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ROCK PHYSICS DEFINITIONS
Volumetrics:  Density, Porosity, Saturation
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3D volume of sandstone (left) and a sandstone thin section (right).
The pore space is blue due to epoxy that impregnated the samples.

Equations for density, porosity, and saturation

Porosity strongly depends on the scale of measurement because rock is
heterogeneous at all scales.

Bulk Density

Total Porosity

Saturation

Bulk Density

€ 

ρBulk = MTotal /VTotal

φTotal =VPore /VTotal ≡ φ

SFluid =VFluid /VPore

SWater + SOil + SGas =1
ρBulk = (1−φ)ρSolid + φρFluid =

(1−φ)ρSolid + φ(SWaterρWater + SOilρOil + SGasρGas)

M is mass
V is volume
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Velocity
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ROCK PHYSICS BASICS
Normal Reflection

Ip = ρV p

  
ν =

1
2

(Vp / Vs )
2 − 2
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R(0)=

Ip2 − Ip1
Ip2 + Ip1

=
dIp
2Ip

=
1
2
d ln Ip

Two important elastic parameters that affect reflection are derived from velocity
and density.  They are the acoustic (or P-) impedance Ip and Poisson’s ratio ν

Normal Incidence.  The reflection amplitude of a normal-incidence P-wave at the
interface between two infinite half-spaces depends on the difference between the

impedances of the half-spaces.  The same law applies to S-wave reflection.

A reflection seismogram is a superposition of
signals reflected from interfaces between earth

layers of different elastic properties.

It is useful, therefore, to examine reflection at a
single interface between two elastic half-spaces.

Normal reflection forms a full differential.  Therefore, it can be integrated to
arrive at the absolute values of P-wave impedance.  This procedure is called

impedance inversion.

Zoeppritz (1919)
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Reflection at an Angle

Incident
P-Wave Reflected

P-Wave

Reflected
S-Wave

Transmitted
S-Wave

Transmitted
P-Wave

Θ1

Θ2

Φ1

Φ2

The reflection amplitude of a wave propagating at an angle to an interface not only
depends on the P-wave elastic properties of the half-spaces but also on the S-wave

properties.  The rigorous Zoeppritz equations can be linearized to express the reflected
amplitude through the P-wave impedance and Poisson’s ratio difference.

A possible simplification for AVO computation.  There are many other approximate
expressions for reflection at an angle.

The exact Zoeppritz equations do not form a full differential.  However, their various
linearizations do.  As a result, these full differentials can be integrated to arrive at a

quantity that is called the elastic impedance.  It is important to remember that in most
cases, the units of the elastic impedance are not the same as of the acoustic impedance.

The equation below may serve as a definition of the elastic impedance Ie.

Parameters commonly used to characterize reflection at an angle are intercept and
gradient.

Intercept Gradient

€ 

R(θ) ≈ R(0)cos2θ + d( 1
1−ν

)sin2θ

€ 

R(θ) ≡
Def 1
2
d ln Ie ≈ R(0)cos

2θ + d( 1
1−ν

)sin2θ =

1
2
d ln Ip + d( 1

1−ν
−
1
2
ln Ip )sin

2θ

⇒ ln Ie = ln Ip + ( 2
1−ν

− ln Ip )sin
2θ

€ 

R(θ) ≈ d(
ln Ip
2
) + d( 1

1−ν
−
ln Ip
2
) sin2θ

Zoeppritz (1919)
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Reflection at an Angle

A convenient approximation for reflection at an angle belongs to Hilterman
(1989).  It assumes that, on average, Poisson's ratio is 1/3.

It follows from this approximation that if the change in Poisson's ratio is
negative, the amplitude should decrease with offset.  This is what happens

between shale and gas sand.  Depending on the rock properties, 3 AVO
classes have been defined.

Zoeppritz P-wave reflection coefficients for a shale over gas sand interface
for a range of normal reflectivity values.  The Poisson’s ratio and density
were assumed to be 0.38 and 2.4 g/cc for shale and 0.15 and 2.0 g/cc for gas
sand (from Rutherford and Williams, 1989).

€ 

R(θ) ≈ R(0)cos2θ + 2.25Δν sin2θ
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Relative Impedance Inversion

€ 

Rpp (θ) ≈ Rpp (0) cos
2θ + 2.25Δν sin2θ

≈ Rpp (0) + [2.25Δν − Rpp (0)]sin
2θ,

€ 

Rpp(0) =
Ip 2 − Ip1
Ip 2 + Ip1

=
dIp
2Ip

=
1
2
d ln Ip ,

€ 

Ip = exp[2 Rpp(0)dz∫ ].

