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The following paper is an abstract of a report under completion at the
Lawrence Berkeley Laboratory (Assens, 1977); the main purpose of this report
is to (1) provide a mathematical derivation of the equations describing the
transfer of heat, mass and momentum in a geothermal brine reservoir
(especially when heat or mass sources are present), and (2) help in the
choice of the dependent variables best suited for solving these equations
numerically.

The basic tool is an averaging procedure that allows the derivation
of the transport equations in a porous medium from the level of the pores,
where each of the solid, liquid and fluid constituents is considered as a
separate continuum, to a grosser level where the medium in which transport
takes place is itself considered as a continuum without reference to its

three components.

Two variants of this averaging have been proposed by chemical engineers:
Anderson and Jackson (1967) on one hand, Whitaker (1969, 1973) and
Slattery (1972) on the other. The former variant has been recently
applied to the derivation of the transport of solute (Blake and Garge, 1976)
whereas the later was used in relation to the transport of solute (Gray,
1975), a derivation of Darcy's law (Gray and 0'Neill, 1976; Neuman, 1976)
and the transport of heat in terms of fluid internal energy (Witherspoon
et al. 1975) or enthalpy (Faust, 1976).

In the following pages we restrict the scope of our investigation to
a one-component fluid and follow the latter of the aforementioned variants,

hoping that we may avoid some of the shortcomings noticed in the literature
surveyed while obtaining a more complete form of the transport equations.

THE BALANCE EQUATIONS FOR A CONTINUUM

Hzpotheses:

(G1) Continuum approximation
(G2) Negligible thermodynamic fluctuations
(G3) Laminar flow regime

(G4) Omne component fluid
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Mass balance:

= 1
5t * 3x. (Pvy) = 0 (1)

Momentum balance (i-direction)

) 3
e — -1..) -pg. =0 2
ap (Pv;) + axj (ovivj + péij TiJ) pg; (2)
Heat balance:
/ [ v, \
3 d \ X
5t (Pe) * 5;;'(°evj) o (3¢)
d 3 3 T 9 p N\ _ 2. 3h
( 3¢ (oh) + 3 (phv) } * o A ij) (- 55 - vy B (3h)
DT Ta Dp
pc. T - (3t)
v Dt pB Dt
\ / \ /

THE AVERAGING PROCEDURE
Definitions:

Consider, within the porous medium, a fixed representative elementary

volume (Bear, 1972) Ra (a =S, L, G).
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Let wa be any property of the a-phase, defined physically in Ru and mathe-

matically set equal to zero in R - R
1
: <Y > = =
Phase average wa V/wa dv (4)
R
. a _ 1
Intrinsic phase <wa> =7 Y dv (5)
average: o p o
o
Y, - <V >% in R,
Deviation: wa = & (6)

0 in R - Ra

Any quantity, e.g. <wa>, that has no meaning at a finer level than

that of the R.E.V. will be subsequently referred to as "locally' defined,

whereas a quantity that exists at the level of the pore, e.g. wa’ will be

referred to as ''pointwise' defined.

Hypotheses:
(G5) characteristic lengths: d << Q << L
(pore) (R.E.V.) (reservoir)
o]
] N = = >
(G6) good behavior of wa. <<wa>> <<wa>> <wa (8a)
a o o a
= = >
<<wa> > <<wa> > <wa (8b)
Theorems:
General transport theorem (Whitaker, 1969):
oy
a 9 1
— = ——— > - — 9
<3 T 3t <wa V/wawajnaj dA (9)
S
o

Averaging theorem (Whitaker, 1969; Slattery, 1972):

|

a o 3 1
o~ M / Vol 4 (o
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Modified averaging theorem (Gray, 1975):
a . _ a 1 ~
< X . > = €a 3x, <wa> * Vjr Wu naj aA

Modified transport theorem (Assens, 1977):

3y
a 0 a 1 /~
TR T R f Yo Yoj"a; A

5
o

Nice relations:

THE AVERAGED BALANCE EQUATIONS

(11)

(12)

(13a)

(13b)

Assume that (H1) the average of the product of two or more deviations

of variables not strongly dependent on velocity is negligible compared to

the product of the averages of these variables.

