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A geothermal reservoir is, among other things, a stock of heat
energy of a given '""quality,” stored in an aquifer system. In this study,
the stock is considered finite and exhaustible over the relevant economic
horizon. An important consideration in xploiting this resource is the
“optimal'' rate at which the energy stock should be extracted from a particu-
lar geothermal anomaly. This is primari y an "economic' question, although
any meaningful conclusions on an optimal extraction policy must surely be
based on a specific model of the physica hydrothermal processes that occur
In the geothermal aquifer. Accordingly, the purpose of this paper is to
outline some economic models for optimal extraction, in the context of a
particular hydrothermal model.

The discussion focuses on one anomaly. The rate of hydraulic pump=
ing is the major decision variable, and the analysis trades off discounted
“'value'' of energy from the anomaly against the rate of deterioration of the
guality (temperature) of the heat stock. All extracted fluid is recycled,
and no divergence between private and social benefits and costs is assumed.
Secondary or indirect regional benefits and costs associated with develop-
ment are not considered.

Two economic models are developed. The first is "quasi-steady-state,"
in that the flow rate, Q, of fluid extraction is constant over all relevant
time, although the temperature, To’ of the extracted fluid varies with time.
The second IS completely "non-steady-state,” assuming both Q and T, vary with
time. A major objective of these notes is to state, as clearly as possible,
the major assumption of these economic models, so the appropriateness of
hydrothermal model selection can be evaluated by physical model researchers.

The Hydrothermal Model

The hydrothermal model adopted for this discussion was developed by
Gringarten and Sauty. It assumes a pumped production well for a single phase
(hot water) geothermal anomaly with a recharge well as shown in Fig. 1
(actually each well could represent a cluster of wells).

Fluid is withdrawn at the rate Q (cfs) and recharged at the same rate.
The temperature of extracted fluid at time t is Tt, and recharged fluid enters
the ground at temperature T; in period t. T; is the temperature of condensed
exhausted steam (on the cool side of the turbine). It is determined by
turbine design and does not vary with time, When the temperature of the
aquifer matrix has dropped to Ti’ no more energy may be extracted.
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Figure 1

The recirculated fluid is heated by the aquifer matrix from 7; to 7%.
For the first r years, (O< t < 1), TS =19, where TS is the initial equili-

brium temperature of the unexploited anomaly. The magnitude of T is inversely
proportional to Q:

= F (1/9Q).

The symbol : denotes time until reduced fluid temperature "‘breaks through'
to the production well.

After the th year, T} drops exponentially toward T; at a rate g(0Q), as
shown in Fig. 2. In general, TS can be written:
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Figure 2

The functions T and g are derived using results of the hydrothermal model.
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The system is assumed base loaded into a local power grid. The base
load energy, E(kwhr), available from the process is proportional to the

1 1
product of Q and (Tg - Ti)zz EY = h(Q(Tg - Ti)z)

The value of E is determined by the "long-run' value to the grid of a kwhr of
base load energy (''long-run'' implies grid power system capacity as well

as operating costs). This value is the price the power company is just
willing to pay for marginal units of baseload power. |f we denote this
value as a function of time, p(t), we have:

p(t) ~ pOeft |

where

©
[o)
1]

price at t = 0.

r = rate of increase of baseload power system costs relative to
general price level (in other words, we are dealing in "real™
dollars throughout all time).

The costs associated with extraction depend on Q, T and T,. Capacity
(investment) costs will be incurred for drilling, lining of both holes,
piping, pumps, and turbine-generator equipment. After L years, salvage
costs are zero, where L equals life of equipment. Operatin% costs will

depend on Q and an downhole pressure, which is related to T Rate Q will

determine pump capacity and turbine costs, while pressure will affect pumping
energy requirements. Let C(Q, T9, Ti) be present worth of all capacity costs
(which are incurred at t = 0) a.ng. operating costs. The discount rate will be

i, and we say a (real) dollar at time t = J has present worth of e ' at time
t = 0.

The ""Quasi-Steady-State"' Model

The '"Quasi-steady-state' model assumes Q is constant over a finite
horizon, N, where N is an integer multiple, k, of L, the life of turbine-
generator equipment. For the case where k=1, n](Q), the total discounted
net revenue from the system over the first L years, when pumping occurs at
rate Q, may be written as:

r-sh)
j; p(o)n( - (1) - Tiﬁ)e“t dt

m(Q)

L 1 <8 (Q) (t‘T) -
+ 5 p(t)h(Q . (Tg -T,)%e )e g

r=fcéo

(o)
c(Q,Ty, T,).
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When the integrals are evaluated, the resulting function can be optimized
over the pertinent range of Q:

%
TT](Q) = max TT](Q)
Q
s.t. Q> 0.
In general, we can repeat this optimization for k=2,3,...., obtaining
*, % %, K *
m12(Q), 5(Q3), etc. Then for some k™,
M) 2 T (Q) . 2=1,2,3,...,
and N* + (k)L is the optimal horizon.
Although this "‘quasi-steady-state’" approach considers horizons of

indefinite length, it is somewhat restricted, in that Q is assumed constant
for all time. A more flexible approach would allow Q to vary from year to year.

