Ko axa] 3f
Bt - Ke(FE) et [ r T or | or

where K. (r,t) = «(t) K[r,[t“(t')dt']
o

Furthermore, the boundary conditions on f, and f are the same so that if
p is the pressure response due to K, then to find the pressure at the
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point (r,t) when the permeability is K.,
(r,T) where

T=ftMthE
(o]

we just evaluate p at the point

4. Results

We have calculated the pressure distributions resulting from the

following permeability functions

Ko = Ko
P
Ky = Ko[l‘;:g} '
o
K2 = Ko[l Z+E
K3 = Ko exp [-p/(
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0=10" € = 4p/3

+ %————7] p=10"%¢ = 2p/3

(z+€)

z+€)] . p = 10" € = 4p/3

For comparison permeabilities K; - Kj
are graphed v s. r/Yt in Figure 1*.

The constant permeability Kg
leads to the Theis Solution which
is graphed in Figure 2. Figures
3-5 give graphs of K; - K3 and
the corresponding calculated pres-
sure distributions.

5. Summary

We have obtained an analytical
solution for the pressure response
in a reservoir with permeability of
the form K = K(rz/t). It has been
found that these solutions may be
used to generate additional solutions

for
K = oc(t)x[rz/ftot(t')dt']
[}

* In this Figure, the para-
meters in K3 are p = 1.85x10°°
and € = (4/3)p. Hence, at z=o0
all the permeability functions
K; to K4 have the value 0.25K,.
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Several function forms for K(r?/t)
have been studied and the resulting
pressure distributions calculated.

A general method for generating
the pressure response p for a permea-

bility

K(r,t) = «(t)K [r,ftm(t‘)dt]
(o]

was developed, once the solution p(r,t)
is previously found (analytically or
numerically) for a permeability function

K(r,t).

The solution for Ekr,t) is

plr,t) =p [r,]ta(t')dt]
o

The only restriction on « is that it be

positive. ‘
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