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A number of research workers have investigated two- and
three-dimensional natural convective heat flow in porous media
containing a single-phase fluid'»2, Results indicate that con-
vective heat flow in geothermal reservoirs can be high with low
geothermal gradients within the convection cells.

Single-phase convection can occur only in two or three dimen-
sions; however, it is evident that steam and hot water sometimes
exist simultaneously in geothermal areas. The large difference in
density between steam and hot water provides a driving force that
tends to segregate the two phases, making countercurrent vertical
one-dimensional fluid flow theoretically possible.

This paper presents the results of a study of one-dimensional,
vertical, two phase, steady-state, geothermal fluid and heat flow.
Steam is assumed to be generated at depth by heat conducted from
below. The steam flows upward and an equal mass of hot water flows
downward within the geothermal reservoir. At the top of the geo-
thermal reservoir the steam condenses into hot water which then
flows downward. Above the reservoir the heat flow is again only
conductive.

A method of calculating one-dimensional, combined convective
and conductive heat flow is presented with calculated examples. The
object of the investigation was to understand the one-dimensional
convective heat flow that may occur where conditions have been stable
long enough for the flow to approach steady-state. Results presented
herein apply to unfractured porous media. Similar results should
apply to fractured reservoirs and permeable fault zones.

The water is assumed sufficiently fresh that the effects of
dissolved solids can be neglected. The surface temperature and heat
flow rate are assumed to be known. Capillary pressure and steam
and hot water relative permeabilities are used in the analysis;
however, the effects of capillary pressure were neglected in the
example calculations. The analysis allows the thermal conducti-
vity to vary with temperature and steam or hot water saturation;
however, for simplicity a constant value was used in the calculations.
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DISCUSSION

Appendix A gives the equations of heat and fluid flow, and
the derivation of the two equations below. These can be solved
simultaneously to obtain the steam saturation and the temperature-
pressure point on the boiling curve as functions of depth,

AG, + BAy = 1 (1)
2 2
z DV!AW * OS>\S

Symbols are defined in Appendix B. If one dimensional, two phase
convective flow is possible, equation 1 can be solved for the steam
saturation. This result can be used with equation 2 to calculate
the pressure gradient.

In equation 1, AGy is the fractional convective heat flow;
BGy is the fractional conductive heat flow. For a given problem
coefficients A and B are constants, and Gy and G4 determine the vari-
ations in the convective and conductive heat flow. Both G, and Gy
are functions of the relative permeabilities, the fluid saturations,
the temperature-pressure point on the boiling curve, and the fluid
properties. In addition, G, is a function of the steam-hot water
enthalpy difference and Gy is a function of the variations in
thermal conductivity.

Figure 1 presents the two sets of steam-hot water relative
permeability curves used in the calculations. Type !l relative
permeability curves were included because recent experimental re-
sults reported by Brigham3 indicate high immobile water saturations.
Figure 2 presents the variation of G, with steam saturation for
various pressures for Type | relative permeability curves. This
curve is ''bell!' shaped because the mass flow of steam upward must
equal the mass flow of water downward. The relative permeability to
steam controls the shape of the curve at low values of steam satu-
rations, Sg, and the relative permeability to hot water controls
the shape at high values of Sg.

Figure 2 indicates that the temperature-pressure point on
the boiling curve also has a strong effect on G,. At lower tempera-
ture-pressure values the relatively high water viscosity depresses
the curve, causing the maximum G, to occur at higher steam satura-
tions. At high temperature-pressure values, the curves are depressed
by smaller differences in densities and enthalpies. At critical
conditions these differences are zero, hence one-dimensional con-
vection cannot exist.
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Figure 3 presents G4 versus Sg for various pressures for
Type | relative permeability curves. The sharp decline in Gy at
higher S_. results from the low density of steam as compared to that
of hot water. The high G4 at low pressures results from the steep
slope of the boiling curve v(p).

Figure 4 presents the variation of AG,, BGd, and AGV + BGq
with Sg for Type | relative permeability curves, = 435°F P = 362
psia, k = .010 darcys, Kh = 40 Btu/day-ft-°F, and up = -6 Btu/day-
ft2. To satisfy equation 1, AG, + BG4 must equal 1. Two values of
S¢ satisfy this condition (Flgure k). The lower steam saturation,
Sgl, is associated with conditions approximating a hot water column
through which steam is migrating upward and the hot water downward.
For a wide range of conditions, the pressure gradient approximates
that of hot water, causing a corresponding rapid increase in tempera-
ture and pressure with depth. This relatively large temperature
gradient can cause significant conductive heat flow.

