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The objective of this theoretical work is to simulate numerically
the following two basic problems in the area of geothermal energy extraction:
(1) initiation and extension of fracture In hot dry rocks by hydraulic
Tracture; and (2) circulation of water through the fractured zone and back
up to the ground surface. In addition, it has become evident that the
following third problem area also requires careful consideration: (3) the
study of thermally induced secondary cracks and their effects on power
production. The basic method of approach involves a finite-element
numerical simulation coupled with some analytical computations.

The basic field equations for the water flow and heat transfer in
a crack have been formulated for one-and two-dimensional cases. These
equations include (@) crack width varying arbitrarily in time and space;
(b) heat convection due to flow of water, heat conduction in water, and
heat supply by conduction from the rock; (c) an accurate mathematical model
for the thermodynamic properties of water (according to 1968 ASME Steam
Tables), i .e., the pressure-density-temperature relationship (with the
dependence of compressibility, thermal expansion coefficient and heat
capacity on pressure and temperature). The basic differential equations
have been obtained by applying the conditions of conservation of mass,
of linear momentum, and of energy to the cross-section of crack, using an
assumed velocity profile. In the case of unidirectional flow, for example,
these equations are:
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equation of state for water; p = f(p,T) ; (4)
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where p is the mass density; q is the mass flux across the width of the
crack; p is the pressure; T is the shear force at the interface between
fluid and rock; g, is the average body force on the fluid,; C,, k, and h
define the heat capacity, heat conductivity within the fluid, and heat
conductivity between fluid and rock, respectively; T and T_ are the fluid's
and the rock's temperature, respectively. The equation of state for water
in the range of pressure and temperature relevant to the geothermal problem
is given in the 1968 ASME steam tables. This equation is used in the
numerical calculations.

The parameters o and B, as well as the shear force T, in Egs. (2)
and (3) depend on the geometry of the velocity profile across the crack
width. For a parabolic profile, for example, one has ¢« = 1.2, 8 = 1.54 and
T :-6-'-1%. where u is the fluid viscosity. However, in the operation stage,
ow
the fluid velocity can be high and a turbulent flow with an almost uniform
profile of mean velocity may be a more appropriate assumption.

Finite Element Formulation for the Fluid

To obtain the corresponding finite-element equations, linear spatial
variation for pressure, temperature, and mass flow within each element is
assumed. Then a systematic application of Galerkin's method gives the
basic finite-element equations for the fluid flow. For the unidirectional
flow, for example, these equations are
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In these equations superimposed dot denotes the partial time derivative;
T and g denote pressure, temperature, and mass flow at the two nodes of eg’ch
element: and the coefficient matrices, as well as the corresponding forcing
functions, are either constant or nonlinear functions of p, w, and g, as well
as linear function of p, w, and g-

Equations (5) = (7) together with-the equation of state for water,
Eq. (4) are sufficient for the calculation of the fluid flow, provided that
the crack width is known at all nodal points. For an assumed crack width
(obtained in a previous time step) these equations are solved for p, q, p,
and T is time steps with iteration at each step, until the maximum change
of each quantity with respect to the previous value is less than a prescribed
limit; see, however, the following discussion.
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Combination of Finite Element Model with Analytical Solutions

Test runs of the finite element program for the solid in combination
with the finite element program for the flow in the crack have indicated
that the requirements for computer time are extremely high and convergence
very slow. The extension jumps of the crack in the finite element grid
must be very small, or else enormous spurious changes of pressure in the
fluid are obtained. Dense spacing of the nodes in turn requires very
short time steps, in order to avoid numerical instabilities. However, the
response of the elastic rock due to pressure in the crack as well as
cooling from the crack can be quite accurately described by analytical
formulas, and this allows reduction of computer time as well as higher
accuracy of numerical calculations. It is therefore concluded that the
following numerical approach is most effective:

(a) In case of hydraulic fracturing, the pressure in wate in excess of
hydrostatic remains essentially uniformly distributed at a 1 times and
water temperature is equal to that of the adjacent rock. n this case,
the finite-element program for the solid alone may be used treating the
fluid pressure as the input;

(b) In case of operation stage, the finite-element program for the fluid
flow and the heat transfer in the fluid may be used in conjunction with
analytical solutions for the elastic solid (rock) and the heat conduction
in the rock (using the concept of cooling penetration depth and the heat
transfer coefficient)..