Mass balances:

Solid - Assume (H2) incompressible, non reacting  solid.

aps

5t - 0

Fluid phase of(a = L, G):

SuB

(storage) {convection) (phase change)
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d

a 3 o 1 ~ o~
L. > > > el - w—— < >
at (Ea <pa )+ ij (<pa <Vaj )+ V'jfga(vaj waj) naj dA + ij pavaj

(15)

(dispersion)




where the dispersion term may be omitted subject to (H3) low correlation

between density and velocity.

Momentum balances:

Solid - Assume (H4) indeformable solid matrix

v.. =0 (16)

Fluid - Assume (HS) negligible inertia

a _ 1 9 B B
VoiZ T Z ~ B fasij G P - g ey) (7
8=L,6 gMg J

ylelds Darcy's formula in the case of a (H6) rigid gas-liquid interface

with no slip.

Heat Balances:

Solid - Define the '"stagnant'" thermal conductivity Aé by:

3 S S 3 S 1 ~
v = - —_— —_—
- ESAS . <TS> = <AS> (es ™ <TS> + v.)(.TSndeA) (18)
] ] S
S

Then, by HL:

3 s s
3t (EgPg” <eg” )

oT .
d S 1 S
(storage) * ai. (-eghs 5% <Tg> ) + V;/f(‘ks %) MsjdA = <Eg
S J J SS J
€.<p >»S<c >S5 ji—(T > (conduction within {conduction across
S 7S vs 3t S solid) fluid-solid interface)

(19)
Fluid - Define the tensor of thermal dispersion %hj as follows:

rand

v _ .
) " 0 Gy = —..a ~e V. .> <~ —a) > 20
%, axaij ax; T ) = ij Pafa’ai” ¥ “Buax, (20)
Then define the "effective' thermal conductivity tensor:
*
A =AY+ (21}

0ij o aij



Finally assume (H7) negligible viscous dissipation

3

o ol 3 ol a 3 3 o
— (£ <p > <e > <p > > > - —
ot ( o Pa” % )+ 0X, ( 0 “Cq <Vaj )+ 3XJ ( €ax&ij axi <Tﬁ> )
(storage) (convection) (conduction within phase a)
1 aTa Q aea ]
+ = .- ) m AT . <p.> (G *+ 57—
v v/ﬁ[(paea * pa)(vaj waJ) &xaxj] naJdA * Py (Bt * axj <Vaj>)
Sa
(convection + conduction across (pressure work)
interfaces separating phase a
from phase B and solid)
1 ~ ot
v pa(vaj - aj) najdA = <Ea> (22)
SaB
(residual pressure work) (internal generation)
COMBINING THE AVERAGED EQUATIONS
Fluid momentum balance: Define (locally) the fluid mass flux;
'y L G :
= > > <p > <v..> (23)
mj = <pL <VLj + <P vGJ

Assume (H8) negligible

capillarity, then define (pointwise) the reservoir

pressure p:

S
p={p, 1n RL
P; 10 RG
Then L
k <p >
;1.=-(L L,
J <y >
LML

<p> = <ps>s = <pL>L = <pG>G
with (24)
p, = Pg (= p) along S,
k < >G k (<p >L)2 k. (<p >G)2
G G 3 L PL , 6%
G kij e <p> + r ‘ ]
gG<uG> 1 gL <pL> gG<UG>
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Fluid mass balance: Define (locally) the fluid density <pF>F as follows:

F _ L G
5F<pF> = eL<pL> + EG<pG> (26)
(4
then:
am
3 F .
3t GpPp> ) t 5= 0 (27)
J
Fluid heat balance: Define (locally) the fluid internal energy <eF>F

L ]
and internal heat generation rate <EF> as follows:

F F _ L L G G
< =
EF pF> <eF> = gL<pL> <eL> + eG<pG> <eG> (28)
® [ ] [
<E_> = <EL> + <EG> (29)

Then :

3 F 5 .o __ F . 3 . 0 L S W«
5t (EpPp” <ep”) ¢ 3%, (ms<ep> ) + 3, ey o T fetoij ax; 67 )

aeL 3 TS 3

3T
1 fH5 S L L, 9 G _6G
vf( As ij) ngj A+ P> (3 * B, Vi)t P Gt e Vg
s
S

J

Y J/.(vaGj - vaLj) nLjdA + V-J/.(pL - pG) ijnLjdA = <EF> (30)

