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Various approaches t o  the  s o l u t i o n  o f  t he  equat ions o f  thermal 
convect ion i n  f l u i d s  may be c l a s s i f i e d , ,  f o r  convenience, under such headings 
as:  
amp l i tude  i n s t a b i l i t i e s ,  f o r  which R/Rc : 1 ,  where R i s  the  Rayleigh 
number and Rc i s  i t s  c r i t i c a l  va lue  f o r  n e u t r a l  s t a b i l i t y ;  (2 )  the  Ga le r k i n  
method, a well-known numerical  technique u t i l i z i n g  t runca ted  expansions i n  
or thogonal  func t ions ,  which has been app l i ed  up t o  R/Rc z O(10); 
v a r i a t i o n a l  method, which seeks t o  e s t a b l i s h  bounds on the  heat t r anspo r t ,  
f o r  g iven  Rayle igh number, up t o  l a r g e  R/Rc; 
of  t he  convect ion equat ions, u s u a l l y  i n  f i n i t e - d i f f e r e n c e  form, up t o  
R/Rc 2 O(10). 

( 1 )  t he  Stuart-Watson method, which deals  w i t h  t he  behavior of f i n i t e -  

(3 )  the  

( 4 )  d i r e c t  numerical s o l u t i o n  

These techniques a r e  considered i n  r e l a t i o n  t o  t he  equat ions o f  con- 
v e c t i o n  of v a r i a b l e - v i s c o s i t y  f l u i d  i n  a porous medium. 

Since the p a r t i c u l a r  a p p l i c a t i o n  i s  intended to  be geothermal convec- 
t i o n ,  many s i m p l i f i c a t i o n s  may have t o  be accepted. F i r s t ,  i t  i s  assumed 
t h a t  the  f l o w  can be t r e a t e d  as f l o w  through porous media. Th is  i s  no t  
necessa r i l y  t r u e ,  a l though the approx imat ion becomes more s a t i s f a c t o r y  i f  
o n l y  l a rge- sca le  motions a r e  considered. Secondly, the  medium may no t  be 
i s o t r o p i c .  Th i s  i s  no t  a ser ious  d i f f i c u l t y ,  b u t  i so t ropy  w i l l  be assumed 
f o r  convenience. T h i r d l y ,  s a l t  may be t ranspor ted  as w e l l  as heat ,  and can 
e x e r t  an i n f l uence  upon f l u i d  buoyancy. Ev iden t l y ,  t he  t r anspo r t  o f  s a l t  
would i nvo l ve  a s t r a i g h t f o r w a r d  g e n e r a l i z a t i o n  o f  the  t reatment  f o r  heat 
t r a n s p o r t  (a l though some new phenomena a r e  encountered),  and i s  no t  cons i-  
dered here. Fou r th l y ,  chemical i n t e r a c t i o n  o f  the  f l u i d  w i t h  t he  medium, 
which would in t roduce  g rea t  compl icat ions,  i s  assumed t o  be n e g l i g i b l e .  

Very l a r g e  temperature d i f f e r e n c e s  a r e  encountered i n  geothermal 
a p p l i c a t i o n s ,  so t h a t  the dependence upon temperature o f  f l u i d  p r o p e r t i e s  
needs t o  be taken i n t o  account. The most impor tant  o f  these i s  the  v a r i a -  
t i o n  of v i s c o s i t y ,  which may i nvo l ve  an order-of-magnitude change. The 
f l u i d  and porous medium a r e  assumed t o  be incompressible,  bu t  d i l a t i o n  and 
c o n t r a c t i o n  o f  t he  f l u i d  w i t h  temperature changes may lead t o  a 20% change 
i n  dens i t y ,  which i s  o f  some s i g n i f i c a n c e .  Th is  i s  most r e a d i l y  taken i n t o  
account,  w h i l e  r e t a i n i n g  a convenient form of t he  equat ions, by i n t r oduc ing  
a vec to r  p r o p o r t i o n a l  t o  the  mass f l o w  r a t e ,  and r e l a t i n g  t h i s  t o  t h e  
volume f low r a t e  q by - 

Here p i s  the  f l u i d  dens i t y  a t  temperature T, and po i s  a dens i t y  
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corresponding t o  a reference temperature To. Then the equat ions o f  
c o n t i n u i t y ,  mot ion and heat t ranspor t  t ake  a convenient form ( c . f .  Wooding, 
1957, 1960): 

