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Scale of experiment and rock physics trends

Because rock is heterogeneous at all scales, it is often invalid 
to assign a single porosity, permeability, resistivity, or 

velocity to a volume in the subsurface. Well data demonstrate 
that these properties can vary appreciably between two points 
just a foot apart. ! e same happens at the pore scale. Consider, 
for example, a CT scan of a 1.3-mm Berea sandstone cube 
(Figure 1). ! e porosity of this sample, as calculated by 
counting the blue (pore space) pixels, is 0.164.

Let us next evenly subdivide this cube into 8 (23) sub-
cubes. ! e porosity of these subsamples can be as high as 
0.189 and as low as 0.140 (Figure 2, left).

A more dramatic example of the spatial nonstationarity of 
porosity is shown by a 3.138 mm oil-sand sample (Figure 3). 
! e porosity of this sample is 0.258. ! e maximum porosity 
among the eight subsamples (obtained in the same way as for 
the Berea sandstone) is 0.361, while the minimum porosity is 
0.206 (Figure 2, right). ! is strong spread of the subsampled 
porosity is due to the high heterogeneity of the original cube:  
in addition to small and medium-size pores, it contains a rela-
tively wide fracture.

To estimate the resulting spatial nonstationarity of the 
elastic-wave velocity, we assume that in Berea sandstone, 
which is clean and consolidated, VP is related to porosity by 
the Raymer et al. (1980) equation, VP = (1 – φ)2VPS + φVPF , 
where VPS is the velocity in the solid phase of the rock, VPF is 
the velocity in the fl uid, and φ is porosity. We also assume 
that the matrix is quartz (VPS = 6.04 km/s) and the sample is 
dry (VPF = 0).

For the oil sand, we assume that its velocity is related to 
porosity by the soft-sand model (Dvorkin and Nur, 1996), 
which is appropriate for this unconsolidated sample. As in the 
Berea case, we use the pure-quartz mineralogy and calculate  
VP  for the dry sample, neglecting the eff ect of the oil.

! e resulting velocity-porosity plots show discernable 
spatial spread of VP, from 4.00 to 4.50 km/s in Berea and 
from 1.59 to 2.17 km/s in the oil sand (Figure 4). Because 
these sets of velocities are drawn from within small volumes 
of rock (essentially, from a point in space), we speculate that it 
may be invalid to attribute a single porosity and/or a velocity 
value to a volume in a rock sample or in a geobody.

Data points and trends: Elasticity
To deal with the spatial nonstationarity of rock properties, 
we need to fi nd a quantity alternative to a velocity-porosity 
data point, a quantity that is stationary in space. We hypoth-
esize that a trend between two or more rock properties can 
be this quantity.

To explore this hypothesis, consider fi rst a cubic volume 
of rock that includes 125 equal-cube elements, each with 
fi xed porosity (φ) and clay content (C). Both C and φ ran-
domly vary among the elements in the respective intervals 
of zero to 0.1 and 0.1 to 0.3 (Figure 5). Let us assume that 
the velocity in each of the 125 elements is related to φ and C 
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by the Raymer equations for both VP (same as quoted in the 
previous section) and VS, as is appropriate for mature fast rock 
(Dvorkin, 2008):  

                                                                                          (1)
                                         

                                             

where VPS  and VSS  are the P- and S-wave velocities in the 
mineral matrix, respectively. VPF is the velocity in the pore 
fl uid, and ρS and ρF are the densities of the mineral matrix 
and pore fl uid, respectively. ! e pore fl uid in this example is 
water with bulk modulus 2.6 GPa, density 1 g/cc, and veloc-
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Figure 1. Top: ! e original 3D Berea cube. ! e resolution is 8.6 µm 
per pixel. ! e size is 150 × 150 × 150 pixels (1.3 × 1.3 × 1.3 
mm). Middle and bottom: eight subcubes. ! e size of each subcube is 
75 × 75 × 75 pixels (0.65 × 0. 65 × 0. 65 mm). ! e fi rst subcube 
has the highest porosity (0.189) while the third one has the lowest 
porosity (0.140).

