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Various approaches to the solution of the equations of thermal
convection in fluids may be classified,, for convenience, under such headings
as: (1) the Stuart-Watson method, which deals with the behavior of finite-
amplitude instabilities, for which R/R. =1, where R is the Rayleigh
number and Re is its critical value for neutral stability; (2) the Galerkin
method, a well-known numerical technique utilizing truncated expansions in
orthogonal functions, which has been applied up to R/R. = 0(10); (3) the
variational method, which seeks to establish bounds on the heat transport,
for given Rayleigh number, up to large R/RC; (4) direct numerical solution

of the convection equations, usually in finite-difference form, up to
R/R. = 0(10).

These techniques are considered in relation to the equations of con-
vection of variable-viscosity fluid in a porous medium.

Since the particular application is intended to be geothermal convec-
tion, many simplifications may have to be accepted. First, it is assumed
that the flow can be treated as flow through porous media. This is not
necessarily true, although the approximation becomes more satisfactory 1if
only large-scale motions are considered. Secondly, the medium may not be
isotropic. This is not a serious difficulty, but isotropy will be assumed
for convenience. Thirdly, salt may be transported as well as heat, and can
exert an influence upon fluid buoyancy. Evidently, the transport of salt
would involve a straightforward generalization of the treatment for heat
transport (although some new phenomena are encountered), and is not consi-
dered here. Fourthly, chemical interaction of the fluid with the medium,
which would introduce great complications, is assumed to be negligible.

Very large temperature differences are encountered in geothermal
applications, so that the dependence upon temperature of fluid properties
needs to be taken into account. The most important of these is the varia-
tion of viscosity, which may involve an order-of-magnitude change. The
fluid and porous medium are assumed to be incompressible, but dilation and
contraction of the fluid with temperature changes may lead to a 20% change
in density, which is of some significance. This is most readily taken into
account, while retaining a convenient form of the equations, by introducing

a vector g, proportional to the mass flow rate, and relating this to the
volume flow rate q by

0ody = P9 (1)

Here p is the fluid density at temperature T, and pg is a density
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corresponding to a reference temperature T_. Then the equations of
continuity, motion and heat transport take a convenient form (c.f. Wooding,

1957, 1960):

~M (2)

1 .
i VRkg =g =0 (3)

E——+g 'VT=KV2T (%)

Here t is time, P is pressure, E is the porosity of the medium,
E={(1 = e)cgog + ecol/cp, (5)

is the ratio of the heat capacity per unit volume of saturated medium

(at temperature T) to that of the fluid (at temperature TO), c signifies
specific heat and suffix s denotes the solid medium. Also, k is the
intrinsic permeability, v is the kinematic viscosity of the fluid, K

is the thermal diffusivity of the saturated medium, here taken constant,

g IS the magnitude of gravity and k is a unit vector, directed vertically
upwards. While Equations (2) and (4) are straightforward conservation
relations, Equation (3) (Darcy's Law) is a force-flux relation which involves
some assumptions--notably the existence of the permeability K.

In addition to the foregoing, there must exist an equation of state

for each temperature-dependent quantity. Here the relation for density often
is taken as

o= T-T7
—— = 2 (6)
Po o

i.e., the Boussinesq approximation, o being the temperature coefficient
of linear expansion of the fluid. Thermal expansion of the medium is
neglected. A more satisfactory representation of the thermal expansion law
requires a polynomial.

The variation of viscosity with temperature is quite strongly non-
linear. For geothermal applications a simple relation for water is

—_— +a (T-T9)] (7)

where the coefficient a may be 0(10) (Wooding, 1957). This constitutes
one of the main obstacles to the direct use of some of the standard methods
of solution of the convection equations.
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A further important source of nonlinearity is the term g,*VT in (4).
Since most convection studies in the literature correspond to the case of
constant viscosity, the latter nonlinearity has received considerable atten-
tion, whereas the particular situation of variable viscosity has received
relatively little.

In viscous-fluid convection, the important case of a small variation
of viscosity has been treated by perturbation methods by Palm (1960), Segel
and Stuart (1962), Palm and @Biann (1964), Segel (1965a, b) and others, with
considerable success, since the reason for the existence of hexagonal con-
vection cells over a finite range of Reynolds number has been satisfactorily
explained.

An equivalent analysis for flow in porous media has not been carried
out, as far as is known. However, most cases of interest in porous-media
flow, particularly with geothermal applications, involve very large changes
of viscosity, for which a perturbation analysis on the above lines would
not be satisfactory. Generally, it is considered necessary to resort to
numerical techniques., as in papers by Wooding (1957, 1963) and recent
studies by Horne (1975) and Kassoy and Zebib (1975), or by the use of
variational techniques (e.g., Wooding, 1960, 1975).

Techniques of Solution of the Convection Eguations

A convenient classification is the following:

1. The Stuart-Watson Method (Stuart, 1958; Watson, 1960; Stuart,
1964; etc.) is used for treating finite-amplitude instability problems,
i.e., to find answers to the question: What happens to an infinitesmal
disturbance as it grows to finite amplitude in a situation which is linearly
unstable? Clearly, a single disturbance mode will, through nonlinearities,
generate a '‘normal-mode cascade" (Segel, 1965¢c) and these in turn will
interact to modify the fundamental disturbance amplitude. Generally the
effect is to introduce nonlinear damping of the fundamental, so that the
disturbance grows to a finite amplitude and a new stable equilibrium results.
However, special cases of reinforcement (e.g., resonance) may be encountered.