SLe SLG

Assume (H9) temperature equilibrium between both fluid phases then define

(pointwise) the fluid temperature T (locally) the fluid effective thermal

F’
*
conductivity tensor AFij and a coefficient of solid-fluid heat transfer hSF

(Combarnous and Bories, 1974):
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S
- . . F L G
TF.. 'I‘L in RL with <TF> = <TL> = <TG> (31)
TG in RG
l* _ )\* *
€ .= .
Fris - LM 86hci; (32)
S F, _ 1 aTS
h. (<T.>" - = = I QL
ahgp (<Tg <Tg> ) = vf( As 3x,) Ng; dA (33)
S ]
S
. AS
with a = v > solid-fluid interfacial area per unit volume of porous medium.
Then
F F 3 d _F 3 *
(E<p > <e > ) ¢ =— (m:.< —~~ (- 9 F
5 (e F ¢ ) ax; (mj<ep>) + 3%, (=€ pi5 5k, F )
(storage) (convection) (conduction within fluid)

F S 9
+ ah . (KT > - <T> <p> —— 1 Y
SN g ) <P % (Vg™ + <Vg) + V,/P("Gj - vy dA
S

LG
(conduction across (pressure work i
: r
{eonduction across ) (residual pressure work)
face)
. -
= <EF> (internal generation) (34)

Solid heat balance: By H8 and H9,

] S S
K (gs<ps> <eS> )

*
(storage) * a;ac. (-€hsi5 52‘—. <Ts>s) * ahSF(,<TS>S - <T~F>F)
cn 55cc 383 .S J !
s pS> cvs® Bt S (conduction within solid) (conduction across
solid-fluid interface)

[ ]
= <Eg> (internal generation) (35)

Solid-fluid heat balance:

Assume (H10) solid-fluid temperature equilibrium then define (pointwise]

the reservoir temperature T and (locally) the reservoir effective thermal

*
conductivity tensor Aij:
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T. in R UR

F LG S F
T = with <T> = <T>" = <T.> (36)
TS in RS
* _ * )\* . 7
Aij = ESASij * Ep Fij (with ES + EF = 1) (37)
Then:
3 S S F F 3 * F 3 * 3
— — — (- —<
5t (Eg<Pg> <eg> + Ep<op> <ep> ) + Bx; (my<ep>) + o (445 ax, ™)
(storage) (convection) (conduction)
[ ]
+ <p>5%; (<VLj> + <ij>) = <ES> + <EF> (38¢)
(pressure work) (internal generation)
Similarly, in terms of (fluid) enthalpy:
3 S S F F 9 o F )
EE-(gS<pS> <es> + eF<pF> <hF> ) o+ 5;;—(mj <hF> ) + 5;; (- X 5;; <T>)
d > < > 9 <p> <E > <E > 38h
- m— < - =
5t P ( vLj vy J>) . P s” (38h)

ELEMENTAL AVERAGING

(Or, how to fit external heat or mass sources, such as wells or leaking

boundaries, into the balance equations.) °
M(Tw.Pw)
The Procedure

Partition the reservoir into a set of
"elements". Any element Re is bounded by
i) an interface SC connecting Re to
neighboring elements.
ii) a surface Sw separating Re from

the "outside'.

Elemental average:

'=V1—f <p> dv (39)
R,
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Hypothesis G5 modified:

(d<<) 4 << L, << L (40)

(pore) (R.E.V.) (element) (reservoir)

Divergence theorem:

3
e > = >
fax. Wy7dv f <b;”ndA (41)
R S US

e C w

Elemental mass balance:

- 35]: ) ®
€ Ve e + fmjnjdA = M (42)
S
c

Elemental momentum balance: Immaterial

Elemental heat balance: By approximation of the pressure term in (38¢):
v 2 [(-5)pe. + ipe]+ [ o<esndas [ (2], 22 <T>) n.da
e ot S’S FF j F 7j ij 8xi J
S S
c c

*

- ° ° - N A - -
+ P f (<vLj> + <ij>)njdA =V (E. + E.) + M (eW + —_E~) + Aw (T) ('Iw - T)

e 'S F
S Pu e w
C .
(43¢)
Alternatively:
v [a-8pe. + ]+ [ m o <hsTnda s [ (2] 2 <T>)n da

e Jt S’S F'F j F ij ij j

S S

c c

*

oy % LS SAPRRVINE SR S -
v d/ﬂ (v >+ V) g AV = V(g + B) e MA A (T - T
R € W
e
(43h)
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TOWARD NUMERICAL SOLUTION

The Pressure-Work Term

The main difference between equations (43e) and (43h) lies in the
pressure terms in the left side. These terms may be viewed as coupling the
heat balance to the mass balance.