Finite Element Formulation for the Solid (Rock)

For analyzing the fracture of the solid (rock), a two-dimensional
finite element program with a water-filled crack has been written. The
criterion for the propagation of the crack can be formuldted in this program
either by means of a stress-intensity factor, or by means of a strength
(limiting stress value in the finite element). The former type of strength
criterion is usually more appropriate, provided the rock is relatively
homogeneous and flawless and the crack is sufficiently large. Among the
various methods of evaluating the stress intensity factor in the finite
element analysis, the method of calibrated crack-tip element of ordinary
type has been chosen as the most efficient one. This program must be
subjected to more testing, and the method by which the boundary conditions
representing the surrounding infinite solid can be best simulated, must be
identified.

Examples and Estimates

In order to develop an understanding for the various physical
processes which are involved in this general area, some simple analytical
results have been developed. In the following, these results are briefly
discussed.
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Crack Extension: The extension of a crack in a rock mass as a
function of the total mass flow can be estimated in the following manner.
If the maximum crack opening is A and the crack radius is R, then for an

elliptical opening the total fluid volume in the crack is given by %HARZ.

On the other hand, according to the Griffith criterion, one has p - s = AR°%

and A = 8(p-$)R where A = “EY—Z , S Is the tectonic stress normal to the
2(1-v%)
_.2

face of the crack, B = L*(IW—EV)- , vy Is the surface energy, E is the elastic

modulus of the rock, and v is the corresponding Poisson"s ratio. If M = pv
is the total mass of the fluid in the crack, one then obtains

2/5
R=R_ (:‘—i;) . (8)

-1/5
p-s=(p, =5 (5;) , (9)

where subscript o refers to the initial values. For example, if the fluid

is pumped in at a constant rate g, one has M = M, + gt, and Egs. (8)and

(9) give the crack radius and the corresponding pressure as functions of

time; the latter is illustrated in Fig. 1. Except for the transient effects,
it is seen that (p-S) remains relatively constant as the crack grows.

Heat Extraction: For the heat extraction in a steady-state operation
the following equation estimates the temperature of the fluid along a
"'stream tube™" (see Figs. 2 and 3) :

[’ in in in o\ —ox (10)
LTr - Tw + <Tr i Tr)/aL;] €
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where

= water temperature

w
r = rock temperature
= length of the stream tube
a = 2h/Cwq
g = mass flow per unit length measured normal to the stream tube
CW = water heat capacity,

and where '""in'' denotes the "inlet'™ and '"o'" denotes the outlet values. Here h
is given by

ka

oy i ey ()

where
P = rock's mass-density
kr = rock's heat conductivity
Cr = rock's heat capacity
t = time

Fig. 2 shows the result obtained from (10) for a case in which Zo = 1200m,
T."= 300°C, O = 240°C, TVL” = 65°C, and q = 0.2 kg/m sec. These results

check very accurately with the numerical results. This is shown in Fig. 3

where the results of the finite-element solution of the complete set of
equations are shown by solid lines.

It should be noted that the thermal boundary layer in the rock, in
which a thermal gradient exists, is very small when compared with the length

of the crack. This requ res that the numerica calculations be coupled
with some analytical est mates.

The example of F gs. 2 and 3 does not nclude the secondary cracking
due to the very large thermal stresses which may develop as the rock is
cooled. Both analytical and numerical calculations have shown that these
secondary cracks are very likely to develop and change the nature of the
heat flow as well as that of the fluid flow. These and other related
problems are now being studied.
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Figure 1
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