Since the Stuart-Watson method involves expansion in normal modes
about the neutral disturbance, and the expansion is truncated after the third-
order terms (c.f. Segel, 1965a), it is limited to flow situations where the am-
plitude remains small (although finite) throughout all time. This generally
restricts its use in convection problems to cases where the Rayleigh number
R = R. --thecritical value for neutral stability. In spite of this Ilimita-
tion, the method yields great physical insight into mechanisms of fluid
instability.

2. The Galerkin Method (Veronis, 1966; Straus, 1974; Clever and
Busse, 1974; etc.) is one of the oldest and best known. Briefly, expansions
of the dependent variables in the convection equations are sought in terms of
orthonormal functions which satisfy the boundary conditions term by term.
The method of truncation of these series, first described by Veronis, is to
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choose a ""maximum total wavenumber,' i.e., O retain only those terms for
which the sum of the wavenumbers in the various spatial directions does not
exceed a given upper bound. When the differential equation is linear, it

is possible to obtain relationships between the coefficients by term-by-term
comparison. Otherwise each partial differential equation may be reduced to

a set of ordinary differential equations (say in time) or an algebraic equa-
tion, by multiplying by successive terms of the orthonormal set, and
integrating over space. The resultant set of ordinary differential equations,
or of algebraic equations, can then be solved by conventional numerical
methods.

For the case of two-dimensional convection in a porous medium with
constant viscosity, Straus (1974) has calculated the dependence of Nusselt
number (Nu) upon Rayleigh number up to R = 380, above which point (from
l inearized stabi li ty analysis), two-dimensional solutions are unstable.
For R > 100, the (R, Nu)-curve shows a significant change in slope. The
results are in good agreement with experimental measurements.

3. The variational method of Howard (1963) and Busse (1969) has been
used by Busse and Joseph (1972) and Gupta and Joseph (1973) to calculate
upper bounds to the Nusselt number, as a function of Rayleigh number, for
three-dimensional convection in a porous medium at constant viscosity. In
this approach, the equations of motion and heat transport are recast as a
variational problem, involving averages over the entire porous layer. Then
the dependent variables appearing in the variational problem are replaced
by a "‘class of admissible functions' which includes all statistically sta-
tionary solutions, and which satisfies the boundary conditions and any
supplementary conditions which may be specified. The Euler equations of the
variational problem embrace a wide class of solutions, corresponding to
extreme values of the system, and these may be represented by expansions in
orthonormal functions based upon horizontal wavenumbers .. A single wave-
number is adequate up to R = 221.5 (Gupta and Joseph, 1373), at which
point the solution bifurcates and two a-values are needed. These calcula-
tions have been carried up to about R = 500 with very good agreement with
experiment. At higher R, an asymptotic (boundary-layer) analysis based on
that of Chan (1971) predicts appropriate qualitative behavior, but these
results are not In good quantitative agreement with the numerical studies.

4. Methods of numerical solution of the convection equations are
now the subject of a very large literature, and extensive reviews such as
those by Orszag and Israeli (1974), or of Horne (1975) for porous media,
are necessary to ensure adequate treatments. Because of limitations in
computer capacity and speed, most convection studies have been limited to
two-dimensional flows. Convection in viscous fluids with large variations
in viscosity has been considered, for two-dimensional flows, by Torrance
and Turcotte (1971) and by Houston and De Bremaecker (1974).

Horne (1975) has carried out some calculations with variable viscos-
ity for two-dimensional convection iIn porous media. in discussing his
results, Horne comments that equally-vigorous convection occurs with variable
viscosity at lower apparent Rayleigh number than in the constant-viscosity
case, since R is defined for T = 71_, where viscosity is high. He also
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observes that the representation of a variable-viscosity convection system
with a constant-viscosity model is *"inexact, but not entirely without use."’
This suggests that an intermediate value of Rayleigh number might be found
which corresponds to the constant-viscosity value at the same Nusselt
number. However, in studying the onset of convection in porous media with
variable viscosity, Kassoy and Zebib (1975) conclude that the viscosity
variations have substantial effects upon the flow pattern and that a mean
va:ue o; vngcosity cannot be taken to estimate a suitable intermediate
value o .

Numerical studies of convection in three dimensions in a viscous
fluid, based on the early work of Chorin (1966), have been performed by
Veltishchev and Zelnin (1975), taking viscosity constant. In this approach
the equations are represented in finite-difference form, using "“primitive"
variables, i.e., velocity components (u, v, w), temperature and pressure.
Calculations were carried out in a rectilinear domain with horizontal
dimensions 2.34 and 4.03 times the depth. (In common with other numerical
models, the domain is limited to a finite box.) Interesting stable convec-
tive flow patterns are obtained, notably two-dimensional rolls for low to
intermediate values of the Rayleigh number, three-dimensional flows in a
higher, somewhat narrower, range, and unsteady motions above that. These
flow transitions are accompanied by changes in slope of the Rayleigh
number~heat Flux curve.

For three-dimensional Convection in a porous medium, relatively few
references can be found. Holst and Aziz (1972) used a combination of
successive over-relaxation for the solution of the equation of motion
(reduced to Poisson®s equation) with centered differencing for the first
derivations of the heat equation. However, the more advanced techniques of
direct solution utilized by Horne and 0'Sullivan (1974) and Horne (1975)
are faster and more accurate. These employ an Arakawa (1966) finite-
difference scheme to evaluate the terms arising from q_-vT in (4), and an
extension of the Buneman algorithm (Buzbee, Golub and”Nielson, 1970) to
evaluate the Poisson equation. Horne (1975) has used these techniques to
calculate solutions for three-dimensional convection in a cubical box,
taking a 17 x 17 x 17 mesh, at R = 500, For a uniformly heated lower
boundary, convection is found to take the form of two-dimensional rolls,
even when the initial perturbation is three-dimensional.

It is planned to publish a more detailed treatment at a later date.
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