

## JAPANESE PRIMARY ENERGY SUPPLY AND GEOPHYSICAL WELL LOGGING

Seiichi Hirakawa  
The University of Tokyo  
Department of Mineral Development Engineering  
Faculty of Engineering  
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Japan is scarce in domestic natural resources. In fact, the degree of dependence on imports of basic raw materials is quite high. This paper describes primary energy supply as a background to the status of geothermal energy developments, and geophysical well logging in geothermal wells.

### Primary Energy Supply of Japan

Although Japan made a high level of economic growth from 1960 until the oil crisis in 1973, the oil crisis has had such a considerable effect on the Japanese economy as to shake its foundation. As the base of Japan's energy policy, "The Long Range Prospects for Energy Supply and Policies" was issued in 1975 by the Energy Council. In Table 1, which is its long term energy supply program, the degree of dependence on imported oil will decrease from 77 percent in 1973 to 63 percent in 1985. On the other hand, in order to attain the target of reducing dependence on imported oil, acceleration of the development of domestic energy and the large-scale introduction of LNG will be necessary.

The Japanese government has decided to make a new energy plan by next year, paying due regard to the growing sense of energy crisis. The new energy policy will be founded on the following principles: (1) to decrease dependence on crude oil, (2) to secure the stable supply of hydrocarbon energy, (3) to realize that the present target for nuclear energy is doubtful, (4) to develop various sorts of energy resources and their technologies, (5) to promote energy saving, (6) to establish friendship trade with overseas countries through international cooperation.

The advisory committee of Energy Council announced its revised plan (Table 2) in June this year, though it is not yet final. The former government plan has been variously criticized ever since it was reported. In particular there were lively arguments about the feasibility of achieving the targets of the plan, mainly: (1) in the areas of nuclear energy and LNG, realization of the plan's target is doubtful; (2) the assurance of available funds should have been made clear, in order to carry through the plan; (3) the level of oil imports would not be so easy to achieve. Each of these points was an important indication for the necessity of revising the energy plan.

Table 1. Actual Results and Forecast of Primary Energy Supply

| Sources         |                              | 1       |         |         | 2                        |
|-----------------|------------------------------|---------|---------|---------|--------------------------|
| Primary Energy  | Year                         | FY 1973 | FY 1975 | FY 1985 | FY 1985                  |
|                 | Hydro-Power, $10^6$ KW       | 21.20   | 25.43   | 28.30   | 27.00                    |
| Domestic Supply | Geothermal Energy, $10^6$ KW | 0.03    | 0.05    | 2.10    | 0.50                     |
|                 | Oil & Natural Gas, $10^6$ KL | 3.70    | 3.53    | 14.00   | 8.20                     |
|                 | Coal $10^6$ ton              | 21.68   | 18.60   | 20.00   | 20.00                    |
|                 | Nuclear Power, $10^6$ KW     | 2.30    | 5.95    | 49.00   | 27.00                    |
|                 |                              |         |         |         |                          |
| Imported Supply | LNG, $10^6$ ton              | 2.37    | 5.06    | 42.00   | 27.00                    |
|                 | Coal, $10^6$ ton             | 58.00   | 62.34   | 102.40  | (S) 88.60<br>(L) 81.48   |
|                 | Crude oil & LPG, $10^6$ KL   | 318.00  | 285.27  | 485.00  | (S) 499.46<br>(L) 440.63 |
|                 | Total $10^{13}$ KCal         | 383.    | 366.    | 710.    | (S) 658.<br>(L) 597.     |

Notes:

a) Sources of Information

Source 1) Energy Council (Aug. 1975)