Figure 2. Porosity (red) in the eight subsamples of the original cube. 
! e horizontal line is the porosity of the original cube. Left: Berea 
sandstone. Right: oil sand.
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ity 1.613 km/s.
! e velocity thus obtained is plotted versus porosity in 

Figure 6. As expected, it forms a tight velocity-porosity trend 
with a small vertical spread, due to variable clay content, at a 
fi xed porosity.

To bracket the eff ective elastic properties of the larger 
cube formed by these 125 elements, we assume that the larg-
er cube is elastically isotropic and then apply the upper and 
lower Hashin-Shtrikman (1963) elastic bounds (HSB), with 
each element treated as a constituent of the elastic composite 
with a constant volume fraction 1/125 = 0.008. ! e resulting 
upper and lower bounds for VP  and VS are plotted in Figure 6 
versus the average porosity φEff , which is the arithmetic aver-
age of the porosity of each element: φEff   = 〈φ〉 .

First and foremost, we observe that the HSB for both VP 
and VS are very close to each other and practically indistin-
guishable. In addition, they fall directly on the velocity-po-
rosity trend formed by the 125 elements. ! is means that the 
eff ective velocity, which must be located between these tight 

bounds, obeys the same velocity-porosity transform as the 
125 elements of the volume under examination. An impor-
tant conclusion is that although the porosity and velocity vary 
within wide ranges inside the large cube, the velocity-porosity 
trend does not. ! is trend exhibits spatial stationarity. ! is 
conclusion remains valid if instead of Equation 1 we use a 
diff erent model, namely the soft-sand model of Dvorkin and 
Nur (1996), appropriate for soft, slow sediment (Figure 7).

Instead of using velocity-porosity equations to create a 
heterogeneous volume, we can adopt a laboratory data set ob-
tained on samples of a similar type within a range of porosity. 
! en we will stage a thought experiment and make a single 
heterogeneous sample from this data set, by assuming, e.g., 
that the subsamples enter this larger sample in equal volu-
metric proportions. An example of this approach is shown in 
Figure 8, where we use Han’s (1986) dry-rock velocity data 
in a wide range of porosity, with clay content ranging from 
zero to 0.15. ! ese data form tight velocity-porosity trends 
for both VP and VS. ! e HSB calculated in the same fashion 

Figure 3. Top: the original 3D oil sand cube. ! e resolution is 20.9 
µm per pixel. ! e size is 150 × 150 × 150 pixels (3.138 × 3.138 
× 3.138 mm). Middle and bottom: eight subcubes. ! e size of each 
subcube is 75 × 75 × 75 pixels (1.569 × 1.569 × 1.569 mm). ! e 
fi rst subcube has the lowest porosity (0.206), while the last one has the 
highest porosity (0.361).

Figure 4. Velocity versus porosity for the eight subcubes (red) and 
for the original cube (blue), theoretically obtained from porosity, as 
described in the text. Left: Berea sandstone. Right: oil sand.

Figure 5. 125 elements, each with fi xed clay content and porosity, 
forming a larger volume. Clay content (left) and porosity (right).

Figure 6. Velocity versus porosity for the 125 elements shown in 
Figure 5, assuming that the velocity in each element is described by 
Equation 1. ! e P-wave velocity is on the left, while the S-wave 
velocity is on the right. ! e cyan symbols are the upper and lower 
HSB.

Figure 7. Same as Figure 6, but for the soft-sand model.
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as in the earlier examples are very close to each other and fall 
precisely on these trends.

A similar real-data example, but for high-porosity soft 
sand obtained by Blangy (1992) on room-dry samples from 
the Troll Field is shown in Figure 9. ! ese results prove that 
although rock properties may spatially vary inside a volume 
and, therefore, be scale-dependent, the trends between them 
(under the conditions used in these examples) persist at vary-
ing scales.

