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This paper presents a simplified analytic treatment of the
problem of fluid flow and heat transfer in a hot water reservoir. A
multi-layered reservoir is considered, with a circular array of pro-
ducing wells surrounded by a concentric, circular array of injection
wells. Complete injection of produced water, and hence an eventual
steady state, is assumed for the flow system. A temperature gradient
is assumed in the radial direction. The rock properties are allowed
to vary from layer to layer, but are considered uniform within a
particular layer. The heat transfer problem is handled by a modi-
fication of the solution to the problem of heat extraction from
fractured dry rocks proposed by Gringarten, et al. (1975). The
reservoir is represented as a vertical stack of horizontal layers,
with permeable and impermeable layers alternating. The pressure
distributions in various layers are calculated by spatial super-
position of the continuous line source solution for the given geo-
metry, with average fluid and rock properties within the system.
This approach can yield results such as the breakthrough time of
injected water in each layer, pressure distribution in space and time
and the temperature of the produced water over time. In a study of
the Heber geothermal reservoir in the Imperial Valley of California
such results have shown reasonably close agreement with the results
from computer simulation.

Many hot water geothermal reservoirs display a closed temperature
anomaly, i.e., the temperature of the reservoir is highest near the
center and gradually declines towards the periphery. For such
reservoirs a logical development plan is to produce hot water from
the central part of the reservoir through an array or cluster of pro-
duction wells. The heat is extracted from the produced water for
power generation, and the cooled water is injected into the cooler
marginal areas of the reservoir through an array of injection wells.
This paper presents a semi-analytic method for analyzing the heat and
fluid flow characteristics of such a system.

HEAT FLOW ANALYSIS
The objective of this analysis is to be able to forecast the

outlet temperature which, together with the fluid production rate at
the production wells, determines the heat flow rate.
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Physical and Mathematical Model. As shown in Figure la, the
reservoir consists of thin sand and shale layers with differing thick-
ness, permeability and porosity for each sand layer, and with shale
layers all having the same thickness and assumed to be located
between these sand layers. Cold water is injected through the
injection wells located on a circle with radius Ry and hot water is
produced at the production wells located on a circle with radius R1
as shown in Figure 1b. Initially the reservoir temperature increases
linearly from the injection wells to the production wells.

The mathematical model is based upon Figure 2 where the
relevant information concerning the heat flow for a sand layer is
represented. Zg is the distance from the bottom of the shale layer
to the no heat flow boundary within it. If the average water flow
rate for all the sand layers is the same and the thickness of the
sand layers and the shale layers is constant then Zp will be half
of the shale thickness.,

The following assumptions are made in simplifying the physical
model:

1. The sand layers and the shale layers are homogeneous
and isotropic.

2. The density, heat capacity, and thermal conductivity of
water, of the solid matrix of the sand layer, and of the
shale layer are constant. Further, the density, specific
heat, and thermal conductivity of the shale and of the
solid matrix of the sand layer are the same.

3. The water temperature T, is only a function of radial
coordinate, r, and time, t, and does not vary with the
vertical coordinate, z.

4, Heat conduction in the radial direction in both sand and
shale layers is negligible.

5. Initially, both the sand and shale layers are at the same
temperature at any given r. Taking the temperature
gradient in the r direction into account, the initial
temperature distribution at any given r is given by the
initial rock temperature Tro @t the point of production
minus the product of the temperature gradient, a, and
the distance from the production well.

Heat flow for a single layer, shown in Figure 2, is governed
by two differential equations
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Tw(r,t) and TR(r,z,t) are water and rock temperatures respectively.

