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ABSTRACT 

This work is a detailed analysis of the transient behaviour of geothermal 
convective systems. The flow in these systems is found to be fluctuating or regular 
oscillatory in a simplified two-dimensional model and these unsteady effects persist 
when the model is refined to include the concepts of temperature dependent viscosity 
and fluid withdrawal and recharge. The analysis is extended into three dimensions 
to verify this behaviour. The supplementary exploration of added salinity gradients 
indicates transient effects of a different kind in this case. The examination of 
the porous insulator problem confirms the results of previous authors and verifies 
the viability of the numerical methods that are used throughout the investigation. 
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NOTATION 

' All variables and operators used are defined when they first appear in 
the text, however the commonly used ones are summarised here. 

Dimensional Variables 

bl, b 2 ,  b 3  - Coefficients of variation of viscosity v with temperature T. 

g 

k 

m 

P 

s 
t 

X -. 
C 

c1 

f 
'ij 

To' T1 

T 

a 

al' O 2  

a' 

- The gravitational acceleration 
- The permeability of the medium 
- The porosity of the medium 
- The dynamic pressure 
- The mean flux velocity 
- Time 
- Spatial dimensions 
- Concentration of dissolved mineral salts 
- Minimum and maximum values of C 
- Buoyancy force 
- Thermal dispersion tensor 
- Temperature 
- Maximum and minimum values of T 
- Thermal expansion coefficient 
- Linear and quadratic thermal expansion coefficient 
- Solutal expansion coefficient 

B1, B 2 ,  B 3  - Viscosity variation coefficients 
K - Thermal. diffusivity 
K' - Solutal diffusivity 
x - Ratio of volumetric heat capacities 
u - Dynamic viscosity of fluid 
V - Kinematic viscosity of fluid 

vO 

P - Density of fluid 

PO 

- Low temperature value of v 

- Low temperature value of p 

Non-Dimensional Variables 

f - Fraction of lower boundary heated 
9 - Strength of fluid sink 
u 
U' - Velocity not due to flow into sink 
C - Concentration 

- Velocity due to flow into sink 

- 



Nu - Nusselt number 
P - Pressure 
R - Rayleigh number 
S - Solutal Rayleigh number 
u 
x - Spatial dimensions 

- Fluid velocity 

Y - Buoyancy ratio 
AX, AY - Spatial increments 
AT - Time increment 
V '  - Viscosity 
P '  - Density 
e - Temperature 
JI - Stream function 
e - Vector potential 
T - Time 

Operators 
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VZ 

- Jacobian 
- Laplacian 
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Chapter 1 - INTRODUCTION 

1.1 THE PRECEPT 

Geothermal Regions 

This work is an attempt to determine the various ways fluid may flow through 
the permeable material of a geothermal system under the influence of thermally or 
solutallyy produced buoyancy effects. If an enclosed porous region is saturated with 
a fluid that has a temperature dependent density, then by introducing a high 
temperature anomaly at the base of the system it is possible, under certain conditions, 
to create movement of the fluid as it becomes buoyant and rises through the material. 
This is the process of natural convection in a porous medium and is the driving 
mechanism in many geophysical situations where heat is convected to the earth's 
surface from an energy source deep below ground. In transporting heat from an 
inaccessible base formation these hydrothermal systems provide a valuable source of 
energy which in small ventures may be exploited for home heating or factory processes, 
or in larger projects for the generation of electrical power. Hydrothermal fields 
have been developed for power production in Larderello, Italy, in the Geysers, U.S.A., 
in Kamchatka, U.S.S.R., and in Wairakei and Kawerau, New Zealand, and it is expected 
that this energy resource will become increasingly important in future with develop- 
ment of fields in Iceland, Japan, Hungary, Mexico, El Salvadore, Kenya, Ethiopia, the 
Phillipines, Indonesia, Chile, Guadeloupe, Taiwan, Turkey and Communist China. 
Therefore the modelling of convective flow through porous media is important from a 
practical viewpoint since it is required to enable engineers to predict the 
behaviour of a geothermal system under exploitation. This type of flow is also of 
general interest to theoreticians since it is one of the simplest examples of hydro- 
dynamic instability, and furnishes parallels with more complex fluid problems, for 
example the natural convection of a Newtonian fluid in an open region. Furthermore 
there are additional practical applications, not related to geothermal flows, to the 
cooling of nuclear reactor cores and the efficiency of porous insulators, for 
instance fibreglass house insulation or refrigerator walls. It is not surprising 
then that this problem has, in its various forms, received attention for some time 
and this study surveys and extends the current state of research in the field and 
reviews the interrelations between the many solutions previously obtained. 