Source 2) The Institute of Energy Economics (Dec. 1976)

b) For Institute of Energy Economics,

(S) indicates standard case

(L) indicates low growth case

c) Conversion rates of petroleum to heat

1 liter of petroleum 9,400 KCal

Table 2. Japan's Energy Plan

| Primary Energy  |                              | Year<br>(Actual data) | FY 1985                        |                             |
|-----------------|------------------------------|-----------------------|--------------------------------|-----------------------------|
|                 |                              |                       | Government Plan<br>(1975.Aug.) | Revised Plan<br>(1977.June) |
| Domestic Supply | Geothermal Energy, $10^6$ KW | 0.05                  | 2.10                           | 1.0                         |
|                 | Oil & Natural Gas, $10^6$ KL | 3.50                  | 14.00                          | 11.0                        |
|                 | Coal, $10^6$ ton             | 18.60                 | 20.00                          | 20.0                        |
|                 | Nuclear Power, $10^6$ KW     | 6.62                  | 49.00                          | 33.0                        |
| Imported Supply | LNG, $10^6$ ton              | 5.06                  | 42.00                          | 30.0                        |
|                 | Coal, $10^6$ ton             | 62.34                 | 102.40                         | 102.0                       |
|                 | Crude Oil & LPG, $10^6$ KL   | 286.00                | 485.00                         | 432.0                       |
|                 | New Energy, $10^6$ KL        | -                     | -                              | 2.3                         |

Table 3. Geothermal Power Plants in Operation and under Construction in Japan (1977, July)

| Name of Company    |                                | Name of Station       | Location (Pref.) | Capacity (KW)     | Starting Operation |
|--------------------|--------------------------------|-----------------------|------------------|-------------------|--------------------|
| In Operation       | Japan Metals and Chemicals Co. | Matsukawa             | Iwate            | 22,000            | 1966,Oct.          |
|                    | Kyushu Electric Power Co.      | Otake                 | Ōita             | 11,000            | 1967,Oct.          |
|                    | Mitsubishi Metal Mining Co.    | Ōnuma                 | Akita            | 10,000 (7,500)    | 1974,June          |
|                    | Electric Power Development Co. | Onikobe               | Miyagi           | 25,000 (12,500)   | 1975,Mar.          |
|                    | Kyushu Electric Power Co.      | Hatchobaru            | Ōita             | 50,000 (25,000)   | 1977,June          |
|                    | Sub-total                      |                       |                  | 118,000 (76,000)* | *(actual data)     |
| Under Construction | Japan Metals and Chemicals Co. | Katsukonda (Takinoue) | Iwate            | 50,000            | 1977,Dec.          |
|                    | Tōhoku Electric Power Co.      |                       |                  |                   |                    |
|                    | Dohnan Geothermal Energy Co.   | Mori (Nigorikawa)     | Hokkaido         | 50,000            | 1979,Mar.          |
| Sub-total          |                                |                       |                  | 100,000           |                    |

## Geothermal Resources and Development in Japan

At present, five geothermal power stations are being operated, and another two stations are under construction, as shown in Table 3. An organized basic investigation for geothermal resources was started in the fiscal year of 1973 by the Geological Survey of Japan.

Japan is set on parts of a volcanic belt; that is, the volcanic ranges of Chishima, Nasu, Chokai, Fuji, Norikura, Hakusan, Kirishima and so on. Hot springs occurring in the vicinity of these volcanoes have been used for bathing. According to a report (1975) by the Geological Survey of Japan, there are 111 sites of steam fumaroles, boiling springs and hot springs having temperatures more than 90°C, although in total there are about 1,500 hot spring resorts in Japan. Prospective sites for geothermal energy development usually lie around the hot spring zones of volcanoes. As part of the long-term new energy research and development program named "Sunshine Project", the Geological Survey of Japan picked up the thirty high potentiality geothermal fields (Fig. 1) characterized by conspicuous geothermal anomalies, particularly fumaroles and hot springs of temperature above 90°C.

## Geophysical Well Logging in Geothermal Wells

The purpose of geothermal well logging differs from that of oil or gas wells in some respects. Geothermal wells are usually drilled in hotter and harder formations, which often are fractured. This combination of high temperatures and hard formations (igneous or metamorphic, not sedimentary formations) causes some problems in geothermal well logging.

In Japanese geothermal energy development companies such as the Japan Metals & Chemicals Co., Ltd., geologists and reservoir engineers have mainly conducted research into the evaluation of fractures and geothermal reservoirs by electric logging (S.P., resistivity), temperature and pressure logging, caliper logging and so on.