An order of magnitude analysis (Appendix B) shows that, under steady
state conditions, the contribution of the pressure-work term to the heat
balance is systematically lower with equation (43h) than with equation (43e);
that term cannot however be neglected, even in equation (43h), since it is
of the same order of magnitude as the convection term when the element
considered is devoid of any external mass source.

Equation (43h) exhibits an additional pressure term involving the time
derivative of the elemental pressure: we expect that term to yield a
significant contribution to the heat balance of those elements only that
include wells and only for a '"'short!' period of time following every drastic
change in the rate of mass generation.

Provided such drastic changes cover a relatively small part of the
simulated life span of the geothermal reservoir, we think that, all in all,

equation (43h) may be easier to solve than equation (43e).

The Integrated Finite Difference Method

Let us now compare equations (43e) and 43h) from the standpoint of
ease in programming by the Integrated Finite Difference Method (Lasseter
et al., 1975; Assens, 1976). :

The relevant characteristics of that method are that

1) every element may be connected to any number of surrounding
elements and

2) the elemental balances are obtained by adding to the storage and
generation terms the contribution (fluxes) of every connection.

Using the IFDM, we evaluate the pressure-work term in (43e) as the
product of the pressure within Ry by the sum of all the volumetric fluxes
across all the connecting surfaces relative to R,. On the other hand, we
found no simple way to evaluate the (integral) pressure-work term in (43h);
we however acknowledge that this might be straightforward when using the
Finite Element Method. '

We are currently looking for a way of approximating the pressure-work

term in (43h) so that we may be able to apply IFDM to the solution of that
particular equation.
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Choosing a Set of Dependent Variables

The selection of (43h) over (43e) implies the choice of the fluid
enthalpy as one of the two dependent variables needed to fully describe the
behavior of the geothermal system.

The very form of the mass balance equation (42) leads us to the choice
of the fluid density as the other variable. A more material reason for
that choice is however that the mass balance for the entire reservoir will
thus be kept more accurately than if pressure had been taken as the second
dependent variable (Pritchett, 1975: in this later case density, then
considered as a parameter, would be evaluated indirectly, based on the
values of enthalpy and pressure obtained by solving the transport equations.
In the former case only density increments are computed, and the values of
the density obtained at the end of the previous time step accordingly
updated, thus ensuring better "historical'’ consistency.

Whenever temperature equilibrium is not fully established, as may be
the case in the process of storing hot or cold water underground, equation
(43h) needs to be replaced by the elemental averages of both equations
(34) and (35): the solid temperature is with little doubt best chosen as
the third dependent variable then required.

CONCLUSION

Averaging the mass balance equations from the level of the pore to that
of a "R.E.V." of porous medium yields an equation the form of which is
analogous to that of the basic equations but for the introduction of the
porosity and a dispersion term which we expect to be negligible whenever no
correlation exists between density and velocity.

The momentum balance equation yields an explicit expression for the
velocity, provided inertia is negligible.

The main change from the basic heat balance equation to the averaged
equation is the substitution of a tensor of "effective' thermal conductivity
of the porous medium for the individual scalar conductivities of each solid,
liquid and gaseous constituents.

Since these equations hold only within the porous reservoir stricto
sensu, a further step of averaging is required to include the external heat
or mass sources such as wells or leaking boundaries: this classical
averaging yields equations that express the balance of heat and mass for
any element of a partition of the reservoir, in a form suitable for numerical
solution.