- - + V * q  E aP = o  
a t  -m 

P V  - 4  = o  k ,m 
1 - V P  + kg - +  

- 

Here t i s  t ime, P i s  pressure,  E i s  the  p o r o s i t y  o f  t h e  medium, 

E = C ( l  - € ) c S p s  + E C P } / C ~ ,  ( 5 )  

i s  the  r a t i o  o f  t he  heat capac i t y  per u n i t  volume of  sa tura ted medium 
( a t  temperature T)  t o  t h a t  of t h e  f l u i d  ( a t  temperature To )>  c s i g n i f i e s  
s p e c i f i c  heat and s u f f i x  s denotes the  s o l i d  medium. Also, k i s  the  
i n t r i n s i c  pe rmeab i l i t y ,  v i s  the  k inemat ic  v i s c o s i t y  o f  t he  f l u i d ,  K 
i s  t he  thermal d i f f u s i v i t y  o f  t he  sa tura ted medium, here taken constant ,  
g is the  magnitude of  g r a v i t y  and k i s  a u n i t  vec tor ,  d i r e c t e d  v e r t i c a l l y  
upwards. Whi le Equations (2)  and ( 4 7  a r e  s t r a i g h t f o r w a r d  conservat ion  
r e l a t i o n s ,  Equation (3 )  (Darcy 's  Law) i s  a f o r c e- f l u x  r e l a t i o n  which invo lves  
some assumptions--notably t h e  ex is tence o f  t he  p e r m e a b i l i t y  k .  

I n  a d d i t i o n  t o  the  foregoing,  t he re  must e x i s t  an equat ion  of  s t a t e  
f o r  each temperature-dependent q u a n t i t y .  
i s  taken as 

Here the  r e l a t i o n  f o r  d e n s i t y  o f t e n  

P - Po T - To - -  - a  
PO T* 

i . e . ,  t he  Boussinesq approximat ion,  be ing  t h e  temperature c o e f f i c i e n t  
of  l i n e a r  expansion o f  t h e  f l u i d .  Thermal expansion o f  t he  medium i s  
neglected. A more s a t i s f a c t o r y  rep resen ta t i on  of t he  thermal expansion law 
requ i res  a polynomial .  

The v a r i a t i o n  o f  v i s c o s i t y  w i t h  temperature i s  q u i t e  s t r o n g l y  non- 
l i n e a r .  For geothermal a p p l i c a t i o n s  a s imple  r e l a t i o n  f o r  water i s  

where the c o e f f i c i e n t  a may be O(10) (Wooding, 1957). This c o n s t i t u t e s  
one o f  t h e  main obs tac les  t o  the  d i r e c t  use o f  some o f  t he  standard methods 
o f  s o l u t i o n  of  the convect ion  equations. 
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A f u r t h e r  important  source o f  n o n l i n e a r i t y  i s  t he  term gm*VT i n  ( 4 ) .  
Since most convect ion  s tud ies  i n  t h e  l i t e r a t u r e  correspond t o  t h e  case o f  
constant  v i s c o s i t y ,  t h e  l a t t e r  n o n l i n e a r i t y  has rece ived cons iderab le  a t t e n -  
t i o n ,  whereas the  p a r t i c u l a r  s i t u a t i o n  o f  v a r i a b l e  v i s c o s i t y  has rece ived 
r e l a t i v e l y  l i t t l e .  

I n  v i s c o u s - f l u i d  convect ion,  t he  important  case o f  a small  v a r i a t i o n  
o f  v i s c o s i t y  has been t r e a t e d  by p e r t u r b a t i o n  methods by Palm (19601, Segel 
and S t u a r t  (1962), Palm and Oiann (1964), Segel (1965a, b) and o the rs ,  w i t h  
cons iderab le  success, s ince  t h e  reason f o r  t he  ex is tence o f  hexagonal con- 
v e c t i o n  c e l l s  over  a f i n i t e  range o f  Reynolds number has been s a t i s f a c t o r i l y  
expla ined.  

An equ iva len t  a n a l y s i s  f o r  f l o w  i n  porous media has no t  been c a r r i e d  
o u t ,  as f a r  as i s  known. However, most cases o f  i n t e r e s t  i n  porous-media 
f l o w ,  p a r t i c u l a r l y  w i t h  geothermal a p p l i c a t i o n s ,  i n v o l v e  very  l a r g e  changes 
o f  v i s c o s i t y ,  f o r  which a p e r t u r b a t i o n  a n a l y s i s  on the  above l i n e s  would 
no t  be s a t i s f a c t o r y .  Genera l ly ,  i t  i s  considered necessary t o  r e s o r t  t o  
numerical techniques., as i n  papers by Wooding (1957, 1963) and recent  
s tud ies  by Horne (1975) and Kassoy and Zebib (1975),  o r  by the  use o f  
v a r i a t i o n a l  techniques (e.g., Wooding, 1960, 1975). 

