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Heat extraction from a penny-shaped crack having both inlet and outlet
holes is investigated analytically by considering the hydraulic and thermal
growth of the crack when fluid is injected at a constant flow rate. The rock
mass is assumed to be infinitely extended, homogeneous, and isotropic. The
equations for fluid flow are derived and solved to determine the flow pattern
in the crack. Temperature distributions in both rock and fluid are also deter-
mined. The crack width change due to thermal contraction and the corresponding
flow rate increase are discussed. Some numerical calculations of outlet tem-—
perature, thermal power extraction, and crack opening displacement due to
thermal contraction of rocks are presented for cracks after they attain sta-
tionary states for given inlet flow rate and outlet suction pressure.

The present paper is a further development of the previous works of
Bodvarsson (1969), Gringarten et al. (1975), Lowell (1976), Harlow and Pracht
(1972), McFarland (1975), among others, and considers the two dimensional rather
than the one-dimensional crack. Furthermore, the crack radius and width are
quantities to be determined rather than given a priori.

FLUID FLOW IN A PENNY-SHAPED CRACK

Consider a large penny-shaped crack having a radius R and width w (in the
z-direction) as shown in Fig. 1. Fluid is injected from the inlet at the center
of the crack and removed in part at the outlet, x = a, where x is the distance
measured in the vertical direction from the center. The radii of the inlet and
outlet holes are denoted by Rp and Ra’ respectively.

The total mass flow rate at the inlet wellbore can be written in the form:
where q, is the effective flow rate equal to the outlet flow rate, qg is the
total mass change in the crack, qp corresponds to the total fluid loss in the

crack per unit time, and gqp is the increase of the crack volume due to the
thermal contraction of the rock and can be neglected.

If the crack is subjected to a constant inlet flow rate and the crack
radius is sufficiently large, the fluid viscosity can be neglected from the
equation of linear momentum as shown in a previous paper (Abé, Mura and Keer,

1976):
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where p is the fluid pressure in the crack, g is the acceleration due to
gravity, and Ps is the fluid density. Equation (2) is integrated as

p(r,0,t) = py(t) - pg 8T cos 0 (3)
where pg is the fluid pressure at r = 0 and t is time. The density p; has been
assumed to be constant.

The fracture mechanics is introduced here by considering a crack opening
stress (oz)z=0 = -p + (So-Kang}O where S is the tectonic stress at r = 0,

Ka is the coefficient of active rock pressure, and Py is the density of the rock.

The stress intensity factor at the crack tip and the opening displacement
are easily obtained from the results derived by Keer (1964):
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with E and v being Young's modulus and Poisson's ratio respectively.

The flow rate g defined in (1), is

Irl

BT d (27
{ [ pewr dodr = {5 R3(p; - 5D} (7)
=T

@ = dt! D

(=W

t

Now the average stress intensity factor is introduced by the definition

=1 7 /2R
K=?;_£Kd6=-“—R(p0—SO). (8)

It is assumed that when the crack is expanding

K = constant Kc' 9)

The flow loss is defined by

2m R
q;, = 2pf f f uL'rdrde, (10)
00

where up is the fluid loss rate per unit area of the crack surface and is
assumed here to be a linear function of p;

2pfuL = C + C

Lo Ll(po - Pg BT coOs 8) . (11)

where Cp and C;) are constant. Then, (10) becomes
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Finally, the flow rate q, in (1) is evaluated from the Bernoulli equation
applied to the flow in the neighborhood of the throat of the outlet. Then

C 2

= ¥ 1 vla
Py - 80ga = -p, + gop(hg -a) + 7o, ”—Rg—) (13)
where pg is the suction pressure by the outlet pump and the constant Cy LU
is an outlet head loss.

Equations (1), (7), (12) and (13) provide a functional form of R with
respect to t for given values of qg, pz and other physical constants and geo-
metrical values of hy, a, Ry; pp is expressed in terms of K. and R through the
relations (8) and (9). The crack radius R increases with time from the initial
value Rg which is the value of R before the outlet is introduced. R reaches a
stationary value after some time when

* —
> 0 and pa/SO <1/A -1 (14)
where A = So/pf ghg. We call this case Case (I). On the other hand, the crack
can remain at the initial size RS when

qp <0 and K <K_. (15)
We call this case Case (II). Here, R = Rg and p; is obtained as a function of t
from (1), (7), (12) and (13) for given values of qg, pg and other physical and
geometrical constants. In the next section we shall calculate the quantity of
heat extracted from the outlet in each case (I) and (II). Several numerical
examples for R = R(t) and p, = po(t) were shown in a previous paper (Abé, Keer,
Mura 1976).

HEAT EXTRACTION FROM OUTLET

In this section a stationary penny-shaped crack (after R and py have at-
tained their stationary values) is treated as a starting point for the analy-
tical study of two-dimensional heat transmission problems.

