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The objective of this theoretical work is to simulate numerically 
the following two basic problems in the area of geothermal energy extraction: 
( 1 )  initiation and extension of fracture in hot dry rocks by hydraulic 
fracture; and (2 )  circulation of water through the fractured zone and back 
up to the ground surface. In addition, it has become evident that the 
following third problem area also requires careful consideration: ( 3 )  the 
study of thermally induced secondary cracks and their effects on power 
production. The basic method of approach involves a finite-element 
numerical simulation coupled with some analytical computations. 

Basic Eauations 

The basic field equations for the water flow and heat transfer in 
a crack have been formulated for one-and two-dimensional cases. These 
equations include (a) crack width varying arbitrarily in time and space; 
(b) heat convection due to flow of water, heat conduction in water, and 
heat supply by conduction from the rock; (c) an accurate mathematical model 
for the thermodynamic properties of water (according to 1968 ASME Steam 
Tables), i .e., the pressure-densi ty-temperature relationship (with the 
dependence of compressibility, thermal expansion coefficient and heat 
capacity on pressure and temperature). The basic differential equations 
have been obtained by applying the conditions of conservation of mass, 
of linear momentum, and of energy to the cross-section of crack, using an 
assumed velocity profile. In the case of unidirectional flow, for example, 
these equations are: 

momentum; d s . a ' a ~  - 
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equation of state for water; p = f(p,T) ; ( 4 )  
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where p i s  the mass dens i ty ;  q i s  the mass f l u x  across the wid th  o f  the 
crack; p i s  the pressure; T i s  the shear force a t  the in ter face between 
f l u i d  and rock; gx i s  the average body fo rce  on the f lu id , ;  Cw, k ,  and h 
de f ine  the heat capac i ty ,  heat conduc t i v i t y  w i t h i n  the f l u i d ,  and heat 
conduc t i v i t y  between f l u i d  and rock, respec t i ve ly ;  T and Tr are  the f l u i d ' s  
and the rock 's  temperature, respec t i ve ly .  The equation of s t a t e  f o r  water 
i n  the range o f  pressure and temperature re levan t  t o  the geothermal problem 
i s  given i n  the 1968 ASME steam tab les.  Th is  equgtion i s  used i n  the 
numerical ca l cu l a t i ons .  

The parameters cx and 6, as we l l  as the shear force T, i n  Eqs. ( 2 )  
and ( 3 )  depend on the  geometry o f  the v e l o c i t y  p r o f i l e  across the crack 
width. For a parabo l i c  p r o f i l e ,  for  example, one has CL = 1.2, B = 1.54 and 

T = 61-14 where u i s  the f l u i d  v i s cos i t y .  However, i n  the operat ion stage, 

the f l u i d  v e l o c i t y  can be h igh  and a t u rbu len t  f l ow  w i t h  an almost uni form 
p r o f i l e  o f  mean v e l o c i t y  may be a more appropr ia te  assumption. 

2 '  
P W  

F i n i t e  Element Formulation f o r  the F l u i d  - 
To ob ta i n  the corresponding f i n i te- e lement  equations, l i n e a r  spa t i a l  

v a r i a t i o n  fo r  pressure, temperature, and mass f l ow  w i t h i n  each element is 
assumed. 
basic f i n i t e - e l emen t  equations f o r  the f l u i d  f low. For the iun id i rec t iona l  
f low,  f o r  example, these equations a re  

Then a systematic app l i ca t i on  o f  Ga le rk in ' s  method gives the 

I n  these equations superimposed do t  denotes 

0 s  (5) 

0 2  (6) 

N 

N 

= o .  (7) 
H 

the p a r t i a l  t ime d e r i v a t i v e ;  p 
T, and q denote pressure, temperature, and mass f l ow  a t  the two nodes of each 
element: and the coe f f i c i en t  matr ices,  as we1 1 as the corresponding fo rc ing  
funct ions,  a re  e i t h e r  Songtant o r  non l inear  funct ions o f  p ,  w, and 8, as we l l  
as l i n e a r  f unc t i on  o f  p ,  w, and $. 

