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Although many geothermal reservoirs depend upon fracture
permeability to obtain adequate mass flows, relatively little
research effort has been directed toward fractured reservoir
simulation. This paper outlines the mathematical apparatus
necessary to develop a numerical simulator for a fractured,
single-phase geothermal reservoir. |t is assumed that the
fracturing is extensive and well-distributed (though not neces-
sarily uniform) so that it is reasonable to consider a super-
ficial discharge through the fractures as well as the pores.
While mass and heat transport are of course coupled in a system
of this kind, we have subdivided the ensuing discussion into
mass flow and heat flow for clarity of presentation.

~

Mass Flow Equation

Analytical solutions for the pressure distributions in
porous blocks of various shapes and sizes show that the pressure
in the interior of a typical block reaches 95% of the value of an
initial ''step' input imposed on the block surface in a time
which is very short relative to the length of time typically re-
quired for overall, macroscopic system changes. In addition,
recent modeling analyses and examination of pertinent field data
by Closmann (1975) support the point of view that for most purposes
one may consider both pore and fracture flow fields to be charac-
terized by a single pressure variable. A net flow of mass may
exist between one flow regime and the other, but this will be
such as to maintain the near equality of pressure. Application
of accepted space-averaging techniques (Gray and Lee, 1976) to
a point mass balance equation provides the following mass con-
servation equation:
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where p is the averaged density of all (pore plus fracture) water,

p: is the density of fracture water,

pp is the density of pore water,

€ is the void fraction occupied by all water,

Ve is the superficial discharge through the fracture (vector),

v; is the superficial discharge through the pores (vector), and
Sm is the mass source or sink strength, that is, mass entering

or leaving per unit time per unit volume of total medium.

The lefthand side of (1) may be expanded as
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where €c is the void fraction of the fractures,
ep is the void fraction of the pores,
p is the incremental fluid pressure,
Tf is the local average fluid temperature in the fractures,
Tpm is the local average temperature of the porous medium, and
TW is the locally averaged temperature of all water defined as
Tw = efo + eprm (3)

The parameters a,, a_, B8 and B. are empirical coefficients defined

through the relations: T
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Superficial fracture and pore discharges may be expressed in terms
of incremental pressure gradients, as

k

Ve '<T>f' vp (5a)
k

)

where 1 is the fluid viscosity,

is the fracture permeability (tensor), and

<
il

f
is the pore permeability (tensor)
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Under certain conditions bf may be considered to be a function of

Le-
Substitution of equations (2) through (5) into (1) yields
the following expression for the conservation of all fluid mass:
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In addition to the explicit coupling of this equation to the temp-
erature equations through the second term on the lefthand side,
temperature dependence also enters implicitly through the changing

value of u

= [T

Heat Flow

The governing equations for heat flow are provided by
space averaging of conservation of energy equations written in
terms of temperature. For the fracture system, this results in
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and for the porous medium

oT
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o is the rock density,

c is the specific heat of the rock,

e, is the volume fraction of the rock,

c is the specific heat of water,

Qf is the tensor coefficient of dispersion for the fractures,

D n is the tensor coefficient of dispersion for the porous

~P medium,

h is a porous medium-fracture heat transfer coefficient
relating the time rate of heat transport between those
regimes, per volume of the medium, to the temperature
difference between the two. Tg f and Tg ,pm are source
or sink temperatures of fracturé and pore fluids,
respectively. (For withdrawal, the sink temperature is
the reservoir fluid temperature and the last terms in
7 vanish).

Sm £ is the fracture mass source or sink strength,
b
Sm b is the pore mass source of sink strength, and
’
Sm = m £ + S and the ratio of the two components can be

determlned using the permeabilities of the two systems.

The superficial velocities in (7) must, of course, be com-
puted using the pressure field through equations (5) and (6).
Equations (5), (6), and (7) provide five equations in the five
dependent variables £ P Y and v These equations have
. been solved successful?y for a variety of hypothetlcal problems
for which analytical solutions exist. The numerical simulator
uses isoparametric Hermitean finite elements (Van Genuchten, et
al, 1977) to solve in three space dimensions, and a time-centered
difference scheme to solve in time.

Figures 1 and 2 show results for an additional fully coupled,

one-dimensional, transient test case, subject to the following
conditions:
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at x =0 T =T. =40 C
pm f
t>0 p=0
at x = 100cm T =T_=0
pm f

p=-1.0 x lO5 dyne/cm2

% = 5.38 x 102 + (T-150) x 3.8 -~ (T-lSO)3 X 2.6 x 10—5cm.sec/g for 0<T<300°C

(Mercer et al, 1975)

-10 2
€ = 0.02, Ep = 0.2, ap = 1.0 x 10 cm” /dyne, ay = 0

k
£ - 107en?, ERE = 3.0 x 10 %em®, 8= 5.0 x 10 Len?/dyne
p

5.0 x 10/

o]
n

2.5g/cm3, cg = O.2cal/g.oC, D, = 5.0 x lo-acal/oc.cm.sec,

©
]

D =3.0x 10-3cal/oc cm.sec.

The initial temperature distribution for both fractures and porous
medium is displayed on each figure. As expected, a non-zero value
of h retards translation of the fracture temperature front, in-
creases translation of the porous medium front, and increases dis-
persion of both. As the fronts progress, the pressure gradient
(not shown) decreases from the initial, essentially isothermal
value, due primarily to the decrease in fluid viscosity with
rising temperature.
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