Comparing the two forms of the heat balance obtained in terms of either
fluid internal energy (43e) or enthalpy (43h), we find that, beside a highly
transient pressure term in equation (43h), the basic difference lies in a
pressure-work term that couples the heat balance to the mass balance: an
elementary order of magnitude analysis indicates that coupling is minimum
when heat balance is expressed in terms of enthalpy, thus favoring the
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selection of the fluid enthalpy as one of the dependent variables that
describe the behavior of the reservoir.

This choice however does not allow us to use the Integrated Finite
Differences Method in the current state of our art.

Both computational simplicity and mass balance accuracy lead to the
selection of the fluid density as second dependent variable, supplemented
by the solid temperature whenever solid-fluid temperature equilibrium is
not established.
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NOMENCLATURE

Whenever relevant, the dimension is listed in the second column in

terms of mass (M), length (L), time (t) and temperature (T).

Roman lower case letters

a ah
c ,C
h
2.-2-1
<, (L't °T )
d (L)
e (th—z)
g, T
h (th'z)
-3 -1
hep MtTUT Y
2
kij (L)
k
03
2
Kagiy (@)
L (L)
Qe (L)
b
j
n .
oj
p (ML'lt'Z)
t (t)
-1
Vj (Lt 1)
Vj (Lt )
-1
) Lt
w j ( )
X. (L)
j

solid-fluid interfacial area per unit volume

of porous medium

coupling ratios pressure-work/heat convection

specific heat capacity at constant volume

characteristic length of the pore space

(specific) internal energy

.th
i~ component of the

(specific) enthalpy

coefficient of solid-

gravitational acceleration

fluid heat transfer

(second order) tensor of absolute permeability

relative permeability of the a phase

second order permeability tensor

characteristic length of the R.E.V.

characteristic length of the element Re

th

j component of the
jth component of the
from Ra outward
pressure

time

jth component of the
jth component of the

jth component of the

jth coordinate
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fluid mass flux

unit normal to Sa’ directed

point velocity

elemental velocity

(point) velocity of S




Roman capital letters

A

Greek lower case letters

w?)

1 -3

(ML™ "t )

(M

)

a

g

S..
1)

1

oij

1j

ij

ah

™ ed

(MLt'ST'l)
3T-1)
(MLt'3T'1)

(MLt

(MLt'3T‘1)

1

(ML~
(ML

(ML

¢

_3)

_1t_

2

)

)

area of S,

energy generated within the a phase, per unit
time, per unit volume

characteristic length of the reservoir

mass generation ‘rate
any space domain
boundary between R,and the surrounding elements
boundary between R,and the exterior (with respect
to the reservoir).

boundary between Ra and R - Ra
boundary between Ra and R

B

temperature
mathematical symbol: ‘''union"

volume of R,

coefficient of (isobaric) thermal expansion
coefficient of isothermal expansion

Kronecker symbol

porosity of the porous medium

volumetric fraction of the o phase

(intrinsic) thermal conductivity of the a phasc

stagnant thermal conductivity

tensor of thermal dispersion

tensor of effective thermal conductivity of the
porous medium

dynamic viscosity

density

viscous stress tensor
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Greek capital letter
-2

¢ {t ) viscous dissipation function
Subscripts

c connection

e element

F fluid

G gas

i,k spatial coordinates

L liquid

S solid

W exterior

a phase identifier (¢ =S, L, G)

8 phase identifier (B =S, L, G)

Mathematical symbols and notations

U union of two sets
L] elemental average

= is, by definition, equal to

< > phase average over R

o . L
<> intrinsic phase average over Ra
Py deviation from intrinsic phase average
De [ 2o, 2¢ substantial derivati
Dt At j 3xj ubstantial derivative
Ve gradient
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Gl
G2
G3
G4
G5
G6

H1

H2
H3
H4
H5
H6
H7
H8
H9
H10

APPENDIX A

The basic assumptions

Continuum approximation

Negliglbe thermodynamic fluctuations
Laminar flow regime

One component fluid

d << 2 << Qe << L

Good behavior of the variables

The average of the product of two or more deviations
of variables not strongly dependent on velocity is
negligible compared to the product of the averages
of these variables

incompressible, non reacting solid

low correlation between density and velocity
indeformable solid matrix

negligible inertia

rigid gas-liquid interface with no slip

negligible viscous dissipation

negligible capillarity

temperature equilibrium between both fluid phases

solid-fluid temperature equilibrium (optional)
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APPENDIX B

Order of magnitude analysis of the pressure-work term

Consider an homogeneous, isotropic, isothermal reservoir with uniform

thickness, partitioned into a set of toric elements centered on a fully

®
penetrating well produced at a constant rate -M .

