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The question of the depth reached by groundwater in natural recharge
to a geothermal field is of interest for geothermal development, since it can
affect the nature of the recharge regime during withdrawal, and the volume
of water within reach during exploitation. Also, useful inferences may be
drawn about the large-scale permeability of the system if the groundwater
flow regime is understood.

Evidence for the presence of thermal convection in the groundwater
now appears to be well-established, although topographic effects may also
be important (Studt and Thompson 1969, Healy and Hochstein 1973). Two
regions which serve particularly well as illustrations are (1) the Imperial
Valley of Southern California and (2) the Taupo Volcanic Zone of New Zealand.
Both exhibit a number of quite well-defined zones of anomalously high heat
flow (geothermal fields), separated by distances of 10 to 15 Km, the inter-
vening areas usually having very low heat flow. At Imperial Valley, the
fairly permeable sands in which convection is likely to occur are overlain
by sediments of low permeability, roughly 0.6 Km in thickness, and thermal
conductivity alone without appreciable convection, commonly occurs in these
upper layers (Palmer, Howard and Lande 1975). In the case of (2), the heat
flow in areas surrounding geothermal fields is depressed practically to
zero, and this has been interpreted by Studt and Thompson as being due to
downflowing recharge water from precipitation. The water issuing naturally
from geothermal fields is predominantly meteoric, but the residence times
in the groundwater stage appear to be very long.

It follows that the upper boundary conditions of the two cases must
be significantly different. In (1) the upper flow boundary is practically
impermeable while, in (2), flow through the upper boundary is almost unimpeded.
ldealized conditions which correspond approximately to these cases were
introduced by Lapwood (1948); these will be designated as boundary conditions
1 and 2 respectively.

Lapwood calculated critical Rayleigh numbers (R = RC) for neutral
stability in a horizontal layer of uniform isotropic porous material, heated
from below to maintain a constant temperature difference between the two
boundaries. -Fluid properties and thermal conductivity of the saturated
medium were assumed constant. Although the stability approach does not yield
heat-flux Nusselt numbers for convection at supercritical Rayleigh numbers,
it provides a useful prediction of the most likely aspect ratio--horizontal
wavelength to layer depth--of convection cells under finite amplitude
conditions provided that R - R is small in comparison with R.. Also,
the approach is convenient for studying the influence of changing fluid or
medium properties; many cases can be treated quickly, and likely combinations
of parameters may be selected for more detailed study at higher Rayleigh
numbers.
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Magnitudes of Convection Parameters

Several factors indicate that R/R. is not very large in the two
geothermal zones discussed above. |t Is likely that heat enters the system
by conduction through rock layers from quite shallow, perhaps magmatic,
sources. |If convection were not present, a thermal anomaly would still
exist, with a different spatial distribution, and probably with a heat flow
several times normal. The presence of convection will enhance the heat flow,
but probably by a factor of order 2, rather than 10. (From a practical
point of view, perhaps the most important function of convection is to
redistribute and concentrate the heat flow.) A low Nusselt number will be
associated with only moderate values of R/R..

In round numbers, a 1000°¢C magma body at a depth of about 5 Km would
give rise to a conduction heat flow of 5-10 heat flow units (1 h.f.u. being
the world average). |If convection were present in the upper part of the
5 Km layer, giving rise to an overall Nusselt number of 2, this would
account for the heat flow observed in, for example, the Taupo Volcanic Zone.

A low value of Rayleigh number appears to be consistent with estimated |
physical parameters, average values from the upper part of the Wairakei
field (McNabb, Grant and Robinson 1975). Assuming vertical permeability
K =7 x 107! cm?, cold water viscosity u_ = 10°2 poise, thermal conductivity
K 3 x 1073 c.g.s. units, liquid density contrast Ap = 0.2, it is found that

[ S}

R/L - kgAp/Kuo (1)
= 50 per Km depth.
Here the depth L of the permeable layer is unknown, but it is suggested that
it is not more than about 3 Km. It is important to establish whether the
convection theory is consistent with this shallow depth of groundwater

penetration and the observed 10-15 Km separation of geothermal fields.