Unsteady Solutions 

This work supersedes manyy earlier studies in that it pays strict attention 
to the variation of conditions in geothermal regions ass time passes. The investiga- 
tion examines the evolution of a geothermal system, with a particular view to 
ascertaining the implications of artificial development and exploitation. 
Furthermore it demonstrates that under certain conditions convective flow in porous 
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media c o u l d  remain t r a n s i e n t  i n d e f i n i t e l y  due t o  i n h e r e n t  f l u i d  i n s t a b i l i t i e s ,  
The c o n d i t i o n s  under which t h e s e  uns teady  flows can o c c u r  have been modelled by 
ea r l i e r  s t u d i e s  b u t  t h e s e  were o f t e n  a p p a r e n t l y  c o n t r a d i c t o r y  and the  p r o c e s s e s  
i n v o l v e d  were n o t  f u l l y  e x p l a i n e d .  It  s t i l l  remained f o r  t h e  p r e s e n t  s t u d y  t o  
v e r i f y  t h e  e x i s t e n c e  o f  f l u c t u a t i n g  c o n v e c t i v e  i n s t a b i l i t i e s  i n  porous  media and t o  
de te rmine  whether  such e f f e c t s  may have an  unexpected and major i n f l u e n c e  on a 
geothermal sys tem,  f o r  example by c a u s i n g  a change from a h o t  water t o  a steam 
dominated f o r m a t i o n .  

1.2 THE WAIRAKEI GEOTHERMAL R E G I O N  

The P h y s i c a l  System 

The New Zealand geothermal  r e g i o n s  l i e  i n  a l o n g  t r o u g h  e x t e n d i n g  roughly  
NE-SW a c r o s s  t h e  North I s l a n d ,  approximate ly  f i v e  k i l o m e t r e s  wide and deep ,  f i l l e d  
with v o l c a n i c  d e b r i s  and c o n t a i n e d  a t  t h e  s i d e s  betwaen r , e l a t i v e l y  impermeable walls 
of non- fragmented i g n i m b r i t e  as i n  f i g u r e  1 . 2 . 1 .  

FIGURE 1.2.1 - Sketch of problem configuration - New Zealand geothermal system. , 

I t  i s  n o t  known whether  t h e  base  of the format ion  i s  impermeable o r  n o t ,  b u t  
h e a t  i s  i n t r o d u c e d  i n  some way through t h i s  boundary and i s  t r a n s p o r t e d  upwards by 
convec t ion  o f  t h e  water t h a t  f i l l s  t h e  i n t e r s t i ces  o f  t h e  porous  r o c k ,  or by conduct ion  
th rough  t h e  m a t e r i a l  i t s e l f .  The o r i g i n  i s  u n c l e a r  b u t  i t  has  been sugges ted  by 
Mercer (1973) t h a t  t h i s  h e a t  i s  d e r i v e d  from t h e  g l o b a l  t e c t o n i c s  a s s o c i a t e d  w i t h  t h e  
t r e n c h  system. On r e a c h i n g  t h e  s u r f a c e  of  t h e  e a r t h  t h i s  h e a t  produces hydrothermal 
phenomena such as  steaming ground,  fumaro les  and h o t  s p r i n g s .  
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The fluid which saturates porous geothermal beds may be water, steam, brine 
or a mixture of each. The Wairakei system is generally known as a hot water system 
(Kruger 1973))  since the water in it holds only a small amount ((<< ( 1 2 0 0 0  ppm)) of 
dissolved mineral salts and the steam phase is restricted to the surface region down 
to approximately 4000  m below ground. Above this region there are periodic surface 
phenomena such as geysers and hot lakes which occur due to interactions between the 
steam and waterr phases, but the overall convective pattern of the system is mainly 
influenced by the larger scale motion which originates at greater depth between 2 and 
5 kmm at which the fluid is wholly liquid. Below the shallow two phase region are 
the artificial flows produced by withdrawal of fluid through boreholes and it is 
expected that these effect the overall flow more significantly. 