Our governmental support for geothermal well logging may be grouped into two kinds. First, the Japan Geothermal Energy Development Center is now investigating geothermal potential and the feasibility of its development using surface surveys and boring wells (about 1,000 meters depth) under instructions from the Power generation section and the Geothermal resources development investigation committee, which belong to the Ministry of International Trade and Industry. The following geophysical measurements in these wells are available: temperature logging, electric logging (S.P., resistivity), core analysis (rock density, magnetic susceptibility, acoustic velocity, thermal conductivity) and so on.

A second kind is the Geothermal Energy Research and Development program of "Sunshine Project," planned by the Industrial Technology Agency. Included are the following four R & D groups:

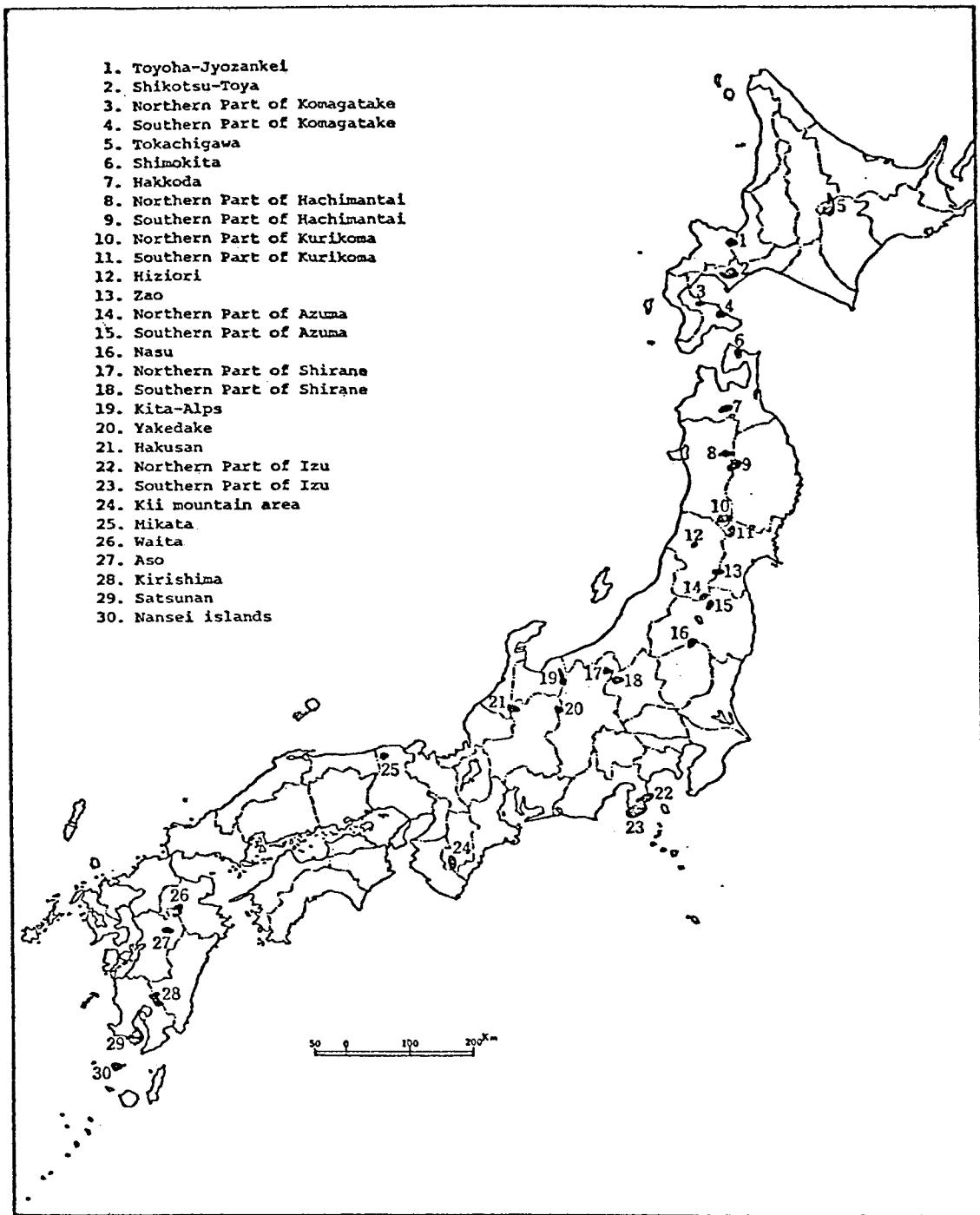



Figure 1. Locations of the 30 geothermal fields to be investigated by the Geological Survey of Japan.