Extensions of the Theory

The matrix permeability K and the fluid viscosity u are involved only
through the ratio K/u--the "mobility'--but in practice this function may
be quite complex. This has led to various extensions of Lapwood's work.

Using upper boundary conditions of type 1, Kassoy and Zebib (1976)
have considered the case of temperature-dependent viscosity, noting that,
for water, u may change by an order of magnitude over the range of temperatures
encountered in geothermal applications. On the other hand, Ribando, Torrance
and Turcotte (1976) treated viscosity as constant, and carried out numerical
calculations of finite-amplitude convection both for the Lapwood system and
for permeability decreasing exponentially with depth.

A peculiar effect observed recently in silica-water systems (H. J.
Ramey, Jr., pers. comm.) is that the permeability appears to decrease with
rising temperature, perhaps by a factor of 2 or more in a range of a few
hundred degrees centigrade. Although an explanation is not forthcoming at
this time of writing, it is interesting to note that silica polymerizes in
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aqueous solution to form a gel--a property which has been studied in
connection with the formation of scale (Marsh, Klein and Vermeulen 1975).
Thus the phenomenon may be equivalent to an increase of effective viscosity
with temperature, partially counteracting the usual viscosity decrease
associated with pure water. For purposes of calculation, this can be
incorporated into the assumed temperature-viscosity law.

The Permeability Problem

Permeable media encountered in geothermal areas depart greatly from the
simple homogeneous isotropic systems frequently considered in the laboratory
and in theory. The Taupo Volcanic Zone exhibits many such complications,
in particular the layering produced by a sequence of many thin volcanic
deposits, varying in degrees of welding, brecciation, etc., and perhaps
interspersed with thin sedimentary lenses, the occasional existence of
highly permeable, weathered horizons between successive deposits, and the
presence of numerous near-vertical faults trending along the Zone. On the
large scale, a fracture-dominated system still appears to be well represented
by a Darcy-type flow law, but the permeability is likely to be non-isotropic
(H. J. Ramey, Jr., pers. comm.).

Borehole data on which large-scale permeability might be estimated is
inadequate, generally because detailed information on fractures and permeable
horizons is missed. However, zones of drill circulation loss are recorded,
and can give a useful indication of fractures encountered. For the deepest
borehole in the Wairakei geothermal field (Bore 121, 2265 metres) circulation
losses are encountered frequently down to 1000 m, but only a few cases are
noted at greater depths (1680 m and 2250 m, G. Grindley and P. Browne, pers.
comm.). This indication of fewer permeable fractures at the greater depths
is in accord with the observed hydrothermal alteration (P. Browne, pers.
comm.), which implies a lesser through-flow of water. However, there are
no other bores of comparable depth at Wairakei to supplement these limited
observations.

Attempts to estimate the vertical and horizontal components of large-
scale permeability in the area of the Wairakei field (McNabb, Grant and
Robinson 1975) indicate that the horizontal permeability could have been
anything up to 10 times as great. A contrast as high as this would be
consistent with a layered system having very permeable horizons. The
vertical faulting could be less important, as there are indications that
permeability varies to a lesser extent with horizontal direction.

Stability Analysis from Convection Theory

The basic equations of thermal convection of a variable-viscosity
fluid in a saturated medium have been given elsewhere (e.g., Wooding 1975).

A simple, but relevant generalization to anisotropic permeability is
realized by assuming horizontal stratification, so that one principal axis
of the permeability tensor is vertical and the other two are horizontal.
Let v,, v, be the ratios of the vertical component of permeability to the
two horizontal components. These ratios will be assumed constant although
the individual components of permeability may vary with depth.
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Suitable scales for the convection problem are the length L (layer
depth), the thermal diffusivity « and the velocity Rk/L, where R is the
Rayleigh number defined in (1). The time scale is EL?/Rk, where E is the
ratio of the heat capacity of the saturated medium to that of the fluid
(Wooding 1957).. Also, Ap is an appropriate density scale.