Eq. (4 )  a re  s u f f i c i e n t  f o r  the c a l c u l a t i o n  o f  the f l u i d  f low, provided t ha t  
the crack w id th  i s  known a t  a l l  nodal po in ts .  For an assumed crack w id th  
(obtained i n  a previous time step) these equations a re  solved f o r  p ,  q, p, 
and T i s  t ime steps w i t h  i t e r a t i o n  a t  each step, u n t i l  the maximum change 
o f  each quan t i t y  w i t h  respect t o  t he  previous value i s  less than a prescr ibed 
l i m i t ;  see, however, the fo l l ow ing  discussion.  

% 

Equations (5) - ( 7 )  together w i t h , t h e  equat ion of s t a t e  f o r  water, 
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Combination o f  F i n i t e  Element Model w i t h  Ana l y t i ca l  So lu t ions 

Test runs o f  the f i n i t e  element program f o r  the  s o l i d  i n  combination 
w i t h  the f i n i t e  element program f o r  the f l ow  i n  the crack have ind icated 
t h a t  the requirements f o r  computer t ime a re  extremely h igh  and convergence 
very slow. The extension jumps o f  the crack i n  the f i n i t e  element g r i d  
must be very small ,  o r  e l s e  enormous spurious changes o f  pressure i n  the 
f l u i d  a re  obtained. Dense spacing o f  the nodes i n  t u r n  requ i res  very 
shor t  t ime steps, i n  order t o  avo id  numerical i n s t a b i l i t i e s .  However, the 
response o f  the e l a s t i c  rock due t o  pressure i n  the crack as we l l  as 
coo l ing  from the  crack can be q u i t e  accurate ly  descr ibed by a n a l y t i c a l  
formulas, and t h i s  a l lows reduct ion o f  computer t ime as w e l l  as h igher  
accuracy o f  numerical ca l cu l a t i ons .  It i s  the re fo re  concluded t ha t  the 
fo l l ow ing  numerical approach i s  most e f f e c t i v e :  

(a) I n  case o f  hyd rau l i c  f r a c t u r i n g ,  the pressure i n  wate 
hyd ros ta t i c  remains e s s e n t i a l l y  un i fo rm ly  d i s t r i b u t e d  a t  a 
water temperature i s  equal t o  t h a t  o f  the adjacent rock. 
the f i n i te- e lement  program f o r  the s o l i d  alone may be used 
f l u i d  pressure as the input ;  

i n  excess o f  
1 t imes and 
n t h i s  case, 

t r e a t i n g  the 

(b) I n  case o f  operat ion stage, the  f i n i te- e lement  program f o r  the f l u i d  
f l o w  and the heat t r a n s f e r  i n  the f l u i d  may be used i n  con junct ion w i t h  
a n a l y t i c a l  so l u t i ons  f o r  the e l a s t i c  s o l i d  ( rock) and the heat conduction 
i n  the rock (using the concept of coo l ing  pene t ra t ion  depth and t he  heat 
t r a n s f e r  coe f f i c i en t ) . .  

F i n i t e  Element Formulation f o r  the So l i d  (Rock) 

For analyzing the f r a c t u r e  o f  the s o l i d  ( rock ) ,  a two-dimensional 
f i n i t e  element program w i t h  a w a t e r - f i l l e d  crack has been w r i t t e n .  The 
c r i t e r i o n  f o r  the  propagation of  the crack can be formuldted i n  t h i s  program 
e i t h e r  by means o f  a s t r ess- i n tens i t y  f ac to r ,  o r  by means of a s t reng th  
( l i m i t i n g  s t ress  value i n  the f i n i t e  element). 
c r i t e r i o n  i s  usua l l y  more appropr iate,  provided the rock i s  r e l a t i v e l y  
homogeneous and f lawless and the crack i s  s u f f i c i e n t l y  large.  Among the 
var ious methods o f  eva lua t ing  the  s t ress  i n t e n s i t y  f a c t o r  i n  the f i n i t e  
element ana lys is ,  the method o f  c a l i b r a t e d  c r a c k - t i p  element of ord inary  
type has been chosen as the most e f f i c i e n t  one. Th is  program must be 
subjected t o  more t es t i ng ,  and the method by which the boundary cond i t i ons  
represent ing the surrounding i n f i n i t e  s o l i d  can be best  simulated, must be 
i d e n t i f i e d .  