(1) exploration, drilling and production, (2) geothermal power generation and plant, (3) recovery of volcanic energy, energy from dry hot rock etc., (4) environmental problems, multiple utilization of steam and hot water etc. One of them is the R & D on well logging probes and devices with a view of geothermal energy development.

In 1975, the study was initiated by our Borehole Measurement (geothermal well logging) Committee which consists of members from the Geological Survey of Japan, University of Tokyo, Geothermal Energy Research and Development Co. (secretariate), Japan Metals & Chemicals Co., Teikoku Oil Co., Japan Petroleum Exploration Co. and so on.

A feasibility study and selection of well logging tools were conducted in early stages of this study. These tools are usually designed for operation in an environment of 250°C and 200 ~ 300 Kg/cm<sup>2</sup>. The following equipment will be constructed and operated by the coming March.

- (1) Testing Vessel
- (2) Downhole Flowmeter for hot water (continuous recording type)
- (3) Acoustic Velocity Logging device measuring the compressional wave and shear wave simultaneously
- (4) Bore Hole Television Camera
- (5) Temperature Logging and Pressure Logging devices.

These hot spring zones have peculiar landscapes such as volcanic valleys and have often been designated as national parks or quasi-national parks. Geothermal development within the area of a national park needs prior permission of the Director of Environment Agency. The Governor's permission would not be easily obtained. However, in view of the very high dependence of Japan's energy supply on foreign resources, the development of the domestic geothermal energy resources should be promoted as a national policy.

#### References

1. Seiichi Hirakawa and Shigero Kusano, "Japan's Energy Policy and Role of LNG", 5th International Conference on LNG, Session 1, (1977).
2. Junji Suyama et al., "Assessment of Geothermal Resources of Japan", Geological Survey of Japan (1975).
3. Tsutomu Inoue, "Present Status and Future Prospects of the Geothermal Energy Development in Japan", 9th WEC, Division 3 (1974).

TABLE 4.

Comparison of field data with calculated results.

| Test Well | Total Mass Rate (t/hr) | Predicted Flow Regime | Pressure Drop                       |              | Percent Difference |
|-----------|------------------------|-----------------------|-------------------------------------|--------------|--------------------|
|           |                        |                       | $\Delta P_m$ (kgf/cm <sup>2</sup> ) | $\Delta P_c$ |                    |
| T-205-1   | 32.5                   | F,B                   | 39.2                                | 38.8         | - 1.0              |
| T-205-2   | 39.7                   | F,B                   | 36.7                                | 37.3         | 1.6                |
| T-205-3   | 47.3                   | F,B                   | 33.0                                | 30.8         | - 6.7              |
| T-205-4   | 54.9                   | F,B                   | 30.5                                | 26.9         | -11.8              |
| C-1-1     | 78.1                   | F,B                   | 62.82                               | 59.13        | - 5.9              |
| C-1-2     | 147.5                  | F,B                   | 52.06                               | 52.81        | 1.4                |
| C-1-3     | 198.6                  | F,B                   | 44.52                               | 47.72        | 7.1                |
| C-2-1     | 127.5                  | F,B                   | 56.05                               | 58.02        | 3.5                |
| C-2-2     | 209.9                  | F,B                   | 50.65                               | 53.02        | 4.8                |
| C-2-3     | 229.0                  | F,B                   | 48.65                               | 48.78        | 0.2                |

F=Froth, B=Bubble,  $\text{Percent Difference} = \frac{(\Delta P_c - \Delta P_m)}{\Delta P_m} \times 100$

TABLE 5.