If z is the dimensionless upward vertical coordinate, the dimensionless
density profile corresponding to steady conduction of heat from below is
equal to z. Any small perturbation 6 (x, y, z, t) of this profile will
give rise to a perturbation velocity field; if w (x, y, z, t) is the
vertical component of velocity, let

AT

(6, W) = (v, (2. w, (2)) € sin ax sin gy (2)

where 1t is dimensionless time and a, B are dimensionless wave numbers. Then
the linearized equations give, for the z-dependent functions 01, wy,

D(oD)w, - (a®/y, + 8%/y,){ow +6 ) =0 (3)

w, = = (D? - o’ - 87 - AR) 8, (4)

=

where D = d/dz and o = (v/x)/(v/k) , (v = u/p), the suffix o referring to
values at the upper boundary. The boundary conditions 1 and 2 give

#, =w, =0atz=20 (5)
and 1) b, =w =0atz=1 (6a)
2) 0, =Dw =0at 2z = | (6b)

where 1) refers to an impermeable upper boundary and 2) to a boundary
which is permeable (giving constant pressure).

Results from Stability Analysis

When the ratio v/k is constant (g = 1), (3) to (6) can be solved
analytically, and would include the case where the decrease in kinematic
viscosity with depth (due to rising temperature) is balanced by the decrease
of permeability with depth--a reasonable approximation to reality.

Figure 1 is a plot of wavenumber o, and minimum Rayleigh number R ,
for given values of the permeability ratio y,, assuming that 8 = 0. The
curves 1 and 2 correspond to boundary conditions 1 and 2. For any given
value of y,, the system is more unstable with boundary conditions 2 than
with boundary conditions 1. However, the curves 1 and 2 are quite similar
in position and shape, and situations involving boundary conditions
intermediate between 1 and 2 might be inferred readily. For this reason
equal values of y; on the two curves are joined by broken lines. Curves

1 and 2 tend to the same value of R, as y1, and o tend to zero; i.e., as
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the horizontal-to-vertical permeability ratio increases, the permeability
of the upper boundary to fluid flow becomes less significant.

The reduction of o, with decreasing vy (increasing anisotrophy) is
substantial. [f, for example, vy, = 0.1--3 possible value according to
McNabb, Grant and Robinson (1975}--am, is likely to be in the range 1.4 to
1.8, which corresponds to a horizontal wavelength to layer depth ratio of
4 to 5.2 for hexagonal cells. |If this can be extrapolated to finite-
amplitude convection in a geothermal zone, a 3 Km depth of groundwater
flow would lead to a field spacing of 12 to 15.6 Km, which is plausible
when compared with observation.

When o varies with z, the equations (3) ff. have been solved numerically.
Surprisingly, the wavenumber of greatest instability, a,, is relatively
insensitive to variations of viscosity and permeability with depth, even
when these approach an order of magnitude. This suggests that if other,
unsuspected, factors are not present, the observed field geometry is most
strongly influenced by anisotropic permeability.

When the medium also exhibits anisotrophy in the horizontal, it is
necessary to consider three-dimensional instability in more detail.
Contours of RC have been plotted as a function of wavenumbers a and B.
When the horiZontal permeability in the x-direction exceeds that in the
y-direction, R. has a minimum (Rm) at 8 =0 and a = - This shows that
the most unstable small disturbance consists of two-dimensional rolls
with axes at right angles to the direction of maximum permeability. It
does not follow, however, that such rolls will be observed at finite
amplitudes when R > R,. For example, the effect of variable viscosity
may be to impose three-dimensional convection cells upon the system.

A more detailed discussion of these results is given elsewhere
(Wooding 1976).
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Figure 1. Minimum critical Rayleigh number R_ and the corresponding
wavenumber an for various vertical-horizontal permeability ratios Y-
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