Model Systems 

When creating an experimental or numerical model of a physical system it is 
necessary to be able to accurately represent all the essential features of the actual 
prototype. Unfortunately this is not usually possible in geothermal applications 
since the region of interest extends so far below ground that its exact nature is not 
directly determinable. The Wairakei geothermal field is the most significantly 
developed hot water system in the world and as such has been the subject of various 
theories which differ in their explanation of the structure of the system. Some 
studies restrict the region of interest to the shallow surface system and use averaged 
parameters to represent the lower convecting flows - Mercer ( 1 9 7 3 )  is an example of 
such a "reservoir"" model. This kind of approach may be used to represent, in plan 
detail only, the response of the upper geothermal reservoir under a given set of 
lower reservoir conditions. The behaviour of the lower system, which may also be 
effected, is not modelled at all (Mercer 1974 ) .. A better representation of the 
system requires the modelling of the convection throughout the region, right down to 
the source of the geothermal energy. Donaldson (1962)  initially proposed a two layer 
model system consisting of a homogeneous porous layer overlying a homogeneous imper- 
meable layer heated from below. Later (1968  and 1 9 7 0 )  he refined this model to a 
permeable channel representation which was then more specifically relevant to the 
upper reservoir. Such a representation presupposes the existence of a bed of 
material that is anisotropically permeable, with greater permeability in the horizontal 
direction. Such beds are evident in the geological studies of Healy and Hochstein 
( 1 9 7 3 ) ;;  these are at shallow levels and are fed with preheated water from a deeper 
system. A layer representation has also been used for a larger scale model by 
McNabb (1965))  who envisaged the deep system as having its base above a lava lake or 
similar magmatic heat source. Elder (1966a))  has presented a comprehensive review 
of several possible configurations for both the reservoir and deep systems. The 
current investigation is concerned with the modelling of the deep system. 

The Current Model 

Bearing in mind the configuration of figure 1.2.1, the model region is 
chosen initially to represent an infinitely long trench of rectangular cross-section, 
completely filled with a homogeneous and isotropic porous medum which is wholly 
saturated with water. The heat source at the base of the region could be of 
arbitrary shape, as has been considered by Taunton and Lightfoot ( 1 9 7 0 ),  but because 
of the lack of information about the heat source this is an unnecessary generality 
and the source is more usually taken to be flat. The output of geothermal heat is 
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either by withdrawal of hot fluid through wells or by loss at the surface to the 
surrounding atmosphere. As has generally been the case these upper and lower 
boundaries are taken to be horizontal, constituting a type of system labelled by 
Elder (1966a)) as a “wet-convector”. Inclined systems have been studied by Bories, 
Combarnous and Jaffrenou (1972),, Kaneko, Mohtadi and Aziz (1974) and Bories and 
Combarnous (1973) but are not considered here. 

Since it is unknown whether or not fluid flows in through the base of the 
formation, both possibilities are modelled. If a magmatic intrusion or lava lake is 
viewed as being covered by a supercritical gas sheath that constitutes a phreatic 
surface, then liquid transfer across the boundary is prohibited and the lower boundary 
may be assumed to be impermeable. The production of magmatic water or the large 
scale introduction of meteoric water through major horizontal fissures as is proposed 
by Donaldson (1974) constitutes the alternative configuration in which the base is 
permeable. Following Wooding (1957),, the enclosing vertical boundaries are assumed 
to be impervious and also relatively non-conducting (Elder 1967a). 