| Test Well | Well Data from Takinoue, Japan (1975-6). |                 |                   |                   |                          |                  |
|-----------|------------------------------------------|-----------------|-------------------|-------------------|--------------------------|------------------|
|           | Reference Depth (m)                      | Cased Depth (m) | Steam Rate (t/hr) | Water Rate (t/hr) | Wellhead Pressure (kscg) | Wellhead Quality |
| T-205-1   | 700                                      | 500             | 1.9               | 30.6              | 12.7                     | 0.058            |
| T-205-2   | 700                                      | 500             | 3.3               | 36.4              | 10.6                     | 0.083            |
| T-205-3   | 700                                      | 500             | 5.2               | 42.1              | 9.8                      | 0.110            |
| T-205-4   | 700                                      | 500             | 7.7               | 47.2              | 8.0                      | 0.140            |
| C-1-1     | 950                                      | 752             | 6.5               | 71.6              | 10.9                     | 0.083            |
| C-1-2     | 950                                      | 752             | 14.8              | 132.7             | 10.2                     | 0.100            |
| C-1-3     | 950                                      | 752             | 17.9              | 180.7             | 9.3                      | 0.090            |
| C-2-1     | 880                                      | 829             | 6.9               | 120.6             | 13.98                    | 0.054            |
| C-2-2     | 880                                      | 829             | 21.4              | 188.5             | 13.98                    | 0.102            |
| C-2-3     | 880                                      | 829             | 26.8              | 202.2             | 13.22                    | 0.117            |