The higher steam saturation, S, is associated with condi-
tions approximating a steam column with a small amount of mobile hot
water. In this case there is a wide range of conditions in which
the pressure gradient is very low, approximating that of steam.

This very low increase in pressure and temperature with depth re-
sults in low conductive heat flow.

At a steam-hot water interface or contact, the high steam
saturation, Sg2, exists above the interface, and the low steam satu-
ration, Sgqy, exists below it. |If capillarity is included, the
interface becomes a steam-hot water transition zone, in which
capillarity determines the saturation distribution.

Figure 5 presents the results of a series of calculations
in which an impermeable zone exists to a depth of 2500 feet, from
which a permeable (10 md) geothermal reservoir extends to a depth
of 10,000 feet. Below this there is another impermeable zone. The
surface temperature is chosen to be 60° F, and the conditions at the
top of the reservoir are those used in Figure 4. Both lmpermeable
zones were assigned a thermal conductivity of 40 Btu/day- fe-°
Figure 5 presents the variations in temperature, pressure, steam
saturation and conductive heat flow with depth for both Type | and
Type 1l relative permeability curves. Only the steam saturation for
the S.o solution changes significantly with relative permeability.
As mentioned previously, the S ;i solution approximates conditions in
a hot water column, in which the pressure increases with depth
according to a hot water gradient. This requires a corresponding
increase in temperature to maintain boiling conditions. The in-
crease in temperature results in significant conductive heat flow.
The Sg2 solution approximates conditions in a steam column, and
the low steam density results in low temperature and pressure grad-
ients, and very small conductive heat flow.
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Figure 6 presents the results of calculations similar to
those of Figure 5, except there is a steam-hot water interface at
-10,000 feet. The S.y solution applies from -2500 feet to -10,000
feet and the Sgq solution applies below -10,000 feet. Here again
only the steam saturation for the S solution changes signifi~
cantly with relative permeabilities. Steam generated at the
bottom of the reservoir migrates upward until it reaches the top
where it condenses. Throughout the column sufficient phase trans-
fer takes place between the steam and hot water to maintain steady-
state heat and fluid flow.

Figure 7 presents an example with and without a steam-hot water
interface at 5,000 feet. Both the S_1 and S.2 solutions are shown
below this depth. The Sg1 solution approaches critical conditions at
-15,550 feet. The calculations indicate that convective heat flow does
not approach zero to within a few degrees of the critical temperature.
This occurs even though the driving force (the difference in density)
and the enthalpy difference both-approach zero as critical conditions
are approached. This seemingly inconsistent result is caused by the
very low slopes of the density and enthalpy differences as the critical
conditions are approached (Figure 8). Calculations indicate that below
the point where critical conditions are reached a single phase exists
which is above critical conditions. There is a reduction in the pressure
gradient as illustrated in Figure 7 and the heat flow is purely conductive.

Results of calculations not presented herein indicate that
it is possible to encounter conditions below the critical beyond
which only superheated steam exists. Both Sgt and Sgy solutions
encounter these conditions. They occur at the maximum value of
the AGy + BGy curve.

Figure 4 indicates that the AG, + BGy curve may extend to
much lower values in the high Sg range than for the low range.
In some cases where A and B are sufficiently large, only S5 solu-
tions exist. Since A and B vary inversely with up, these condi-
tions are more likely to occur for low up values. Calculations
indicate that this type of solution may be valid and have signi-
ficant convective heat flow over many thousands of feet for low
permeabilities even less than 0.1 md. It is conceivable that this
type of fluid and heat flow may be taking place at great depths
in tectonically active regions where permeability may be being
maintained by fracturing. The increased heat flow could be
responsible for areas of increased heat flow near faults.

The lower limit of permeability for which physically
meaningful solutions can be obtained has not been determined.
Numerical solutions have been obtained for extremely small values
of permeability and fractional convective heat flow, AG,,. In
these solutions the Sg varies in such a manner that both the
fluid pressure gradient and the boiling curve conditions are
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satisfied. These steady-state solutions assume that all transients
have died out. Thus, the lower permeability limit depends on the
conditions of the problem and on the time required to reach steady-
state.

