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MODELLING STUDIES OF THE EVOLUTION OF
VAPOUR-DOMINATED GEOTHERMAL SYSTEMS 

I. PESTOV

MathematicsDept Victoria University of Wellington, Wellington,

SUMMARY - Numerical experiments, based on linear stability results, are invoked to model the evolution of two-
phase vapour-dominated zones within geothermal systems. A reservoir model with all boundaries impermeable to fluid
flow and a uniform heat flux at the bottom boundary is used. The results obtained show that different steady-states are
accessible along different quasi-static paths from the same initial vapour-dominated steady-state. Thus, the realization
of a steady-state with a two-phase vapour-dominated zone overlying a single-phase hot water region can indicate that
the geothermal system undergoes a process of slow cooling. A steady-state with a two-phase vapour-dominated zone
overlying a single-phase vapour region can be formed either as a result of slow heating or as a result of a reduction
in permeability. A steady-state with an upper vapour-dominated part and a lower liquid-dominated part can occur if

permeability of the system has been gradually increased.

1 INTRODUCTION

Field measurements taken from the geothermal systems
at Wairakei in New Zealand, The Geysers in Califor-
nia and Larderello in Italy demonstrate the presence
of a two-layer structure. The upper layer is character-
ized by almost constant temperature and pressure, which
are close to corresponding saturation values. Immedi-
ately at the top of the lower layer, temperature gradi-
ents change to values much higher than those of the up-
per layer. To summarize, the following three conceptual
models (steady-states) based on these observations have

been proposed in geothermal literature. In the model
of White et (1971) a two-phase vapour-dominated
zone occupies a region over a single-phase water zone
(s teady-state A ) . This model is in good agreement with
the Wairakei observations, as given in the work of Al-
lis and Hunt (1986). Truesdell (1991) suggests that a

vapour-dominated zone overlies a single-phase
vapour region (steady-state B). This is consistent with
recent deep drilling results from The Geysers (Walters
al., 1988). In the model of Pruess al. proposed
for Larderello, a two-phase region has two parts: an up-
per vapour-dominated part and a lower liquid-dominated
part (s teady-state C).

This paper suggests that steady-states A, and are
accessible from the same initial steady-state, but along
different quasi-static paths. To validate this hypothesis,
four series of numerical experiments representing four dif-
ferent quasi-static processes were run from the same ini-
tial vapour-dominated state:

Process - slow cooling of the reservoir by decreasing
the amount of heat transported to its base.
Process 2 - slow heating of the reservoir by increasing

the amount of heat transported to its base.
Process 3 - gradual decrease in permeability of the reser-
voir.
Process 4 - gradual increase in permeability of the reser-
voir.

A quasi-static process is an idealization that can be appli-
cable to geothermal systems. A natural geothermal pro-
cess can be approximated by a quasi-static process with
almost any degree of accuracy. Processes 1and 2,for ex-
ample, may approximate changes in conductive heating
at the base of a geothermal system as a result of changes
in igneous activity. Processes 3 and 4 may reflect perme-
ability decrease or increase in response to deposition or
dissolution of chemicals respectively.

2 NUMERICAL RESULTS

2.1 Numerical model

The model used here is a geothermal reservoir with all
boundaries impermeable to fluid flow, so that the amount
of water trapped in the pore space is constant at all
times. A uniform heat flux is imposed at the bottom
boundary. Heat loss is allowed through the upper bound-
ary (a cap-rock) via conduction. For relative permeabil-
ities Grant’s curves (Grant, 1977) are chosen. Capillary
pressure is neglected in the present analysis. The fol-
lowing parameters were held constant in all simulations
performed: rock density = 2650 rock matrix
heat capacity = 1000 deg rock thermal conduc-
tivity 3.2w / m deg C ;porosity = 0.03;residual liquid
saturation = 0.25;residual vapour saturation 0.05;

reservoir depth 1000m.



As the initial state, a balanced vapour-dominated coun-
terflow was chosen. The initial reservoir permeability
was A constant heat flux of 0.5 was

imposed at the base of the reservoir. A very large heat
capacity was prescribed at the top of the reservoir to keep
its temperature around The numerical simulator 
TOUGH2 (Pruess, 1986) was used. A one-dimensional
numerical grid was selected. The simulations were run
from the initial state to the neighbouring steady-state
and so on.
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Process - cooling

In this series of numerical experiments we perturb the
reservoir slightly by decreasing heat flux at the bottom
boundary. A smaller heat flux at the bottom boundary
produces a drier vapour-dominated zone with smaller liq-
uid phase saturation. The excess of water gathers at the
bottom of the reservoir. The reason for this favorable

location is the direction of the propagation of small dis-
turbances of the saturation field. Linear stability results
show that small disturbances of the saturation field, pro-
duced by the new boundary condition, travel from the
top to the base of the reservoir and cause the formation
of steady-state A with a single-phase liquid zone below
a vapour-dominated region. Fig. 1 shows liquid satura-
tion distributions inside the reservoir for different values 
of heat flux Q.