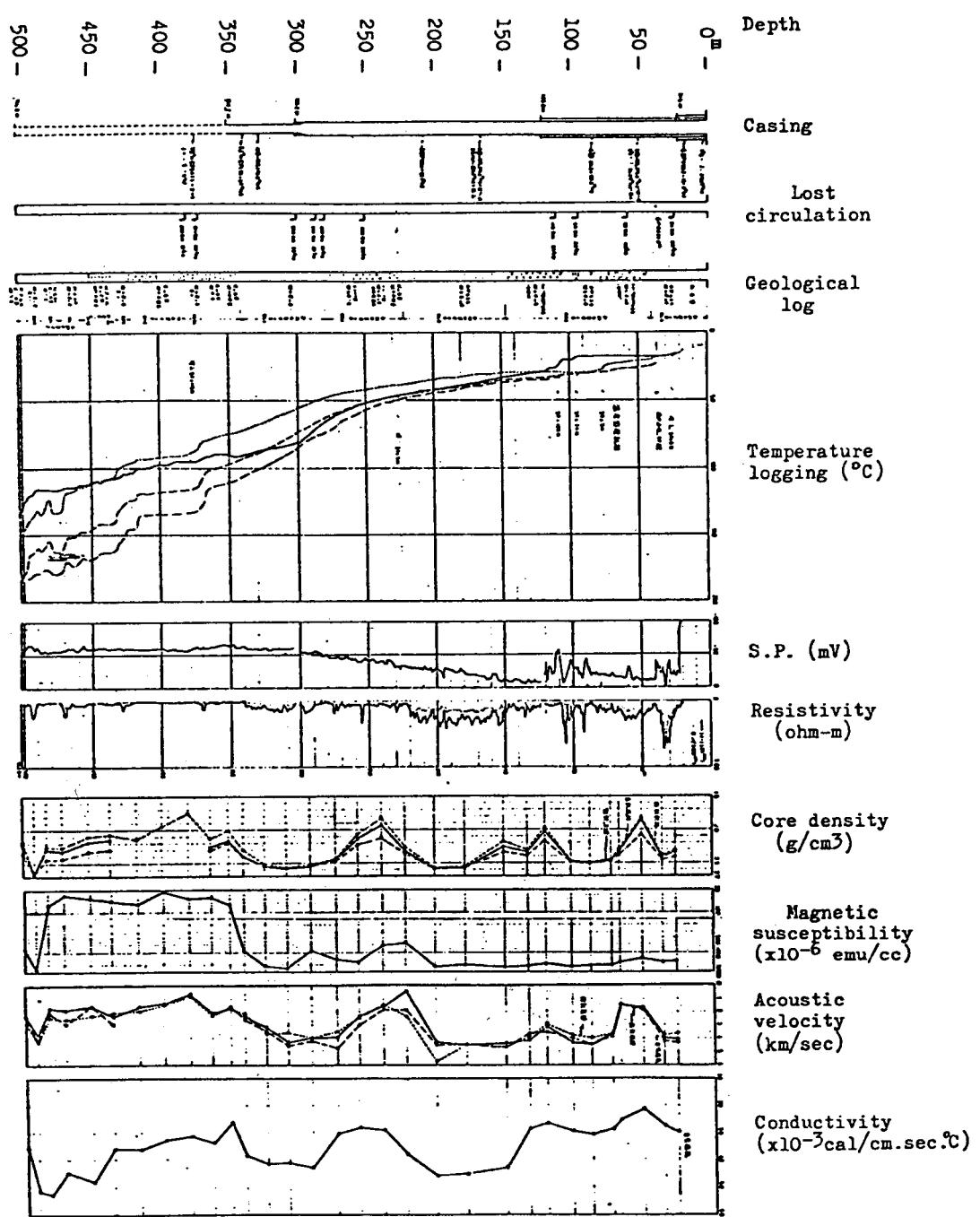



Figure 2.