€ 

Δν =
Rpp(θ )− Rpp(0) cos

2θ

2.25sin2θ
,

ν =
Rpp(θ )− Rpp(0) cos

2θ

2.25sin2θ∫ dz.
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Relative Impedance Example

Relative seismically-derived impedance and Poisson's ratio do
not provide the absolute values of these elastic constants.
However, they are often useful in obtaining spatial shapes of
impedance and Poisson's ratio.
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Elasticity

Ti = σ ijn j

Stress Tensor
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Strain Tensor

  
ε ij =

1
2
(∂ui
∂x j

+
∂uj
∂xi

)

  σ ij = σ ji i ≠ j; ε ij = ε ji i ≠ j.

  σ ij = cijklekl; cijkl = cjikl = cijlk = cjilk, cijkl = cklij .

  σ ij = λδ ijεαα + 2µε ij; ε ij = [(1 + ν )σ ij − νδ ijσαα ]/ E.

Commonly used constants are:  λ and µ -- Lame's constants; ν -- Poisson's ratio; E -- Young's modulus.  The elastic
moduli are determined by the experiment performed.  For example, the bulk modulus is measured in the
hydrostatic compression experiment.  The shear modulus is measured in the shear deformation experiment.

Stress and strain.  Forces acting within a mechanical body are mathematically
characterized by the stress tensor which is a 3x3 matrix.  By using a stress tensor we
can find the vector of traction acting on an elemental plane of any orientation within
the body (figure on the left).

The deformation within the body is characterized by the strain tensor.  This tensor is
formed by the derivatives of the components of the displacement of a material point in
the body (figure on the right).

Both stress and strain tensors are symmetrical matrices.

Hooke’s law relates stress to strain.  It postulates that this relation is linear.  In general, there are 21 independent
elastic constants that linearly relate stress to strain.

Fortunately, if a body is isotropic, only two independent elastic constants are required.  These constants are
called elastic moduli.

Elastic moduli derived from loading experiments are called static moduli

Bulk Modulus

  K = λ + 2µ / 3

Z

X

Y

σ xz = 2µε xz

ε xx = εyy = εzz = ε xy = 0

Shear

Shear Modulus Compressional Modulus

Hydrostatic Loading Distortion, no volume
change

No lateral deformation

€ 

M = K + (4 /3)µ



2.10

ROCK PHYSICS BASICS
Elastic-Wave Velocity

An elastic stress wave can propagate through an elastic body and generate stress and
strain disturbance.  The magnitude of deformation generated by a propagating wave is
usually very small, on the order of 10-7.  As a result, the stress perturbation is also
very small, much smaller than the ambient state of stress.

The speed of an elastic wave is related to the elastic moduli via the wave equation
(below) where u is displacement, t is time, z is the spatial coordinate, M is the elastic
modulus, and ρ is the density.

u(z)

σ(z+dz)σ(z) z
dzA

∂ 2u
∂ t2

=
M
ρ
∂ 2u
∂z2

It follows from the wave equation that the speed of wave propagation is

M / ρ

Vp = M / ρ = (K + 4G / 3) / ρ

Vs = G / ρ

M = ρVp
2 ; G = ρVs

2 ; K = ρ(V p
2 − 4Vs

2 / 3); λ = ρ(Vp
2 − 2Vs

2 ).

M is the compressional modulus or M-modulus
G (or µ) is the shear modulus
K is the bulk modulus
E is Young’s modulus
ν is Poisson’s ratio
λ is Lame’s constant

  
ν =

1
2

(Vp / Vs )
2 − 2

(Vp / Vs )
2 − 1

Elastic moduli derived from velocity data are called dynamic moduli

Poisson’s Ratio

€ 

ν =
1
2
(Vp /Vs)

2 − 2
(Vp /Vs)

2 −1
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Relations between Elastic Constants

Poisson’s ratio relates to the ratios of various elastic moduli and elastic-
wave velocities.

ν =
1
2
(V p / Vs )

2 − 2
(V p / Vs )

2 −1
=
1
2
M / G − 2
M / G −1

=
1
2
K / G − 2 / 3
K / G +1 / 3

=
1
2

λ / G
λ / G +1

Theoretically, PR may vary between -1 and 0.5

−1 ≤ ν ≤ 0.5

ν = −1⇒ M =
4
3
G; Vp =

2
3
Vs ; K = 0; λ = −

2
3
G

ν = 0⇒ M = 2G; Vp = 2Vs ; K =
2
3
G; λ = 0

ν = 0.5⇒Vs = 0|K = ∞

Sometimes, the dynamic PR of dry sand at low pressure may appear negative.

Plot below shows PR versus porosity in dry unconsolidated sand at low differential
pressure.  This may mean (a) wrong data or (b) anisotropic rock.
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Static and Dynamic Moduli
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By definition, the dynamic moduli of rock are those calculated from the elastic-
wave velocity and density.  The static moduli are those directly measured in a
deformational experiment.