®
-M
v it ok Lk ekl el ekl A e L A ke L ks — e
' |
l S. R
vy inner e outer
| ' ' L
1 € -
N
Wlll L . . . N N S N NI N N NN I N N A N N S D NG S N ~o
e

Let the heat convection term (CNV) be the reference with which the magnitude
of the pressure-work term (PWK) is to be evaluated.
Case 1

First consider the element immediately surrounding the well and assume

that the fluid is one-phase throughout:

[ ] [ ]
- - M - M
PWKe = p J/.<vj> njdA =p <o p —
c p
S
c
) _ ® _
AR M. b . Mép
PWKh = v Vp Ve (- )(1 )(Acle) = —
pA e p
c
® o ® -
CNV = M<e> ~Me Similarly: CNV_~ Mh
e c h
Thus :
PWKe jL PWKh éé
Ce = NV~ - whereas Ch = owo <~ s
e pe h Oh

Let us compare both coupling ratios e and o
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C -
2~ ()
¢ p

)~é§-
5

S|t

In most cases the element closest to the well is sufficiently narrow for
the pressure drop across it to be a small fraction of the average pressure;

whence ¢, may be expected to be at least one order of magnitude smaller than

Let us further particularize our analysis and consider the following '"'typical"

saturated conditions (see e.g. Wukalovitch, 1958):

10 © for liquid water

T = 293.6 °C p = 80 atm (7.9 10°N/m%)
oL = 725 kg/m3 pG = 41.6 kg/m3
e = 1.30 106 J/kg e; = 2.57 106 J/kg
h, = 1.31 10° J/kg he = 2.76 10° J/kg
Then: -2
.8 10 7 for steam
Ce ™ {7 -2

and N is at least one order of magnitude smaller.

Case 2:
Then consider any element away from the well and assume that the fluid

is one-phase throughout:

[ J ®
-3 - p M u
PWKe =P / <vj>njdA +/ <vj>njdA =p (<—5> - <P )

outer inner
S. S
inner outer
._A_
MpAp . - _
~ with Ap = <p> - <p>.
52 P P outer P nner
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Thus:

where Bﬁ ~ 1 for steam considered as a perfect gas and (see e.g. Helgeson

and Kirkham, 1974):

Bp ~ (3.107n7N) (7.9 10° N/m?)

Assuming a piezometric gradient of 107! and an element width Ee of 100 meters

- €,
inner

)

Xe
o>
5

yields the following approximate figures:

Ap = 7. 10 N/m2
AéL =~ - 180 J/kg
ABL = + 80 J/kg

Then, for liquid water:

Cc

_h.Nlo'3 ,
e
for steam:
c
Doy
c
e
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2.I03 for liquid water

1

- 2800 J/kg

1

+ 3800 J/kg



Case 3:
Finally, once again consider any element away from the well but assume
that complete flashing (or condensation) occurs within it; given the assump-

tion of isothermal process, the vapor zone lies closest to the well:

s 5, -5

- .. 5
pw}(e~p(?M__-ﬂ.)=Mp_L____G~§1._E_
°c L PLPg 6
° . _ . _
N ST~ e ) T Mo M B gy M8
PWKh VGV_pGVeG + vLVpLVeL (vG + VL) VpVe ~ (= N + - )(Qe)(ACRC] ~
Pele L'e e
Mo e M h
CNVe 1 (eG - eL) s CNVh ~ (hG - L)
Thus .. .
- - c - e_-e
v ——E—~ 107", o~ o, R B Ly
oglec - e) oglhg - hp) e p  hh
Summar
Case number ce ch ¢ /Ch
liquid water 107! 1072 107!
1
steam 1072 1073 107}
liquid water 10° 1 107°
2
steam 1 1 1
3 107! 1073 1072
Table 1

Under steady-state conditions:
i) equation (43h) involves a lesser amount of coupling than does
equation (43e).

ii) the pressure-work term cannot be safely neglected.
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