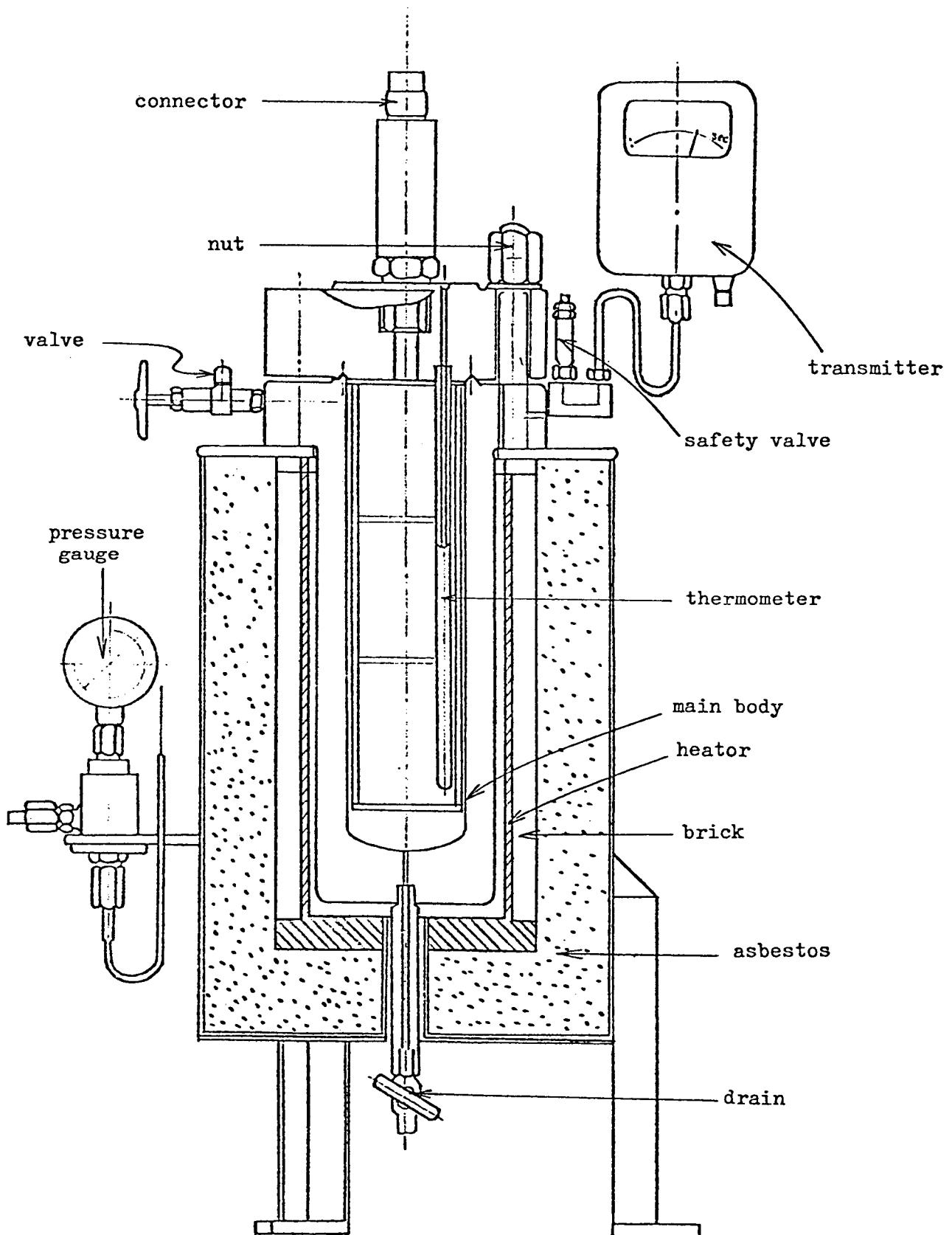



Figure 3. Testing Vessel

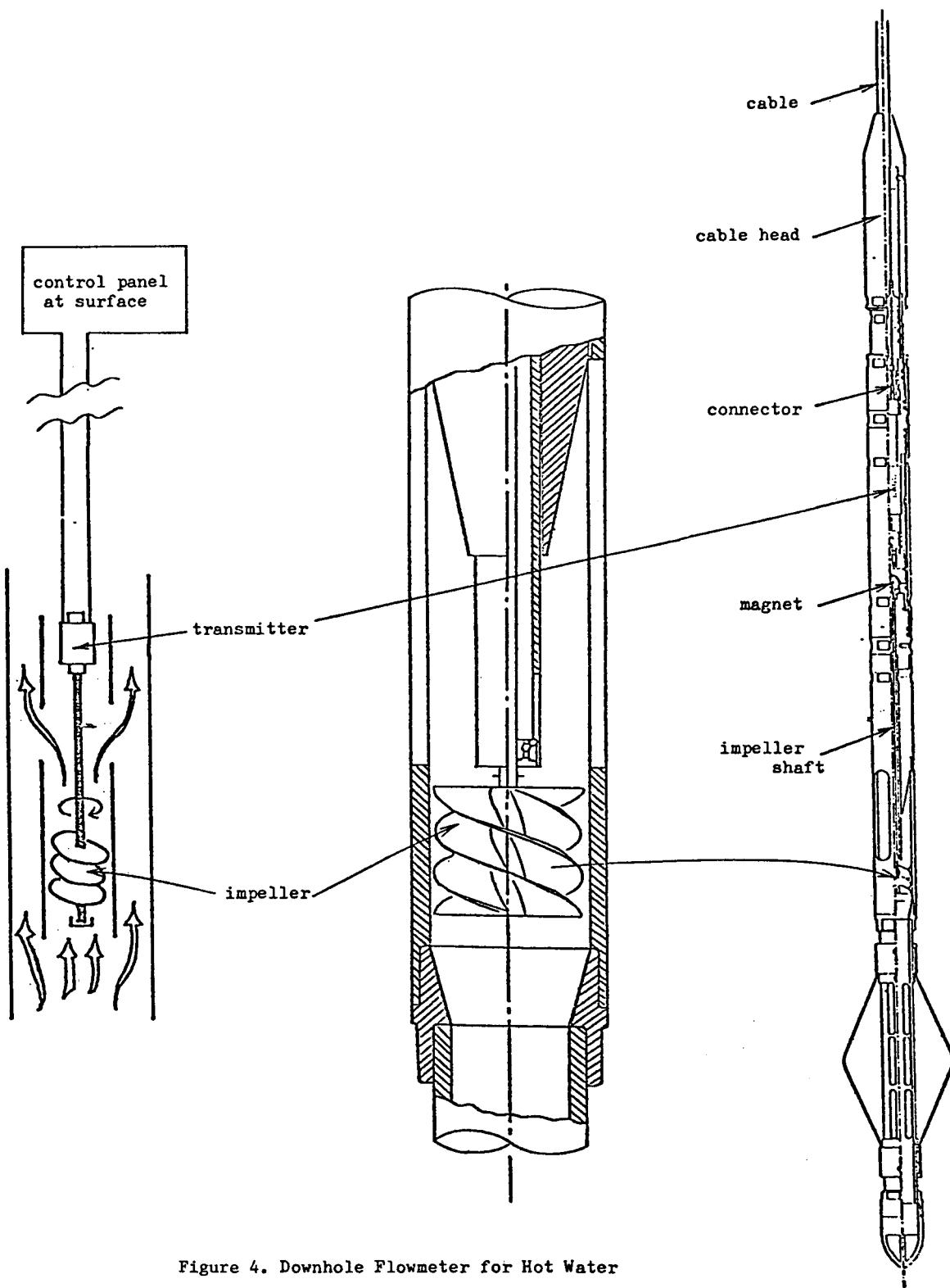