The static and dynamic moduli of the same rock may significantly differ from each
other.  The main reason is likely to be the difference in the deformation (strain)
amplitude between the dynamic and static experiments.

In the dynamic wave propagation experiment the strain is about 10-7 while static
strain may reach 10-2.

σ Stress

Axial Strain
εa

εr
E = σ / εa

ν = εr / εa

Typical Plastic Behavior

Radial
Strain
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Need for Static Moduli

2c

2b

SHmin

P

b = 2c 1 − ν
2

E
(P − SHmin)

Importance of Static Young's
Modulus and Poisson's Ratio

for Hydrofracture Design

Static moduli are often used in wellbore stability and in-situ stress applications
to evaluate the possibility of breakouts, elevated pore pressure, and tectonic
stress distribution.  For example, a common method of calculating the horizontal
stress in earth is by assuming that the earth is elastic and does not deform in the
horizontal direction.

SH

SV
SH = SV

ν
1 − ν

Vertical
(Overburden)

Stress

Horizontal
Stress

Poisson’s
Ratio

Hydrofracture can be approximated by a 2D elliptical crack who's dimensions
depend on the static Young's modulus and Poisson's ratio.
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Static and Dynamic Moduli in Sand

  
ν =

1
2

(Vp / Vs )
2 − 2

(Vp / Vs )
2 − 1

Porosity (left) and velocity (right) versus pressure in high-porosity room-dry sand
sample from the Gulf of Mexico.

Zimmer, M., 2003, Doctoral Thesis, Stanford University .

Velocity versus porosity (left) and dynamic and static bulk  moduli calculated for the
same sample.
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Compaction Effects in Sand/Shale

Yin, H., 1992, Doctoral Thesis, Stanford University .

Velocity in shale depends on stress and porosity and deformation
history.
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Elastic Composites and Elastic Bounds

Most physical bodies in nature are elastically heterogeneous, I.e., they are made of
components that have different elastic moduli.  The effective elastic moduli of a
composite depend on (a) properties of individual components and (b) geometrical
arrangement of these components in space.

It is often very hard, if not impossible, to theoretically calculate the effective elastic
moduli of a composite.

However, elastic bounds help us contain the exact values of the effective elastic
moduli.

The simplest bounds are the Voigt (stiffest) and Reuss (softest) bound.  No matter how
complex the composite is, its effective elastic moduli are contained within these
bounds.

Composite Voigt
Reuss

For an elastic modulus that may be either bulk or shear modulus of an N-component
composite where the i-th component has modulus Mi and occupies volume fraction
fi, the Voigt (upper) bound is:

MV = fiMi
i=1

N

∑

MR = ( f iMi
−1

i=1

N

∑ )−1

The Reuss (lower) bound is:

Hill’s average is simply the average between the Voigt and Reuss bounds:

MH =
MV + MR

2
=
1
2
[ f iMi
i=1

N

∑ + ( f iMi
−1

i=1

N

∑ )−1]
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The graph on the right shows the Voigt and
Reuss bounds and Hill’s average of a two-
component composite.

The elastic modulus of the soft component is 10
and that of the stiff component is 20.  The
horizontal axis is the concentration of the stiff
component.

Voigt

Reuss

Hill
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Hashin-Shrikman Elastic Bounds

For an isotropic composite, the effective elastic bulk and shear moduli are
contained within rigorous Hashin-Shtrikman bounds.  These bounds have been
derived for the bulk and shear moduli.  The Hashin-Shtrikman bounds are tighter
than the Voigt-Reuss bounds.

[ fi
Ki + 4

3Gmini=1

N

∑ ]−1 − 4
3
Gmin ≤ Keff ≤ [

fi
Ki + 4

3Gmax
]−1

i=1

N

∑ −
4
3
Gmax,

[ fi

Gi +
Gmin
6

9Kmin + 8Gmin

Kmin + 2Gmin

 

 
  

 

 
  

]−1
i=1

N

∑ −
Gmin
6

9Kmin + 8Gmin
Kmin + 2Gmin

 

 
  

 

 
  ≤ Geff ≤

[ fi

Gi +
Gmax
6

9Kmax + 8Gmax
Kmax + 2Gmax

 

 
  

 

 
  

i=1

N

∑ ]−1 − Gmax

6
9Kmax +8Gmax

Kmax + 2Gmax

 

 
  

 

 
  ,

In the Hashin-Shtrikman equations, the subscript “eff” is for the effective elastic
bulk and shear moduli.  The subscripts “min” and “max” are for the softest and
stiffest components, respectively.

A physical realization of the Hashin-Shtrikman bounds for two components is the
entire space filled by composite spheres of varying size.  The outer shell of each
sphere is the softest component for the lower bound and the stiffest component for
the upper bound.

If one of the components is void (empty pore) the lower bound is zero.