The Non-Steady-State Model

If the restriction on constant Q is relaxed, an investment timing
dimension is added to the economic model. An extraction policy is then
defined in terms of a vector of pumping rates:

[ {Q, Q,ev-HQyt

where Q, is the pumping rate in the tth year. An optimal policy, @ , is a
policy that maximizes the pertinent objective function, namely, discounted
net revenues. We are now considering the optimal ""staged development of
an anomaly.

The same hydrothermal model is assumed. However, the big difference
is that the fluid pumping rate, Q, can be increased iIn any year (at some
incremental investment and operating cost). The goal now is to find not
one Q, but a set of 0's, an investment-pumping policy that maximizes
discounted net revenues.

To do this we define system state variables, Q and Tg.
Let:
Qy = fluid pumping rate from extraction well just before beginning
of period N.
T§ = temperature of extracted fluid just before beginning of period N.
Vﬁ(QN,Tﬁ) = The optimal 'value'' of being In state (QN,Tﬁ) at beginning of

period N. This is the present worth (as of beginning of period
N) of sum of net revenues in period N, N+i, N#2,...., assuming
an optimum policy is followed; that is, the sume of these pet N
revenues discounted to beginning of period N IS equal to VN(QN,TO)
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Now suppose that N = 100 and the discount rate is large enough so that the

. ® N+1 . . . -
present worth in year zero of VN+I(QN+1’ To ) is zero. Then this is tanta
=0

g) . This implies that the present worth at
time t = 0 of value of energy from this anomaly after N years, is zero

regardless of the value of QN+] and Tg. This effectively defines a horizon
of “economic” relevance.

mount to saying V;H (QN+]’ T

Let:

R (Qy + 2Q,, TN = revenues in year N from pumping (and selling power)
NN N> o
at rate QN + AQN and temperature TN.
o}
N

= capital investment in year N to increase pumping rat
by 4Qy, assuming temperature during that periodis Tﬁ.

Of course it is not likely that an optimal policy would
include a capacity investment in the last year. Never-
theless, this option is available in this year, as in all
the other N-1 years. This investment cost would also
cover incremental power transmission costs.

CN(QN + AQN,T(’;I) operating cost during year N associated with producing

at rate Q + AQN and temperature Tg.

TEH = ¢(QN+ AQy» Tg), where ¢(+,*) is a functional expression
relating QN’ AQN and Tg to TgH. This '"transfer' func-

tion reflects the parameters of a non-steady-state
hydrothermal model. Perhaps Professor Witherspoon’s
hydraulically steady state hydrothermal model could be
used to estimate pertinent values of Q(-,-).

Then we have:

* N, _ N
VN(QN’ TO) = ng RN(QN + AQNs TO) - IN(AQN’ T
N N+1
-~ CN(QN + AQN’ TO)+ aVN+l(QN+ AQN’ TO ) >
N+1 _ N

8.t. To = ¢(QN + AQN, To) s
where:

a=1/(1+i)

N+1,

However, since VN+1<QN+1’ TO )y = 0,

V*(Q 'I'N) = max Q. + A 'JL"N
N N’ o RN N QN) o)
AQN

N@Qp TD)  (Q + 8, T
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Basically, this says the best value of the system in state (QN, T(Tg) at the

beginning of period N, can be found by maximizing the expression in_"braces
over all values of AQN' The value of AQN that maximizes will be AQ

. N’
Most likely AQK1 will be zero for this last period.
We find AQ:‘I for each pertinent value of QN’ TN, and then move back
o

to the beginning of period N~1, writing:

N-1l, _ N-1
QN—l’ To ) = max P\N (QN—l + AQN—J.’ To
AQ,,
N-1
- Iy (BQu s T )
N-1
= Cyo1Qoy ¥ 800 T )
* N-1
+ avN(QN—l+AQN"l’ ¢(QN_1+AQN_11 TO ) .

This is the typical two-stage optimization problem. Assuming V"(-,*) has
some positive value, we trade-off value of energy extracted in period N with

that removed in period N-1, as various valu s of AQ are considered. This
: . £s -

is done for all pertinent values of QN— | TO-] and then we move back to
period N-2 and repeat the two-stage optimization again. If energy extrac-

tion from this anomaly is at all economically feasible, at least one of the
AQt will be positive.

This backward stepping recursive algorithm is then used iteratively

- % o
until we compute Vo(Qo’ To), where

Q = 0
TO

0}

initial, equilibrium temperature of the aquifer.

We can then move forward through this set of equations and find Q , the
optimal pumping policy vector.

Proposed Work

The next step in developing these economic models is to quantify the
functions L, g, h and ¢, and obtain solutions to the models outlined above.
Perhaps the most important part of these results would be a sensitivity
analysis indicating the relative importance of the above functions and such
parameters as the discount rate.

A logical extension would be to investigate various geometries and
spacing (in plan view) of production and recharge wells with these economic
models. This extension would consider multiple well clusters for a single
anomaly. A more comprehensive extension would include development of
multiple, hydraulically-independent anomalies.
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