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in recent analyses of the hot-water system at Wairakei, New Zealand
(Mercer, Pinder, and Donaldson, 1975) and the vapor-dominated system at Lar-
derello, ftaly (Petracco and Squarci, 1975), it has been suggested that
large quantities of cold water are entering the reservoir by flowing down
from the surface and then horizontally into the reservoir because of
decreased reservoir pressures. !t is also suggested that decreased
reservoir pressures should increase these downward flows above their pre-
exploitation levels. In order to estimate the effects of vertical flows
on the temperature distribution, two idealized problems are analyzed in
this paper. In both problems, the initial condition is a linear
temperature increase with depth, and the flow starts at time equal to
zero. In the first problem, the flow is through a semi-confining layer
with the temperature fixed at the top and bottom of the layer. In the

second problem, the flow is into a half-space with the surface temperature
fixed.

The governing equation is conservation of energy in a porous medium
(e.g., Bredehoeft and Papadopulos, 1965) which can be written in the form
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where ¢* = (¢p ¢ + (1-¢) o _c )/p ¢ combines the volumetric specific heats

(pc) of water 4nd rock with' the pgrosity ¢, k ~ k /o c is an effective
thermal diffusivity involving the thermal conductTvi%ywof the rock plus
water and the volumetric specific heat of the water, and q is the seepage
velocity. For the first problem of flow through a semi-confining bed of
thickness £ the constant temperature at the top and bottom of the bed and
the initial condition of constant gradient may be written as
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The boundary and initial conditions for the half-space are written as
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where (3b) insures that there is no perturbation to the gradient at infinity
and G is the temperature gradient at time equal zero.

The solution to equations (1) and (2) is obtained by changing to
dimensionless variables that reduce the problem to homogeneous boundary
and initial conditions. The form of the differential equation is then
modified by the transformation T = T* exp (g''y'') to an inhomogeneous
equation but with no linear gradient term. The reduced problem is solved
by classical techniques (see e.g., Berg and McGregor, 1964) to give
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The location of a fluid particle that started at the origin (y=o) at t=o
may be written in terms of dimensionless variables as
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y'. = 2¢* q"'t"/¢. (5)
The solution to equations (1) and (3) is obtained by a similar trans-
formation to a homogeneous problem. The form of the differential equation
is modified by the transformation T' = T% exp (x'-t') as suggested by
Brenner (1962) and the equations are solved by obtaining an ordinary
differential equation by Laplace transforms, solving it, and using the
inversion given in Carslaw and Jaeger (1959, p. 496). The solution may
be written as
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Some sample solutions are presented in Fig. 1 for the semi-confining
layer. The values for infinite time are obtained from Bredehoeft and
Papadopulos (1965) formula (T-T )/(T.-T ) = (exp (2q" y/2)-1)/(exp(2q")-1)
as it is easier to evaluate. The solut?on is presented in terms of
dimensionless variables for a flow rate q'' = 1 (top) and 2.5 (bottom) with
the location of a fluid particle that started at the origin at t=o marked
with a horizontal line. Choosing a layer thickness of 100 m, diffusivity
of 23 m2/yr, ¢ = 0.2, and ¢* - 0.68, the dimensionless flow rates correspond
to seepage velocities of 0.46 and 1.2 m/yr and the inset table shows the
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correspondence between physical and dimensionless time. The figures show
that times greater than 60 years are required to reach the steady state
solution. For a layer that is 10 m thick, this time is reduced to 0.6
year (while the velocities are 1/10 the values in Fig. 1).

Fig. 2 shows the results for a half-space. Because of the non-
dimensionalization (equations 6a), different values of y' and t' are
required to obtain the same values of physical length when changing the
flow rate. The top of Fig. 2 is for the same flow rate as the bottom of
Fig. 1. The solution in Fig. 2 is useful in enabling the influence of
the upper boundary condition to be studied without having the bottom
boundary condition of the solution in Fig. 1 propagate upwards. The
major region of curvature in the profiles is well behind the location of
the fluid particle that started at y=o at t=o, and fairly modest velocities
show easily measured temperature changes in only a few years. In the
model for Wairakei of Mercer, Pinder, and Donaldson (1975), the area of
downflow needed to supply the natural recharge appears from the temperature
contours to be about 10 km? although it could be larger. The velocity
needed to supply the natural recharge of 440 kg/sec is 1.5 m/yr, about
the same as that in Fig. 2 (top). The velocity of 4.6 m/yr in Fig. 2
(bottom) is roughly that which would be required if the current production
were to be obtained without recourse to removing stored water but as
steady state flow (Bolton, 1970) with recharge over the same 10 km?. These
assumptions, if true, indicate that large temperature differences should
be easily found in such an area of recharge.

For Larderello, the maximum value of recharge as suggested by a hydro-
logic study is 9 x 10® m3/yr (Petracco and Squarci, 1975). |If this were
to be distributed over an area equivalent to the entire productive area
(200 km? from Gabbro to Carboli), the seepage velocity would be 0.05 m/yr
and the effects would be small for a 100 m thick confining bed. |If the
recharge area were restricted to 20 km2, the flow corresponds to Fig. 1
(top) and the effect should be easily measurable. The magnitudes of the
effects for the two cases considered suggest that monitoring temperatures
in undisturbed wells on the margins of producing geothermal areas should
give a measure of the change in the fairly local recharge. [If the amount
of total recharge is known, subtracting the localized recharge should
give an estimate of the recharge derived from deep circulation that
originates at large distances from the reservoir.

References

Berg, P. W., and McGregor, J. L., 1964, Elementary partial differential
equations-preliminary edition: San Francisco, Calif., Holden-Day, 383 p.

Bredehoeft, J. D., and Papadopulos, 1. S., 1965, Rates of vertical ground
water movement estimated from the Earth's thermal profile: Water
Resources Research, v. 1, p. 325-328.

Brenner, Howard, 1962, The diffusion model of longitudinal mixing in beds of
finite length: Chemical Engineering Science, v. 17, p. 229-243.

Bolton, R. S., 1970, The behavior of the Wairakei geothermal field during
exploitation: Geothermics Special lIssue 2, v. 2, pt. 2, p. 1426-1439,

~42-



Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of heat in solids:
Oxford University Press, 510 p,

Mercer, J. W., Pinder, G. F., and Donaldson, I. G., 1975, A Galerkin-
finite element analysis of the hydrothermal system at Wairakei,
New Zealand: Jour. of Geophysical Research, v. 80, p. 2608-2621.

Petracco, Cesare and Squarci, Paolo, 1975, Hydrological balance of Lar-
derello geothermal region: United Nations Symposium on the
Development and Use of Geothermal Resources, abs. no. 11-38.




[0}
0 0.2 0.4 0.6 0.8 1.0

0 T T T T 0

qr=1 m t t,yr
=0.46, 0.0 2.9
y 0.05 14.7
021 0.20 58.6 420
C &
0.4f . <40
IN2
O\

y/L "OR y,m
0.6} AN 460
0.8 480
1. 1 L 1 1 100

(T-T)/(T,-T )
0 0.2 0.4 0.6 0.8 1.0

0 T T T T 0
0.2 1 20
0.4 40

y/L y,m

0.6 60
0.8 80
1. 100

Figure 1.--Temperature versus depth in

semi-confining layer for several

times at dimensioniess flow rates of 1 (top) and 2.5 (bottom).
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Figure 2.--Temperature versus depth for half-space
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for several times.