1.3 PAST WORK 

Convection in a Porous Medium 

The classic configuration which has been the most commonly modelled is the 
box or infinite slab of porous material heated uniformly from below. The initial 
onset of convection in such a region was the subject of early analytical studies by 
Horton and Rogers (191r5) and by Lapwood (1948)) and later experimental and numerical 
studies byy Wooding (19571, Donaldson (1962), McNabb (19651, Katto and Masuoka (1967), 
Elder (1966a, 1967a & b), Bories and Thirriot (19691, Combarnous (1970),, Palm, Weber 
and Kvernvold (1972),, Holst and Aziz (1972a) and Yen (1974)) who all derived steady 
solutions to the problem. However Combarnous and Le Fur (1969) discovered in their 
experiments that there is a second mode of convection at higher values of the defining 
dimensionless parameter - the Rayleigh number (see section 2.1) - and this second 
mode was later reported by Caltagirone, Cloupeau and Combarnous (19711, and 
Combarnous and Bia (1971),, to be a fluctuating pattern of two dimensional rolls. 

This second mode has yet to be observed in numerical solutions, for one of 
three reasons. Firstly, the earlier numerical studies (for example Donaldson (1962),
Elder (1966a, 1967a)) presupposed a steady solution and did not include the transient 
terms in their equations of motion. In view of the fluctuating solutions which were 
discovered later, and of Elder’s own admission (Elder 1967a) that unsteady convective 
instabilities cannot be examined under the assumption of quasi-steadiness, these 
analyses may seem inappropriate. However this is not so as due to limitations of 
the numerical methods used the only flows studied were under the benevolent 
conditions of a low Rayleigh number for which steady flows do occur. When the flows 
are moree vigorous the numerical procedures considered up to the present time become 
unstable due to the false production of kinetic energy and this is the second reason 
why the range of numerical solutions has been so  restricted, Thus the transient 
representations of Elder (1967b and 1968)) and Holst and Aziz   (1972b1 which use 



similarnumerical methods could not have produced solutions in the unsteady mode, 
Thirdly, despite the limitations of the techniques, the algorithms and computa- 
tional machineryy still would not have been fast enough to develop the solutions 
for a duration sufficient for the nature of the unsteady effects to become clearly 
apparent. 

Various linear and non-linear stability analyses have been performed by 
Westbrook (1969),, Beck (1972),, Busse and Joseph (1972)) and Gupta and Joseph (1973) 
but once again these authors either ignored transient effects or considered a range 
of conditions in which they could not occur. The more recent analysis by Straus 
(1974) attempted to explain the transition observed by Combarnous and Le Fur (1969) 
as a transition from two-dimensional to three-dimensional flows, however it seems 
apparent that Strauss (1974) did not consider the results of Caltagirone et a1 (1969) 
since he too specifically precludes oscillatory effects. Similarly the experimen- 
tal conditions of Yen (1974) duplicate those of Caltagirone et a1 (1969)) but no 
reference is made to this earlier investigation and no mention of the form of the 
solution is reported. 

Therefore to avoid the limited applicability of these earlier solutions, 
this study uses more sophisticatedd numerical procedures that are based on the 
transient equations of motion and which are stable enough and fast enough to allow 
lengthy solutions under a range of conditions that may be expected to occur in 
geothermal regions (including those under which unsteady flows are evident). 

Convection of a Newtonian Fluid 

Since a unified appraisal of the set of closely interrelated problems 
considered in this work has not previously appeared it is expedient to draw 
parallels with convection in a fluid layer (the Benardd problem) which has been more 
widely reported. Corresponding steady solutions have been obtained by Fromm (1965), 
Veronis (1966),, Plows (1968) and Brown (1973) and the special considerations of non- 
uniform heating, temperature dependent viscosity and horizontal temperature gradient 
have all been investigated in the Benard problem by Weber (1973),, by Torrance and 
Turcotte (1971) and by Wirtz, Briggs and Chen (1972)) and Gill and Kirkham (1970) 
respectively. Of these three situations only the last has previously been fully 
considered in the porous medium problem. 

The stability of this and closely related problems has been considered 
for layers by Chandrasekhar (1961),, Gill and Davey (1969),, Willis and Deardorff 
(1967 E 1970),, Krishnamurti (1970 a&b),, Busse and Whitehead (1971 & 1974)) and 
Homsy (1973 E 19741, for channels by Birikh, Gershuni, Zhukhovitski and Rudakov 
(1972),, for arbitrary containers by Joseph (1971) and generally by Gebhart (1973). 
These investigators are all notable in that collectively they observed that the mode 
of convection may change completely with variation of the defining parameters, that 
one or more of the higher modes may be unsteady or oscillatory, and that under 
certain circumstances the oscillation may take the form of paired disturbances rising 
in the convective plane. 