We have to determine first the velocity field of the fluid inside the
crack. Assumptions of incompressibility and irrotationality of fluid lead to

3q
13 1 e N
r 3r (r qr) + r 96 + 20f uL =0 : (16)
aq
3 r
ar T dg) 35 = 0 a7
where
q = PgWu_, gy T pc WU, (18)

and Gr and ﬁe are the components of velocity averaged through the width w. The
boundary condition is q; = 0 at r = R. The inlet and outlet are treated as a

point source and sink, respectively, since Ry and R, are sufficiently small
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when compared with R. The solution is obtained as

_ Eg[ E an rn—l cos ng - a ¥ cCos 6 - a ]
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2 r Lo L1° 0 L o f L1 -
(19)
da a'  n-1 . a sin 8
4 = ~ Zﬂ[ngl g2 r “sin nb + (r cos H-a)° + rzéinzej
1 2 _ 2 2%as
+80fg%JOR r<)sin 6.

It should be noticed that (19) is valid even for a non-stationary crack.

Next, the energy equation for the fluid is derived. For heat transfer
problems at small fluid velocity, the mechanical energy terms are small in the
energy equation. The effect of heat conduction in fluid (water) may also be
small compared with those of heat convection and transfer terms. Furthermore,
the time derivative term of the fluid temperature T can be neglected because of
smallness (Bodvarsson, 1969, Lowell, 1976). It is assumed that the rock temper-
ature T, is approximately equal to T on the crack surface and T is constant
through the crack width (Bodvarsson, 1969, Gringarten et al., 1975, Lowell, 1976).
In this way the energy equation for the fluid, after averaging through the crack
width, can be written in the form:

aT a7 _ 2 °Ty

qr or + qe r3o E;haz |z=0

(20)

where C¢ and X are the specific heat of the fluid and the heat conductivity of
the rock respectively. The position of the boundary z = w/2 has been replaced
by z = 0, since w is very small compared with the radius R and the distance a.

When the energy system operates effectively, the thermal penetration depth
in the rock is very small compared with R and a so that the heat flux is almost
perpendicular to the fracture surface. Thus the rock temperature Tr may simply
be governed by the following equation:

82Tr CYp 3T _
3z2 T x 3t (21)

where C, is the specific heat of the rock. It is noted that this simplification
does not mean that T, is independent of r and 8. Harlow and Pracht (1972) have
used the same equation as (21).

The temperatures T(r,6,t) and T .(r,0,z,t) which are the solutions of (20)
and (21) must satisfy the following conditions:

Tr(r,e,z,ts) =T (22a)

T(0,8,t) = TO (22b)
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T(r,8,t) = Tr(r,e,O,t) (22¢)

where T, is the initial temperature (or the far-field tectonic temperature), Ty
is the temperature of the inlet fluid, and t, is the time at which the outlet
is provided.

The solution of (20) and (21) is written as

o Cp, 1/2
T =T, + (T -T )erf[ { z f (r)cos no + lf—l—lj z}] 23)
0 © 0
r Ve-t_n=o © 2
with
£(0) = 0, | (24)
where fn are solutions of
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= -2k a (25)
df df df df
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The heat extraction rate or thermal power output at the outlet is
Qp = q,C (T, ~ Tp) 27)
where Ta is the fluid temperature at the outlet, or by (23) and (22c)

l foe]
Q. = q C.(T - T )erf|———— f (a)]. (28)
Boatre 70 [/t—_—gnzon]

ILLUSTRATIVE EXAMPLES

The data employed here and in the following are given below:

Ra/RO = 0.5 Cf = 1.0 cal/gr °C

CV = 1.25 CY = 0.25 cal/gr °C

o¢ = 1.0 gr/cm3 A = 6.2x1073 cal/cm sec °C
N = 2.65 gr/cm® T_ = 250°C

K = 0.49 T, = 65°

a

v = 0.25 o, = 8.0 x1078/°C

Sy/0gghy = 1.3 ™ _/V2R S, = 1.118.

Furthermore, Bj is taken as zero since the effect of the pressure on the fluid
loss should not be large as discussed by Hall and Dollarhide (1964).

The outlet fluid temperature T, and the thermal power output Qg in Case (I)
are graphed as functions of time in Figs. 2a and 2b. The corresponding relations
in Case (II) are graphed in Figs. 3a and 3b. The effect of the position of the
outlet hole is also shown in Figs. 2a and 2b. The outlet flow rate q, considered
here is not necessarily large (Table 1).
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Table 1.

Stationary Cracks

Case h0 m q, gr/sec p:/S0 gr/sec ApO/S0 R/R0
I 3000 1.451x10° -0.23916 .305x10% | 0.24009 11500
2000 1.409 -0.24264 .151 0.24396 5750
1.289 -0.23852 .647 0.23923
3000 1.232 -0.23882 .649 0.23954 10000
1 1.162 -0.23916 .653 0.23988
1.183 -0.24172 .819 0.24245
2000 1.127 -0.24215 .823 0.24288 5000
1.059 -0.24264 .827 0.24337

APO/SO = PO/SO

- 1/A
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