Hashin-Shtrikman
Bounds:  Realization
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Elastic Bounds for Water-Saturated Sand

Unfortunately, if the elastic moduli of the two components of the composite
are very different, the bounds lie very far apart.

They cannot be used for practical velocity prediction.

In the example below, plotted is velocity versus porosity as calculated for a
quartz/water mixture using the elastic bounds.  The data points are for water-
saturated sandstones.  The data lie within the elastic bounds curves.

The bounds can still be used to quality control of the data.
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In the example below, the red data points lie below the lower bound curve for
the quartz/water mix.  The reason is that these data are for gas-saturated
sands.
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Mixing Fluids

The main difference between fluid and solid is that fluid’s shear modulus is
zero.  Therefore, the shear-wave velocity in fluid is zero.

The P-wave velocity in fluid depends on the bulk modulus and density as

VP =
K
ρ

If several types of fluid coexist in the same space (but are not mixed at the
molecular level) the effective bulk modulus does not depend on the
geometrical arrangement of the components.  It is exactly the Reuss
(isostress) average of the individual bulk moduli:

1
KFluid

=
fi
Kii=1

N

∑

The same equation but written in terms of compressibility (β = 1/K) is:

βFluid = fi
i=1

N

∑ βi

This is why even small fractions of free gas make the pore fluid very
compressible (figure below, on the right).
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Pressure and Rock Properties
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When rock is extracted from depth and re-loaded in the lab, it exhibits a strong
velocity-pressure dependence, especially at low confining pressure.  The primary
reason is microcracks that open during in-situ stress relief.

Below:  Vp and Vs versus confining pressure in room-dry sandstone samples.  The
in-situ effective stress is about 15 MPa.  Different colors correspond to different
samples.
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Pressure and Rock Properties

Phenomenology of pressure effect on velocity in room-dry sandstone
dataset.

The velocity-porosity trends become sharper as pressure increases.
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Pressure and Rock Properties

Phenomenology of pressure effect on velocity in room-dry sandstone
dataset.

Both Vp and Vs may significantly change with changing pressure.
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Pressure and Rock Properties

The Vp and Vs versus pressure changes are not necessarily scalable -- the
Vp/Vs ratio and Poisson's ratio change as well.
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Pressure and Rock Properties

The effect of pressure on porosity is not as large as on velocity.  The main
reason is that rock's elasticity is affected by thin compliant cracks that do
not occupy much of the pore space volume.
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Stress-Induced Anisotropy

θ

€ 

Vp (θ) ≈α(1+ δ sin2θ cos2θ + εsin4 θ)

VsV (θ) ≈ β[1+
α 2

β 2
(ε −δ)sin2θ cos2θ]

VsH (θ) ≈ β[1+ γ sin2θ]

€ 

ε =
Vp (π /2) −Vp (0)

Vp (0)
γ =

VsH (π /2) −VsV (π /2)
VsV (π /2)

=
VsH (π /2) −VsH (0)

VsH (0)

Thomsen's anisotropic formulation (weak transverse isotropy)
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Ottawa sand.  Uniaxial compression.
Pxx = Pyy = 1.72 bar.  Yin (1992).

Anisotropic stress field induces anisotropy in otherwise isotropic rock.
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Permeability

Permeability is a fluid flow property of a porous medium.  Its definition comes
from Darcy’s law which states that the flow rate is linearly proportional to the
pressure gradient.

Q = −k
A
µ
ΔP
L

Flow
Rate

Pressure
Head

Sample
LengthViscosity

Sample
Cross-SectionPERMEABILITY
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Permeability -- Kozeny-Carman Equation

Permeability  depends on porosity and grain size.

Kozeny-Carman
Equation (SI UNITS)

€ 

k
d2

=
1
72

φ 3

(1−φ)2τ 2

Permeability

Grain Size Tortuosity

Porosity

Permeability  may be almost zero in carbonate where large vuggy pores are not connected.
This pore geometry is a topological inverse of the pore geometry of clastic sediment.
Permeability equations that work in clastics may not work in carbonates.

Drastic drop in permeability as
porosity increases but clay
content increases too (grain
size decreases).  Yin (1992).

Permeability depends on porosity and grain size and also (critically) on the
pore-space geometry.
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Permeability and Stress

Permeability in medium-to-high porosity clastic sediment is weakly dependent on stress.
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Permeability in tight sandstone samples.  Porosity 0.03 to 0.07.

Relative changes of high permeability with pressure are smaller than those for
low permeability.  Both may have implications for fluid transport.
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U =U1 −U2

R =U /I
Potential

Drop

Electrical
Current

Resistance

€ 

ρ = RA / l

Resistivity

€ 

[R] =Ω≡Ohm
[ρ] =Ω⋅m ≡Ohm ⋅m

€ 

σ =1/ρ

Conductivity
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