Numerical studies of the Benardd problem have been somewhat more successful 
than their porous medium counterparts. A forerunner of instabilities that were 
discovered later was perceived in the numerical study of Elder (1966b)) in the form 
of “secondary flows” which he speculated might have been due to disturbances 
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inherent in the numerical method exciting other modes of the system. This was 
confirmed some time later by the comprehensive numerical investigation by Moore 
and Weiss (1973) who used more advanced numerical techniques and obtained an 
oscillatory solution in a square two-dimensional region heated from below. The 
generation of disturbances that they observed is very similar to that obtained in 
this work and their explanation of the mechanism emphasises the same processes, 
Similar explanations of analogous oscillatory behaviour in simple loop models have 
been proposed, first by Keller (1966) then more fully by Welander (1967) who later 
(1971) extended the concept to include similar effects in a stratified fluid layer. 

The numerical analysis of the convection equations has more commonly been 
considered for the Benard rather than the porous medium problem, although these 
studies provide the basis of the numerical methods that are used here. The 
representation of the advection terms in the heat transport equations (see section 
4.2) has been studied variously by Crowley (1967), Wilkes and Churchill (1966), 
Torrance (1968), and Fromm (1969 a & b) and these analyses are directly applicable 
to the problem at hand since the same terms appear (and are equally difficult to 
represent). 

Although results for the Bbnard problem are not directly applicable to 
convective flow in a porous medium it is interesting to note the similarities and 
differences as they arise, since suggested mechanisms for processes in either 
situation can often indicate lines of approach to be followed in the other. 

1.4 THE SCOPE OF THIS WORK 

A mathematical formulation of the modelling of flow in geothermal regions 
is proposed in chapter 2 ,  including transient flows, non-uniform heat input at the 
base of a system, temperature dependent viscosity and a variety of fluid withdrawal 
conditions. A single, exact model which encompasses all the relevant features of 
a geothermal region is impractical due to the difficulty in determining the details 
of real system. Therefore a range of models is proposed to include more than one 
possible configuration. 

It is demonstrated experimentally in chapter 3 that the flow in the two- 
dimensional model reg ion  described in section 2 . 2  may undergo irregular fluctuations 
or regular oscillations under certain conditions. Although the first of these 
effects has been observed previously in the experiments of Caltagirone et el. (1969) 
there is a later and seemingly contradictory experimental study by Yen (1974) who 
reported steady solutions. To resolve this uncertainty a different approach is 
taken and a numerical representation used. To investigate the unsteady effects 
it is necessary to use the transient form of the equations (derived in section 2.1) 
and examine the development of the flow over a long period in time, which most 
earlier studies have neglected to do. For this purpose a set of numerical 
techniques is derived in chapter 4 that is sufficiently rapid to allow lengthy 
solutions. These techniques rely on the energy conservation properties of the 
Arakawa differencing schemes (Arakawa 1966) to avoid the numerical instabilities 
that restricted earlier studies into investigating cnly relatively slow flows. 
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In chapter 5 the numerical verification of the previous experimental 
results is produced - the apparent contradiction in the earlier works is due to 
the existence of alternative steady and unsteady solutions under the same boundary 
conditions (but different initial conditions). The regular oscillatory solutions 
of chapter 3 are also confirmed and explained, 

The regeneration of water in a geothermal system by seepage of ground- 
water has a prominent influence on the flow and this concept is included in the 
numerical models in section 5 .4  (for the first time in a transient analysis). The 
inclusion of these recharge conditions is necessary for the representation of 
artificial withdrawal and reinjection in an exploited geothermal system, and 
simulations of developed systems are performed in section 5.4. 