Techniques o f  S o l u t i o n  o f  t he  Convection Equations 

A convenient c l a s s i f i c a t i o n  i s  t h e  f o l l o w i n g :  

1 .  The Stuart-Watson Method (S tua r t ,  1958; Watson, 1960; S t u a r t ,  
1964; e t c . )  i s  used f o r  t r e a t i n g  f i n i  te-amp1 i tude i n s t a b i  1 i t y  problems, 
i . e . ,  t o  f i n d  answers t o  t h e  quest ion :  What happens t o  an i n f i n i t e s m a l  
d is tu rbance as i t  grows t o  f i n i t e  ampl i tude i n  a s i t u a t i o n  which i s  l i n e a r l y  
uns tab le? C l e a r l y ,  a s i n g l e  d is turbance mode w i l l ,  through n o n l i n e a r i t i e s ,  
generate a "normal-mode cascade'' (Segel, 1 9 6 5 ~ )  and these i n  t u r n  w i l l  
i n t e r a c t  t o  modi fy t h e  fundamental d is tu rbance ampl i tude.  Genera l ly  t he  
e f f e c t  i s  t o  i n t roduce  non l i nea r  damping o f  t h e  fundamental, so t h a t  t h e  
d is turbance grows t o  a f i n i t e  ampl i tude and a new s t a b l e  e q u i l i b r i u m  r e s u l t s .  
However, spec ia l  cases o f  re inforcement (e.g., resonance) may be encountered. 

Since t h e  Stuart-Watson method invo lves  expansion i n  normal modes 
about t he  n e u t r a l  d is tu rbance,  and the  expansion i s  t runcated a f t e r  t h e  t h i r d -  
o r d e r  terms ( c . f .  Segel, 1965a), i t  i s  l i m i t e d  t o  f l o w  s i t u a t i o n s  where theam- 
p l i t u d e  remains small  (a l though f i n i t e )  throughout  a l l  t ime. Th i s  g e n e r a l l y  
r e s t r i c t s  i t s  use i n  convect ion  problems t o  cases where t h e  Rayle igh number 
R 2 Rc - - the  c r i t i c a l  va lue  f o r  n e u t r a l  s t a b i l i t y .  I n  s p i t e  o f  t h i s  l i m i t a -  
t i o n ,  the  method y i e l d s  g r e a t  phys i ca l  i n s i g h t  i n t o  mechanisms of  f l u i d  
i n s t a b i l i t y .  

2. The Ga le rk in  Method (Veronis,  1966; Straus,  1974; Clever and 
Busse, 1974; e t c . )  i s  one of  the  o l d e s t  and bes t  known. B r i e f l y ,  expansions 
o f  t he  dependent v a r i a b l e s  i n  t he  convect ion  equat ions a r e  sought i n  terms of  
orthonormal f unc t i ons  which s a t i s f y  t he  boundary cond i t i ons  term by term. 
The method o f  t r u n c a t i o n  o f  these se r ies ,  f i r s t  descr ibed by Veronis,  i s  t o  
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choose a "maximum total wavenumber," i.e., to retain only those terms for 
which the sum of the wavenumbers in the various spatial directions does not 
exceed a given upper bound. When the differential equation is linear, it 
is possible to obtain relationships between the coefficients by term-by-term 
comparison. Otherwise each partial differential equation may be reduced to 
a set of ordinary differential equations (say in time) or an algebraic equa- 
tion, by multiplying by successive terms of the orthonormal set, and 
integrating over space. The resultant set of ordinary differential equations, 
or of algebraic equations, can then be solved by conventional numerical 
methods. 

For the case of two-dimensional convection in a porous medium with 
constant viscosity, Straus (1974) has calculated the dependence of Nusselt 
number (Nu) upon Rayleigh number up to R 2 380, above which point (from 
1 inearized stabi 1 i ty analysis), two-dimensional solutions are unstable. 
For R > 100, the (R, Nu)-curve shows a significant change in slope. The 
results are in good agreement with experimental measurements. 

