SEISMIC REFLECTIONS OF ROCK PROPERTIES

Jack P. Dvorkin

Stanford University 2008

1. Problem Formulation

MAIN QUESTION OF ROCK PHYSICS

How to Remotely Map Rock Properties and Conditions: Lithology, Porosity, Pressure, Saturation

Rock and fluid prediction away from well control requires understanding of how rock's bulk and seismic properties are linked to each other and how they vary with geologic age, depth, and location.

The main question of remote sensing is: What reservoir properties may stand behind the seismic amplitude?

METHODS OF PREDICTION

Forward Modeling of Seismic Response

METHODS OF PREDICTION

Forward Modeling of Seismic Response from Rock **Properties**

METHODS OF PREDICTION

Forward Modeling of Seismic Response versus Fluid

METHODS OF PREDICTION -- LAB

Relations between Lithology, Porosity, and Elastic Properties

Laboratory Measurements. Han's (1986) laboratory data set includes over 60 sandstone samples of medium to low porosity and zero to 50% clay content. Shown below is a P-wave velocity versus porosity cross-plot for a subset of these data. The measurements shown below are for room-dry samples at 40 MPa confining pressure and atmospheric pore pressure (air).

All data.

Data color-coded by clay content.

METHODS OF PREDICTION -- LAB

Relations between Fluid and Elastic Properties

EFFECTS OF OIL PROPERTIES

Oil Reservoir Response Depends on Oil API and GOR

Specify input parameters Water Salinity (ppm) 45000 Gas Gravity (Specific) 0.65 0il API 30 GOR		
300 Pore Pressure (psi) 5500 Temperature (F) 200 Cancel		
Specify input parameters Water Salinity (ppm) 45000 Gas Gravity (Specific) 0.65 0il API 30 GOR 100 Pore Pressure (psi) S500 Temperature (F) 200 Cancel	Decreasing GOR	COLORCODE: TOTAL PORCSITY 10 00 00 01 02 00 00 00 04 00 04 00 04 00 04 00 04 00 00
Specify input parameters Water Salinity (ppm) 45000 Gas Gravity (Specific) 0.65 0il API 30 GOR 20 Pore Pressure (psi) 5500 Temperature (F) 200 OK		

METHODS OF PREDICTION -- WELL

Relations between Lithology, Fluid, and Elastic Properties in Log Data

Sand/shale well in Alaska. Impedance and Poisson's ratio versus porosity. Top: at in-situ conditions, bottom: wet.

Impedance versus Poisson's ratio. Left: at in-situ conditions, right: wet.

METHODS OF PREDICTION -- WELL

Relations between Lithology, Fluid, Depth, and Elastic Properties in Log Data

Impedance-porosity cross-plots show effects of clay (left) and compaction (right).

Finding Transforms and Applying them to Impedance Inversion

Reflection amplitude carries information about elastic contrast in the subsurface. Inversion attempts to translate this information into elastic properties within an interval.

These properties are important because we are interested in absolute values of lithology, fluid, and porosity within intervals.

La Cira Norte -- Courtesy Ecopetrol and Mario Gutierrez

Finding Transforms and Applying them to Impedance Inversion

Log data can be treated as a result of a controlled experiment where various rock properties are measured in the subsurface. Shown below are VSHALE, total porosity, and Ip curves for a Colombian well drilled through Tertiary sand/shale sequence.

The *Ip* curve mirrors the porosity curve. This means that there is a relation between impedance and porosity.

Finding Transforms and Applying them to Impedance Inversion

Impedance-porosity transform can be applied to impedance inversion volume to produce a porosity/lithology volume. Shown below is a La Cira field (Colombia) example.

Porosity Strata Slice from 3D Seismic Data and Rock Physics Trend

La Cira Norte -- Courtesy Ecopetrol and Mario Gutierrez

Finding Transforms and Applying them to Impedance Inversion

Stratigraphy and geology, in general, are important factors to be used to confirm mathematically derived reservoir descriptions.

La Cira Norte -- Courtesy Ecopetrol and Mario Gutierrez

Caveat of Scale

Thin sub-resolution layers produce smaller amplitude than thick layers. As a result, they produce smaller seismic impedance.

Applying an impedance-porosity transform to seismic impedance will produce a wrong porosity estimate.