The temperatures must also satisfy the following initial and
boundary conditions:

TR(r’Z$t) = TW(r,t) = TRO - a(Rz—r), t<r/V (3)
TR(Rz,z,t) = TW(Rz,t) = Tro t<0 (4)
Ta(Ryz,t) = T (Ry,t) = T t20 (5)
T, (rt) = To(r,z;,t) for all r and t (6)
3T, (r,z,t)/3z] =0 (7)

2=ZE

For a single layer, taking Zp at infinity, Lauwerier (1955)
gave a solution for the above problem in Cartesian coordinates. In
order to use Lauwerier's solution the shale layers separating the
sand layers should be thicker than they. are assumed to be in this
study. Carslaw and Jaeger (1959) gave the solution to the same
problem as Lauwerier except that they considered a single fracture
instead of a porous sand layer. Recently, Gringarten et al. (1975)
gave the solution for the mathematical problem above in Cartesian
coordinates, but they solved the probliem for an infinite series of
parallel, equidistant fractures of uniform thickness rather than for
sand layers. Gringarten gave the solution, dimensionless temperature
TWD(r,tD), in the form of a graph as a function of two dimensionless
numbers, given in our notation as follows:

Zgp = (o € /kp) (a/r)Z; (8)

2 —, 2
ty = [lo € )" /kgopCrlla/r) "t {9)

! —_— .
where t = t-(R,-Ry)/v,,. The second term (Ry-Ry)/v,, is the break-
through time, 7T.e., the time taken by the injected water to arrive
at the production well. The dimensionless temperature, TWD, is given

by:
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Top = [Teo T, (rst) 1/ (Tpo=T ) (10)

1
For given values of ZED and tD’ TwD is read from the graph.
Defining an average flow rate, E} per sand layer per unit length,
one can use the solution given by Gringarten et al. in the analysis
of the problem at hand. This application is summarized in the follow-
ing section.

Application of Gringarten's Solution. In order to use the
solution given in graphical form to find the produced water tempera-
ture, one needs to determine the dimensionless numbers given by Egs.
8 and 9. Assuming the thermal properties of the water and shale are
known, still to be found are the values of the breakthrough time,
(R2-R])/vw, and the ratio between the average flow rate, q, and the

distance r = RZ—R].

Given the total injection rate Q, the average flow rate, al
is given by the expression:

q = Q/n(R +R,) (11)

Based on the relative magnitude of the (kh)i product of each layer,
the average flow rate for each layer is found as:

m

a; =alkh)./ 2 (kh)., i=1,2,...,m (12)
i=1

where (kh)i is the product of permeability and thickness of the ith

layer, and m is the number of sand layers.

Dividing the rate, q for a sand layer by the product of its thick-
ness and porosity (h¢) , the average velocity in the layer is obtained:

<|

_/(h¢)i, i=1,2,...,m (13)

wi

Using these values of q,, and vWI together with r = Ro-Ry in
Eqs. 8 and 9, the values of Zgp and the breakthrough time,
(R R )/v ., are found.

To obtain the water outlet temperatures for each layer at
different times, now the task is to determlne the dimensionless time,
t'D, which is taken as zero for t<(R, - /vw| However, in the appli-
cation of Gringarten's solution to t%e problem under investigation
one faces two problems:
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(1) as pointed out earlier, Gringarten's solution assumes that all
the flow rates are the same and therefore that Zgp;'s are the same,
whereas here they are different for each layer, and

(2) Gringarten assumes that there is no temperature gradient along
the fracture, whereas there is a temperature gradient along the sand
layer in the present problem.

Pertaining to the first of these problems, if the values of
Zgpi's for the layers expected to have significant outlet temperature
drops all fall in a narrow range, then the errors introduced by the
variance of Zpp from layer to layer can be considered acceptable for
engineering purposes. As for the second problem, to relax the assump-
tion of no temperature gradient in the radial direction and to in-
clude the effect of this temperature gradient in the solution, all
of the layers can be divided into several concentric sections.
initially all the sections are assumed to be at a uniform temperature
which is given by their median temperature, and the temperature grad-
ient in each of these sections is neglected. Also the area weighted
average flow rate, T, is calculated for each section of every sand
layer and thus the same is done for V@i'

In finding the outlet temperature history of a layer at
t = t1<tp<...<t,, one first calculates the outlet temperature at the
production end of the first section, which will have the shortest
breakthrough time. Using Gringarten's solution, the outlet tempera-
ture of this section is obtained at time ty with time interval
Aty = tq,tp. If during this first time period Aty, not only the first
section but the next section (or sections) breaks through, then first
the outlet temperature of this second section is found. The average
of this outlet temperature is used as the injection temperature for the
first section to find its outlet temperature by superposition.