3 .  The variational method of Howard (1963) and Busse (1969) has been 
used by Busse and Joseph (1972) and Gupta and Joseph (1973) to calculate 
upper bounds to the Nusselt number, as  a function of Rayleigh number, for 
three-dimensional convection in a porous medium at constant viscosity. In 
this approach, the equations of motion and heat transport are recast as a 
variational problem, involving averages over the entire porous layer. Then 
the dependent variables appearing in the variational problem are replaced 
by a "class of admissible functions" which includes all statistically sta- 
tionary solutions, and which satisfies the boundary conditions and any 
supplementary conditions which may be specified. 
variational problem embrace a wide class of solutions, corresponding to 
extreme values of the system, and these may be represented by expansions in 
orthonormal functions based upon horizontal wavenumbers an. A single wave- 
number is adequate up to R = 221.5 (Gupta and Joseph, 1973), at which 
point the solution bifurcates and two a-values are needed. These calcula- 
tions have been carried up to about R = 500 with very good agreement with 
experiment. At higher R,  an asymptotic (boundary-layer) analysis based on 
that of Chan (1971) predicts appropriate qualitative behavior, but these 
results are not in good quantitative agreement with the numerical studies. 

The Euler equations of the 

4. Methods o f  numerical solution of the convection equations are 
now the subject o f  a very large literature, and extensive reviews such a s  
those by Orszag and Israel i (1974), or of Horne (1975) for porous media, 
are necessary to ensure adequate treatments. Because of limitations in 
computer capacity and speed, most convection studies have been limited to 
two-dimensional flows. Convection in viscous fluids with large variations 
in viscosity has been considered, for two-dimensional flows, by Torrance 
and Turcotte (1971) and by Houston and De Bremaecker (1974). 

Horne (1975) has carried out some calculations with variable viscos- 
ity for two-dimensional convection in porous media. in discussing his 
results, Horne comments that equally-vigorous convection occurs with variable 
viscosity at lower apparent Rayleigh number than in the constant-viscosity 
case, since R is defined for T = To, where viscosity is high. He also 
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observes that the representation of a variable-viscosity convection system 
with a constant-viscosity model is "inexact, but not entirely without use." 
This suggests that an intermediate value of Rayleigh number might be found 
which corresponds to the constant-viscosity value at the same Nusselt 
number. However, in studying the onset of convection in porous media with 
variable viscosity, Kassoy and Zebib (1975) conclude that the viscosity 
variations have substantial effects upon the flow pattern and that a mean 
value of viscosity cannot be taken to estimate a suitable intermediate 
value of R. 

Numerical studies of convection in three dimensions in a viscous 
fluid, based on the early work of Chorin (1966), have been performed by 
Veltishchev and Zelnin (1975), taking viscosity constant. In this approach 
the equations are represented in finite-difference form, using ''primitive" 
variables, i .e., velocity components (u, v, w), temperature and pressure. 
Calculations were carried out in a rectilinear domain with horizontal 
dimensions 2.34 and 4.03 times the depth. 
models, the domain is limited to a finite box.) Interesting stable convec- 
tive flow patterns are obtained, notably two-dimensional rolls for low to 
intermediate values of the Rayleigh number, three-dimensional flows in a 
higher, somewhat narrower, range, and unsteady motions above that. These 
flow transitions are accompanied by changes in slope of the Rayleigh 
number-heat flux curve. 

(In common with other numerical 

For three-dimensional Convection in a porous medium, relatively few 
references can be found. Holst and Aziz (1972) used a combination of 
successive over-relaxation for the solution of the equation of motion 
(reduced to Poisson's equation) with centered differencing for the first 
derivations of the heat equation. However, the more advanced techniques of 
direct solution utilized by Horne and O'Sullivan (1974) and Horne (1975) 
are faster and more accurate. These employ an Arakawa (1966) finite- 
difference scheme to evaluate the terms arising from gm*VT in ( b ) ,  and an 
extension of the Buneman algorithm (Buzbee, Golub and Nielson, 1970) to 
evaluate the Poisson equation. Horne (1975) has used these techniques to 
calculate solutions for three-dimensional convection in a cubical box, 
taking a 17 x 17 x 17 mesh, at R = 500. For a uniformly heated lower 
boundary, convection is found to take the form of two-dimensional rolls, 
even when the initial perturbation is three-dimensional. 

It is planned to publish a more detailed treatment at a later date. 
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