SI
I

1 1

0.5

0

0.5

Figure 1. Process 1- liquid saturation distributions cal-
culated for intermediate steady-st

Calculated temperature and pressure distributions for
different values of heat flux Q are shown in Fig. 2 and Fig.
3 respectively. The location of the interface between
phase and single-phase regions is indicated by a disconti-
nuity in temperature and pressure gradients. In the coun-
terflowing zone the heat-pipe mechanism of heat transfer
prevails. Heat transfer in the liquid zone occurs by con-
duction only. In all simulations performed the
number calculated for the liquid zone is well below the
critical values for the onset of free convection and boil-
ing, as given by Ribando and Torrance (1976) and Bau
and Torrance (1981). Thus, the state of the liquid zone
remains purely conductive and stable.
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Figure 2. Process 1- steady-state temperature distribu-
tions for different values of heat flux Q.

Figure 3. Process 1- steady-state pressure distributions
for different values of heat flux Q.
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2.3 Process 2 - heating
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Figure 4. Process 2 - vapour saturation distributions cal-
culated for intermediate steady-states.

In every step of this series of numerical simulations we in-
crease the heat flux Q at the bottom boundary by a small
amount. The perturbed system undergoes a quasi-static
process, which results in the formation of steady-state
B with a single-phasevapour zone below a two-phase re- 
gion. Higher heat fluxes at the bottom boundary produce
higher liquid phase saturations in the two-phase region of
the reservoir. Balanced vapour-liquid counterflow cannot
exist everywhere in the system, simply because there is
not enough mobile water in it. Therefore, a single-phase
vapour zone develops near the bottom of the reservoir as
shown in Fig. 4. This is an exceptional configuration of a

heavier fluid (a water-steam mixture) overlying a lighter
fluid (pure vapour). Such configurations, however, are

likely to exist, as shown in theoretical investigations by

McGuinness and Young (1994).

Fig. 5 and Fig. 6 show temperature and pressure dis-
tributions calculated for intermediate steady-states cor-
responding to different values of heat flux Q. Numerical
calculations indicate the presence of a two-layer structure
with nearly constant temperature in the upper part and
an abrupt temperature increase in the lower part. Pres-
sure gradient in the lower part remains small. This is

characteristic for pure vapour zones, where heat is trans-
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Figure 5 . Process 2 - steady-state temperature distribu-
tions for different values of heat

E

Figure 6. Process 2 - steady-state pressure distributions
for different values of heat flux Q.

2.4 Process 3 - permeability decrease 

Process 3 is an alternative process leading to steady-state
B. In every step of this process we decrease the perme-
ability of the reservoir by a small amount and wait until 
a new steady-state develops. For a permeability range 
of to 0.5 the flow patterns are similar to those of
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process 2. Further decreases in permeability to k as low
as md lead to somewhat controversial steady-states.
The controversy of these steady-states is contained in rel-
atively high liquid saturations of two-phase regions. For
example, when k is equal to 0.04 md, calculated liquid
saturation exceeds 70%.
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Figure Process 3 - steady-state temperature distribu-
tions for small k .
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Figure 8. Process 3 - steady-state pressure distributions
for small k .

formation of a two-layer structure with an abrupt inter-
face is observed. The lower regions with vapour-static

pressure gradients and sub-critical temperatures are ob-
viously pure vapour non-flowing zones. The steady-state
conditions of the upper regions are very interesting. Pres-
sure and temperature gradients calculated for these re-
gions could be interpreted as liquid-dominated, especially
in conjunction with high liquid saturations obtained (Fig.
7 and Fig. 8). However the upper regions cannot be
classified as liquid-dominated. Our results show that in
every case considered relative permeability of vapour is
still much larger than relative permeability of liquid. For
example, when k 0.04 md,numerical estimates give

= 0.75 and = 0.26, = 0.74. The latter indi-
cates that vapour is the most mobile phase.

2.5 Process 4 - permeability increase

In every step of this series of numerical experiments we
increase permeability k of the reservoir by small amount
and wait until a new steady-state develops. An increase
in permeability k (as well as a decrease in heat flux
Q) leads to smaller liquid phase saturation in a vapour-
dominated zone. Thus, there is an excess of water in the
reservoir, which tends to gather near the bottom bound-
ary in accordance with the direction of propagation of
small disturbances. Since the scenario is similar to that

of process 1, the formation of steady-state A could be
expected. However it does not happen. Instead, steady-
state with an underlying liquid-dominated two-phase
zone develops as can be seen in Fig.

E

-990
I I

0.3 0.4 0.5 0.6 0.7 0.8 1
SITemperature and pressure distributions calculated for

these steady-states are shown in Fig. 7 and Fig. 8 respec-
tively. The initial vapour-dominated state, correspond-

k = 10 md, shown a solid line. Again the
Figure liquid tal- 



203

In Fig. 10 the temperature versus pressure plot, obtained
from numerical simulations for k = 50 (solid line),
is compared with experimental saturation curve data
(points). Experimental points falling exactly along the
numerical curve indicate that the reservoir is fully
phase.

overlying a single-phase vapour region.
Steady-state - a two-phase region with an upper
vapour-dominated part and a lower liquid-dominated
part.

These results are consistent with field observations from
Wairakei in New Zealand, The Geysers in California and
Larderello in Italy, where the presence of structures sim-
ilar to A , B and respectively was recorded.

I I I I

The numerical results presented here have shown that the
steady-states A, B and are accessible from the same
initial vapour-dominated steady-state, but along differ-
ent quasi-static paths. Thus, the realization of A can
indicate that a geothermal system undergoes a process
of slow cooling (Q is decreasing). The state B can be
formed either as a result of slow heating (Q is increasing)
or as a result of deposition processes (k is decreasing).
The state can occur if the permeability of the system
k has been gradually increased.
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