The above procedure is repeated for all the layers and their
outlet temperature histories are found. Taking the density and the
specific heat of water constant, the average bottom hole water outlet
temperature history is found by the following expression:

m
T(t),, => (q. /)T ; (R, t) (14)

i=1

FLUID FLOW ANALYSIS

The objective in this section is to be able to predict the
pressure behavior of production and injection wells again for the
system shown in Figure 1. |In order to get a better understanding of the
fluid flow characteristics of the system, both early and late pressure
histories will be investigated.

The following assumptions are made in order to simplify the
physics of the problem:
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(1) the reservoir is infinitely large, compared to the well bore
radius

(2) homogeneous and isotropic medium

(3) formation has a uniform thickness

(4) porosity, permeability, and viscosity are constant (independ-
ent of pressure and temperature)

Further, for simplicity, the radii of the production and injection wells
are taken to be the same, and the production and injection wells are
assumed to have constant production and injection rates and show no

skin effect.

The solution giving the pressure history of a production well
producing at a constant rate located in a reservoir for which the above
assumptions hold is the continuous line source solution given as
follows:

2
r
_1 ... D (15)
151.3q uB (P -Plrye)] = Pplrp.ty) = 5 Bl Kt—o)
= = 2
where 1, v/t b 0.000264 kt/¢uCtrW , and

-u
-Ei(-x) =f E———du (exponential integral)

For an injection well the production rate, q., in Eq. 15 will be re-
placed by the injection rate with negative sign (-qin)‘

In an infinite reservoir where there are N production and M
injection wells, the pressure history of any given production or in-
jection well can be found through the solution given above with spatial
superposition if the injection and production rates are constant with
time or are a step function of time.

Taking qp as the production rate for all the production wells
and g, as the injection ‘rate for all the injection wells, the
pressure history of a production well will be glven by:

rlhl.3quq _ r2
P(F,t)=P-‘——"z'|_T—‘EE -‘——E(' )
P ! i=1 htD
141.3uB q. | M F2o
. . W ln]z -—E (= [t)J ) (16)
j=1 D ,
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A similar expression will be obtained for the injection pressure history,
P (r,t), for an injection well,

To find pp(r,t) for a given value of dimensionless time t, one
needs to find the dimensionless radial distance rp; to all of the
production wells and rpj for all of the injection wells, and then to
find all of the values of the exponential lntegral for all of the
arguments (rZDi/htD), i=1,..., N, and (r2 DJ/htD), o= 1,000 ,M.

For the system under investigation the values of rp; and rp
can be evaluated through the following expressions (see Figure 3):

rDi = ], i =1 (]7)
i =1 \/ﬁtl cos ———i:llﬂ i=2,..,N (18)
_1 2 (_])
rDj =7 \/{‘1 + R2 - 2R R2 cos —-—JL-—— =1,2,...M (19)
w

A computer program is developed and production and injection
pressure histories are computed for various values of the variables
affecting the fluid flow characteristics of the system.

NOMENCLATURE

Bw = formation volume factor for water

<, = total system effective isothermal compressibility

CR = specific heat of shale or the solid matrix of the sand
layers

= formation permeability

= thermal conductivity of shale or the solid matrix of the

R sand layer.
PD = dimensionless pressure
Pi = initial pressure
= radius of the production or injection wells
TRO = rock temperature at the point of injection
Two = water injection temperature
Vi, = water velocity
PR = density of shale or the solid matrix of the sand layers
Py = density of water
u = viscosity of water

= porosity

8 = angle
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Fig. 1b
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Figure 2. Mathematical model
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Figure 3. Explanation of symbols
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