Two important points have to be kept in mind regard-
ing the above treatment of elastic heterogeneity. First, the 
approach used is essentially a low-frequency approach. ! is 
means that the wavelength is larger than each of the elements 
of the composite and also is large enough to perceive the whole 
composite as a body with single values of velocity, porosity, 
and clay content. At higher frequencies (smaller wavelength) 
“fast tracking” of elastic waves through the sample may occur 
if some of the elements form a fast path.

Second, the parameters in the relation between velocity 
and porosity and clay content may themselves be uncertain, 
which would increase the spread. Treating this type of un-
certainty is beyond the objectives of this paper, although it is 
within the framework of this approach:  generally, the trends 
have to be expressed as probability distributions around the 
main trend, not just as the spread in porosity and clay con-
tent.

Data points and trends: Permeability
Permeability is arguably the only property that cannot be 
directly inferred from well data. Let us concentrate on this 
parameter, which is crucial to the petroleum engineer.

Consider fi rst the classical Fontainebleau sandstone per-
meability-porosity (k-φ) data (Bourbie and Zinszner, 1985), 

which are used in many permeability-related analyses. ! e 
porosity range in this data set is from 0.03 to 0.30, with 
the corresponding permeability variation between 0.2 and 
4,772.0 mD (Figure 10). ! e average porosity among these 
samples, calculated as (φ), is 0.093.

Figure 8. Same as Figure 6, but for Han’s (1986) data, with clay 
content between zero and 0.15.

Figure 9. Same as Figure 6, but for Blangy’s (1992) data.

Figure 10. Fontainebleau permeability-porosity data. Top left: the 
entire data set (165 samples) with the upper and lower permeability 
bounds and their arithmetic average shown as cyan symbols. Top right: 
the data divided into two subsets, below porosity 0.1 (119 samples, 
blue) and above porosity 0.1 (46 samples, red). Bottom left: the subset 
with porosity below 0.1, with the upper and lower bounds (fi lled black 
symbols) and their arithmetic average (the open black symbol). Bottom 
right: the subset with porosity above 0.1, with the upper and lower 
bounds (fi lled black symbols) and their arithmetic average (the open 
black symbol). ! e bounds and their averages are plotted versus the 
respective arithmetic average of porosity for each data set displayed.

Figure 11. Troll permeability-porosity data (fi lled black symbols). ! e 
cyan symbols are the lower and upper permeability bounds and their 
arithmetic average plotted versus the arithmetically averaged porosity.  
! e Fontainebleau data are shown for comparison as green symbols.
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For a hypothetical large volume comprised of these 
fi xed-porosity elements, we calculate the upper bound as 
the arithmetic average of the elemental permeability val-
ues (k) and the lower bound as their harmonic average 
(k-1)-1. ! is lower bound is 1.77 mD while the upper one 
is 371.48 mD. ! ese bounds fall far apart from each other 
when plotted versus the average porosity (φ), yet they are 
tighter than the whole range of permeability (0.2 to 4,772.0 
mD). ! eir arithmetic average, 186.63 mD, falls right on the 
permeability-porosity trend formed by the individual samples 
(Figure 10).

To constrain the range of applicability of our reasoning, 
let us subdivide this dataset into two parts, one for porosity 
below 0.1 and the other above this value. ! e lower and up-
per permeability bounds are still far apart from each other for 
the former case, although their arithmetic average falls right 
on the k-φ trend for this subset. ! e situation becomes much 
more interesting for the latter data set. Here the lower and 
upper k bounds are very tight and, once again, lie on the cor-
responding k-φ trend (Figure 10).

! is means that our conclusion for elastic data holds for 
permeability data if the latter (k) varies within a relatively 
constrained interval (about 1.5 orders of magnitude): a k-φ 
trend exhibited by elements persists for the composite of 
these elements.