The results presented in Figures 4-8 are for a total heat
flow of -6 Btu/ft2 ~day and a reservoir permeability of 10 md.
Other calculated results indicate that the overall fluid and heat
flow is relatively insensitive to a wide range of conditions.

Conclusions

1. Combined one-dimensional, vertical, convective and con-
ductive heat flow is theoretically possible in geothermal
reservoirs. Calculations indicate that this can occur
over depths ranging from the surface to below 20,000
feet.

2. In many cases two fluid saturations satisfy the same heat
flow rate. One is a high hot water saturation in which hot
water is the principal mobile phase. The pressure gradient
is approximately that of the hot water. The other fluid
saturation is a high steam saturation in which steam is
the principal mobile phase, and the pressure gradient is
approximately that of steam. Only the steam saturation
changed significantly with relative permeability for the
two sets of relative permeability curves investigated.

3. For permeabilities greater than 1 md and for high steam
saturations, the convective fraction of the heat flow is
generally many times the conductive fraction. For high
hot water saturations the two fractions are often of
comparable magnitudes.

L, Convective heat flows involving high steam saturations can
extend to considerably greater depths than those involving
high water saturations.
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APPENDIX A

The equations used in the numerical solution are derived in this appendix.
A11 equations written in a consistent set of units, and the symbols are
defined in Appendix B.

The basic equations are:

ap
Darcy's law for hot water - ( LA ) A-1)
uw Aw 9z gow (
Darcy's law for steam (aps ) (A-2)
4 ug = -Ag \3z - 9%
- . 3 I N
Continuity equation for mass 55 (pwuw + psus) = 5t [¢(pwsw + psss)]
(A-3)
Saturations S, ¥ SS = 1 (A-4)
Continuity equation for heat E-u—h- = - & h S + h S+ (ﬂ) c.T
9 3z ¢ 3t [Puww T PsNs>s ¢ Prlr
(A-5)
Heat flow u,2 = hou, + p.hu, -k aT (A-6)
h Pwwlw $'S°S h 3z
Capillary pressure Pg - P, = P. (S5, T) (A-7)
Boiling curve T=y (pg, P.) (A-8)

The preceding eight equations contain the following eight unknowns uy, ug, py,
pSa SS’ SS’ T and Uh.

This analysis is restricted to steady-state fluid and heat flow. Thus, all
derivations with respect to time are zero, and equation A3 can be integrated
to yield

p Uy, * Pug = c(z) (A-9)
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where c{(z) is the constant of integration with respect to time. It represents
the mass rate of flow. Because no fluid mass enters or leaves the porous
media, the mass of the water flowing downward is equal to the mass of the
steam flowing upward, and the net mass flow is zero. Thus c(z) equals zero
and

pu. = =p_u (A-10)
3p, 3pg

The following equation for pyu, can be obtained by eliminating Ugs SEH-and 37
from equations A-1, A-2 and A-7.

3P 23S aP
(h_-h ) (==& —=>+ £ 23T
g(p,-pg) sTw! \35 3z 3T 3z
o U, = Y + (A-11)
Wow 1 + 1 + 1
Pshs Pty Pshs Puty

Eliminating U from equations A-6 and A-10 yields

u -h_) - k&

. 3T
h = Pty (Ay=hg h 3z (A-12)

Wow

Under steady-state conditions, up is a constant which is equal to the heat
flow rate at the surface.

Combining equations A-11 and A-12 yields

(h_-h ) e s, Pear
g{p, -p.)(h ~h_ ) s 'w’ \3S_ 3z ) z
u, = —p— Sy s -k, 2L (a-13)
h L._-q,._]._. 1 +1 h 8z
Putw  Psts Putw  Psts

As is customary in exploratory calculations such as these, the effects of
capillarity are neglected, and equations A-11 and A-13 reduce to

Puly = T, T (r-14)

9oy -0) ()

u
I h
Putw  Pshs

—

(A-15)

l

Q!
N
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Eliminating u, and ug from equations A-1, A-2 and A-10 yields

2 2
ap 90 )‘w * QDS AS (A-16)
9z Pty * Pshs

From equation A-8 (neglecting capillarity),
(A-17)

|
N—
"
[~U[=¥
=}
o
N

Eliminating %} and %g-from equations A-13, A-16 and A-17 and converting to
nondimensional form yields