The former type o f  s t reng th  

Examples and Estimates 

I n  order t o  develop an understanding f o r  the var ious phys ica l  
processes which a re  involved i n  t h i s  general area, some simple a n a l y t i c a l  
r e s u l t s  have been developed. I n  the fo l l ow ing ,  these r e s u l t s  a re  b r i e f l y  
discussed. 



Crack Extension: The extension of a crack in a rock mass as a 
function of the total mass flow can be estimated in the following manner. 
I f  the maximum crack opening i s  A and the crack radius is R ,  then for an 

4 2  elliptical opening the total fluid volume in the crack i s  given by - vAR . 3 
On the other hand, according to the Griffith criterion, one has p - S = AR-' 

and A = B(p-S)R where A = , S is the tectonic stress normal t o  the EY 
2 (1 -v2) 

2 
, y is the surface energy, E is the elastic 4(1 -v  ) face of the crack, B = 

modulus of the rock, and v is the corresponding Poisson's ratio. If M = pV 
i s  the total mass of the fluid in the crack, one then obtains 

2/5 
R = R  (E) I 

0 
0 

-1/5 
p - s =(Po - s> (E) 9 

0 

(9)  

where subscript o refers to the initial values. For example, i f  the fluid 
is pumped in at a constant rate q, one has M = M, + gt, and Eqs. (8) a n d  
( 9 )  give the crack radius and the corresponding pressure as functions o f  
time; the latter is illustrated in Fig. 1. Except for the transient effects, 
it i s  seen that (p-S) remains relatively constant as the crack grows. 

Heat Extraction: For the heat extraction in a steady-state operation 
the following equation estimates the temperature of the fluid along a 
"stream tube'' (see Figs. 2 and 3 )  : 
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where 

T = water temperature 

T = rock temperature 
W 

r 
= length o f  the stream tube 

a = 2K/cwq 

q = mass f l ow  per u n i t  length  measured normal t o  the  stream tube 

C = water heat capac i ty ,  
W 

and where " in "  denotes the " i n l e t "  and "0" denotes the o u t l e t  values. Here 
i s  g iven by 

where 

= rock ' s  mass-density 'r 
k = rock ' s  heat conduc t i v i t y  r 
C r  = r ock ' s  heat capac i t y  

t = t ime 

F ig .  2 shows the  r e s u l t  obtained from (10) f o r  a case i n  which Ro = 1200rn, 

TLn= 3OO0C,  T; = 24OoC, TAn = 6soC, and q = 0.2 kg/m sec. These resu l  t s  

check very accura te ly  w i t h  the numerical r e s u l t s .  Th is  i s  shown i n  F ig .  3 
where the r e s u l t s  o f  the f i n i te- e lement  s o l u t i o n  of the complete se t  of 
equations a re  shown by s o l i d  l i n e s .  

which a thermal g rad ien t  
o f  the crack. This requ 
w i t h  some a n a l y t i c a l  e s t  

The example o f  F 

e x i s t s ,  i s  very small 
res t ha t  the numerica 
mates. 

It should be noted t ha t  the thermal boundary l aye r  i n  the rock, i n  
when compared w i t h  the length 

ca l cu l a t i ons  be coupled 

gs. 2 and 3 does no t  nclude the secondary crack ing 
due t o  the very l a rge  thermal stresses which may develop as the rock i s  
cooled. Both a n a l y t i c a l  and numerical ca l cu l a t i ons  have shown t h a t  these 
secondary cracks a re  very l i k e l y  t o  develop and change the nature of the 
heat f l ow  as w e l l  as t h a t  o f  the f l u i d  f low. These and o ther  r e l a ted  
problems a re  now being studied.  
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