Our next permeability example for high-porosity samples 
from the Troll Field (courtesy Norsk Hydro), similar to the 
samples used in Figure 9, is displayed in Figure 11. Here, the 
porosity varies between 0.25 and 0.39 with the permeability 
varying between 8 and 5,000 mD.

! is trend is very diff erent from the Fontainebleau trend:  
the permeability rapidly decays with decreasing porosity, 
mainly because the reduction of the latter is due to deterio-
rating grain sorting and decreasing average grain size. Still, 
the upper and lower  bounds (62 and 883 mD, respectively), 

although far apart from each other, straddle the elemental 
trend. ! eir arithmetic average (473 mD), if plotted versus 
the average porosity (0.325), falls upon this elemental trend.

From a whole to parts: Digital rock physics
We have proved so far that by putting together many diff er-
ent elements with two spatially nonstationary properties that 
form a trend, we create a composite whose same two proper-
ties obey this trend (very accurately for the elastic properties 
and with certain stipulations for permeability). How do we 
address the opposite situation, where we desire to break a 
composite into many parts?

Such experiments would be very diffi  cult to stage in the 
physical laboratory, simply because the parts are smaller than 
the whole, while most experimental setups require similarly-
sized samples for obtaining internally consistent data sets. 
! is is where digital rock physics takes over from tradition-
al experimental rock physics. Within the framework of the 
former, we can accurately image essentially any irregularly 
shaped rock fragment, select any desired subsamples of this 
fragment, and then stage an accurate computational simula-
tion of an experiment on each subsample as well as on the 
original volume. Such volumes and their subsamples are dis-
played in Figures 1 and 3.

Let us now simulate a single-phase fl uid fl ow in these 
volumes and their eight subcubes, as well as in a third digi-
tal sample of oil sand, whose porosity is larger than that of 
the oil sand displayed in Figure 3. ! e computational engine 
used here is the lattice-Boltzmann method (e.g., Keehm et 
al., 2001). ! e result of this digital experiment is displayed 
in Figure 12. ! e three original samples form a distinctive 
permeability-porosity trend, and their eight subsamples (24 
subsamples altogether for these three samples) obey approxi-
mately the same trend. ! is means that by breaking a whole 
into parts and conducting experiments on these parts, we ob-

Figure 12. Berea sandstone and two oil-sand samples. Permeability (left) and formation factor (right) versus porosity. Filled black symbols are 
for the eight subcubes for each of the three digital samples (24 subsamples altogether). Cyan symbols are for the original larger cubes for each of 
the three digital samples. ! e green symbols in the permeability-porosity plot are for the Fontainebleau data set, plotted here for comparison.
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tain a spatially stationary trend from the individual properties 
(porosity and permeability), which are not spatially station-
ary.

A digital experiment result for the electrical formation 
factors of the same three samples is also shown in Figure 12. 
Once again, we observe the stationarity of a trend between 
two spatially nonstationary properties.

Conclusion
! e heterogeneity of natural rock that persists at many scales 
calls into question the practical utility of data obtained on a 
given sample, which is, in eff ect, a point in the space occu-
pied by the rock. How can we use such data in the context of 
remote sensing, which samples diff erent and diff erently-sized 
volumes within a formation?

! e examples presented here indicate that under certain, 
possibly limited, circumstances, trends formed by pairs of 
data points obtained on an internally heterogeneous dataset 
form a trend that is valid over a range of scales. Such a trend 
is stationary with respect to position and scale, and so can be 
applied to a remotely sensed quantity (e.g., porosity) to arrive 
at another desired property (e.g., permeability) at the scale of 
practical measurement.

! is property of a trend is akin to ergodicity in theoretical 
physics and statistics, also called “statistical stationarity” and 
usually described in terms of objective properties of an en-
semble of diverse objects. ! e ergodicity of natural-rock data, 

as discussed here, means that we may hope “to see a rock in 
a grain of sand” (Kameda and Dvorkin, 2004). Digital rock 
physics is the contemporary tool to explore this ergodicity 
and chart its applicability to remote sensing and other practi-
cal problems.
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