AG, + BG, = 1 (A-18)
where 2
A = -k o 9Py
Up HMwo
9°yo Kh ,dy
B = . (g5)
h P
p, -0
o < W s)
G = k Pwo
v Pwo + Pwo
“A p_A
Pt s”s
o 2
W s
dy <——— A+ = )
(dp) Pwo ¥ wo >
B0 T 9 (o3 rea)
dp o Puiw TPs’s

where pyg, Uwos hwo and (gy) correspond to boiling conditions at atmospheric
dp’o
pressure.
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APPENDIX B
NOMENCLATURE

A, B nondimensional coefficients (see equation A-18)

c(z)

constant of integration with respect to time (see equations
following equation A-9)

Gd, GV = variable parts of fractional conductive and convective heat flow
(see equation A-18)

g = gravitation constant

h = enthalpy

kh = thermal conductivity

k, krs’ krw = single phase permeability, relative permeabilities to

steam and hot water respectively.

PC = capillary pressure

p = fluid pressure

S = saturation

Ssi’ S52 = solutions of equation (1) (see Figure 4)

T = temperature

t = time

u = velocity as given by Darcy's Tlaw

U = heat flow rate

z = depth

k kr

A = fluid mobility = y

U = viscosity

¢ = porosity

) = density

Y = boiling curve temperature expressed as a function of fluid pressure
(Eq. A-8)

Subscripts

r = rock

S = Ssteam

W = water
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NON-DIMENSIONAL CONDUCTIVE HEAT FLOW RATE, G4
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FIGURE 1

STEAM AND HOT WATER RELATIVE PERMEABILITY
CURVES USED IN THE CALCULATIONS.
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FIGURE 3

THE VARIATION OF THE NON-—DIMENSIONAL CONDUCTIVE HEAT FLOW
RATE, Gy, WITH STEAM SATURATION FOR VARIOUS VALUES OF FLUID
PRESSURE FOR TYPE | RELATIVE PERMEABILITY CURVES.
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FIGURE 2

THE VARIATION OF THE NON—DIMENSIONAL CONNECTIVE HEAT FLOW
RATE, Gy, WITH STEAM SATURATION, S5, FOR VARIOUS VALUES OF
FLUID PRESSURE FOR TYPE | RELATIVE PERMEABILITY CURVES.
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FIGURE 4

THE VARIATIONS OF THE FACTIONAL CONVECTIVE AND CONDUCTIVE HEAT
FLOW RATES, AGy AND BGy, AND AGy + BGy WITH STEAM SATURATION.
THE SATURATIONS Sg1 AND Sg2 ARE THE TWO SOLUTIONS OF EQUATION (1)
FOR TYPE | RELATIVE PERMEABILITY CURVES.



5000

DEPTH (FEET)

CALCULATED RESULTS FOR THE TWO SATURATION SOLUTIONS, Ss1, Ss2,
BEGINNING AT THE TOP OF THE RESERVOIR FOR k = .01 DARCYS,

kh = 40 BTU/DAY—FT—OF, AND up = —~6 BTU/DAY—FT2. THE S51 SOLUTION
APPROXIMATES HOT WATER COLUMN CONDITIONS AND THE Ss2 SOLUTION

APPROXIMATES STEAM COLUMN CONDITIONS. RELATIVE PERMEABILITY
TYPES ARE DENOTED BY | AND II.
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FIGURE 6
CALCULATED RESULTS FOR A HOT WATER-STEAM INTERFACE AT 10,000 FEET FOR

SAME PARAMETERS USED IN FIGURE 5. THE Ss2 SOLUTION APPLIES FROM 2500 TO
10,000 FEET AND THE Sg7 SOLUTION APPLIES FROM 10,000 TO 12,000 FEET.
RELATIVE PERMEABILITY TYPES ARE DENOTED BY | AND 1.
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FIGURE 7 © CRITICAL CONDITIONS
CALCULATED RESULTS WITH AND WITHOUT A INTERFACE AT 5000' FOR THE
SAME PARAMETERS THOSE USED IN FIGURE 5. RELATIVE PERMEABILITY

TYPES ARE DENQTED BY | AND II.
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FIGURE 8

THE VARIATIONS OF THE DENSITY AND ENTHALPY DIFFERENCES

NEAR CRITICAL CONDITIONS FOR THE Sg1 SOLUTION PRESENTED
IN FIGURE 7.
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