Figure 4. Downhole Flowmeter for Hot Water

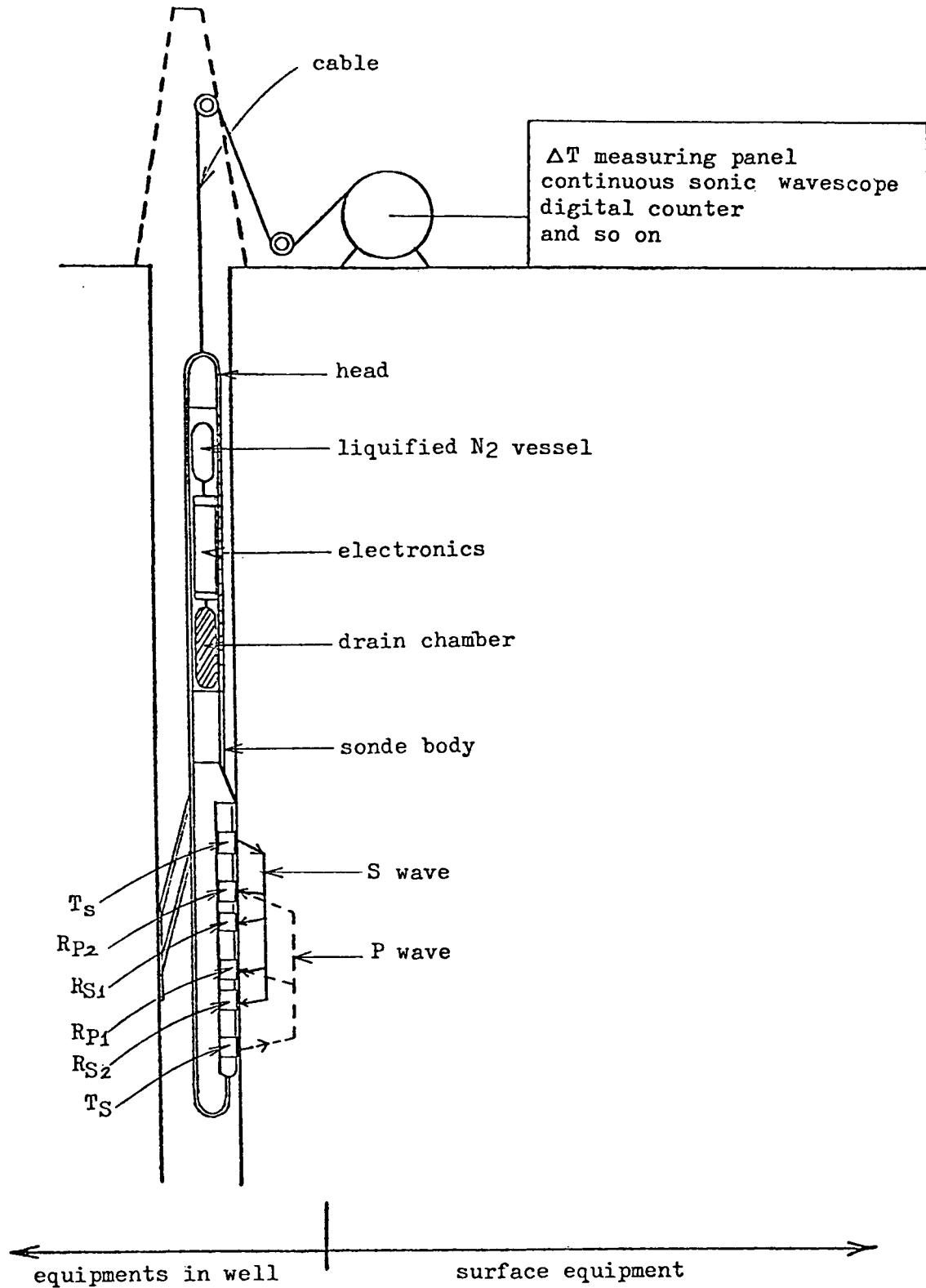



Figure 5.