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The Dry Hot Rock Geothermal Energy Program being conducted by the
Los Alamos Scientific Laboratory has been described in detail by Smith
et al.l Basically we have proposed that man-made geothermal energy
reservoirs can be created by drilling into relatively impermeable rock
to a depth where the temperature is high enough to be useful; creating
a large hydraulic fracture; and then completing the circulation loop by
drilling a second hole to intercept the hydraulic fracture.

Thermal power is extracted from this system by injecting cold water
down the first hole, forcing the water to sweep by the freshly exposed
hot rock surface in the reservoir/fracture system, and then returning
the hot water to the surface where the energy is removed from the water
by the appropriate power producing equipment. System pressures are
maintained such that only one phase, liquid water, is present in the
reservoir and the drilled holes.

In the discussion to follow, the beneficial effects of thermal stress
cracking, anticipated because of the cooling and thermal contraction of
the rock, will be ignored. Instead, itwill be assumed that the fluid
flow is entirely confined to the gap between the impermeable rock sur-

faces and that heat is transferred to this fluid only by means of thermal
conduction through the solid rock.

RESERVOIR FEATURES AND EXPECTED PERFORMANCE

Based upon the theory of elasticity and brittle material fracture
mechanics2, we idealize the fracture as being circular with a fracture
gap width, w, which varies elliptically with radius. The maximum fracture
width is extremely small compared to the maximum fracture radius, R, a
typical value being 3 mm (1/8 in.) for a radius of 500 m (1640 ft).
Furthermore, since the direction of the least principal earth stress is
expected to be horizontal, we anticipate that the fracture plane will be
vertically oriented, indicating that fluid buoyancy effects may be im-
portant.

The maximum thermal power that can be extracted from the rock
surface occurs when the entire rock surface is suddenly and uniformly
lowered in temperature from its initial value, T_, to the cold water

injection temperature, T.l. This power, E, is given as a function of
time, t, by3
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where A, ps, and cg are the thermal conductivity, density, and specific
heat capacity of the rock. Because the thermal conductivity of the rock
is small, it can be shown that rather large fracture radii are required
to produce significant amounts of power for reasonable periods of time.
For example, if the temperature difference, T¢-Ti, is 200°K, a 500 m
fracture is required if one wishes to be able to produce at least 25 MW(t)
continuously for 10 years. To continue this same example, it can be shown®
that even after 10 years the initial rock temperature is diminished less
than 5% for distances of 40 m or more away from the fracture surface.
Thus, it is seen that heat is being removed from the rock only in a
relatively narrow zone immediately adjacent to the fracture, and we
conclude that even for more complicated examples, where the surface
temperature is not uniform, the conduction in the rock will be essentially
one dimensional; perpendicular to the plane of the crack.

A simple heat balance shows that the minimum water flow rate, Q,
required to produce the power is given by

- E

where p and ¢ are the density and specific heat capacity of water.
Using typical values it can be shown that our 25 MW(t) example will
require a minimum flow rate of 0.03 m3/sec (1 ft3/sec or 500 gpm).
Since this flow is confined within the very narrow fracture, the
water velocities will be of the order of 0.02 m/sec (0.07 ft/sec);
quite high compared to, say, the usual flow velocities through porous
media, and we conclude that heat transport due to fluid conduction is
negligible compared to fluid convection.

RESERVOIR SIMULATION MODELS

Fluid flow and fluid heat transport are idealized as being two
dimensional, in the plane of the fracture. The horizontal coordinate
is taken as x, the vertical coordinate as y. Solid rock conduction
takes place along the z-coordinate, perpendicular to the x-y plane.
Using Darcy's law with a permeability for an open fracture of w?

the x and y direction velocities become 12
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where the extra term in the equation for v represents the effects of
buoyancy. Making the Boussinesq approximation the equations of conservation
of mass and energy in the flowing water are
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Finally the rock conduction equation is
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subject to the initial and boundary conditions

0(x,y,2,t=0) = T_ (6)
0(x,y,z=0,t) = T(x,y,t) (7)
8(x,y,z>=,t) = T . (8)

The additional nomenclature is as follows:

w = fracture width
= pressure
U = viscosity
p = reference water density (evaluated at TO)
TO = reference temperature
T = temperature of the fluid
g = acceleration of gravity
B = volumetric expansion coefficient of water
® = temperature of the rock
e = the flux of energy delivered to the water by one rock

surface; evaluated as e(t) = A—gg-(x,y,z=0,t).
Equations (3) through (8) represent a considerable simplification

of the equations first proposed in the pioneering work of Harlow and Pracht"
and continued by McFarland.® These writers had at their disposal very
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powerful numerical methodologies®:7 which made it convenient t© include
advection as well as transient terms in Eq. (3), and conduction and
transient terms in Eqg. (4). By formal nondimensional ization and rational-
ization of the complete equations it can be shown® that these additional
terms are negligible for calculations of practical interest.

At present the solution procedure consists of first solving the
rock conduction Eq. (5), with Egs. (6) through (8), via Duhamel's super-
position integral,® and then differentiating the result to evaluate e.

Thus
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This solution for e is substituted into Eq. (4). One then has a
set of two coupled, nonlinear, time varying, integro-differential equations

for T and P. This set of equatjons is_then solved numerically via finite
difference analogues to the real equations.8
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