Past models of geothermal regions usually considered the porous rock 
formation to be saturated with pure water of constant viscosity. To examine the 
advisability of making this assumption the effects of temperature dependent 
viscosity is investigated in section 5.5, and the possibility of dissolved mineral 
salts is allowed in the separate analysis of chapter 7.  

The flow equations may be solved in either two or three dimensions. The 
two-dimensional approach permits beneficial economies in the usage of computational 
resources but it is considered essential to extend the analysis to three dimensions 
for at least part of the work (see chapter 6 )  to confirm the significance of the 
solutions generated in two dimensions. 

The effects that these several conditions have on the overall flow in a 
geothermal region are various and complex and is preferable to consider them 
separately. The direct and precise modelling of the Wairakei geothermal region 
lies slightly beyond this work, but the contiguous consideration of all the 
individual effects represented here could simulate the system quite fully. By 
presenting a range of solutions it is possible to obtain a more general understand- 
ing of the fundamental mechanisms, before attempting to construct a single, 
tenaciously accurate model in which separate effects may interact and mask 
observation of the basic processes governing the behaviour of the system. 

Having derived a solution technique with a specific application to 
geothermal modelling it is interesting to apply it to a different situation also. 
In chapter 8 the methods are modified slightly to allow representation of the 
porous insulator problem mentioned in section 1.1. The results of this simpler 
investigation are readily comparable with previous work on this problem, thus 
permitting further evaluation of the viability, of the techniques. Furthermore 
the flow mechanisms are related to those in the geothermal case and furnish some 
interesting parallels (see chapter 9 ) .  
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Chapter 2 - MATHEMATICAL FORMULATION 

2.1 THE EQUATIONS OF MOTION 

The e q u a t i o n s  govern ing  t h e  c o n v e c t i v e  f l o w  of f l u i d  th rough  a permeable 
material have v a r i o u s  forms depending on which of t h e  range  o f  s i m p l i f y i n g  assump- 
t i o n s  are invoked and which dependent  v a r i a b l e s  are used. S e v e r a l  d i f f e r e n t  
r e p r e s e n t a t i o n s  are p r e s e n t e d  h e r e .  B a s i c a l l y  t h e  system o f  e q u a t i o n s  r e p r e s e n t  
f o u r  p h y s i c a l  r e l a t i o n s  - c o n s e r v a t i o n  o f  mass, momentum and energy  and t h e  
e m p i r i c a l  e q u a t i o n s  o f  s ta te .  The working f l u i d  i s  assumed t o  be  i n c o m p r e s s i b l e  
and  Newtonian, r e p r e s e n t i n g  t h e  f low o f  p u r e  water o r  a t  wors t  a d i l u t e  aqueous 
s o l u t i o n  o f  m i n e r a l  sal ts  (see c h a p t e r  7 ) .  

Conserva t ion  o f  Mass 

The form of t h e  c o n t i n u i t y  e q u a t i o n  r e l e v a n t  t o  f l o w  through porous media 
is t h a t  g iven  by Aravin and Numerov (1965), namely 

where qi , as d e f i n e d  by E l d e r  (1966a) and Wooding (1957), i s  t h e  mean flux v e l o c i t y  
o f  t h e  f l u i d  th rough  t h e  medium which f i l l s  space  xi a t  time t . The mean f l u x  
v e l o c i t y  should  n o t  be  confused  w i t h  t h e  mean v e l o c i t y  of  t h e  f l u i d  th rough  t h e  
i n t e r s t i c e s  o f  t h e  porous medium. The f l u x  v e l o c i t y  i s  s m a l l e r  by a f a c t o r  m , t h e  
p o r o s i t y  of t h e  m a t e r i a l .  

Conserva t ion  o f  Momentum 

The u s u a l  form o f  t h e  Navier- Stokes e q u a t i o n  i s  modi f ied  by t h e  incorpo-  
r a t i o n  o f  t h e  experimental Darcy's L a w  (Yih 1 9 6 9 ,  p.379), r e p l a c i n g  t h e  v i s c o u s  
terms w i t h  te rms  t h a t  account  f o r  t h e  f low r e s i s t a n c e  o f  t h e  porous  material: 

Here Fi i s  t h e  buoyancy f o r c e ,  p i s  t h e  dynamic p r e s s u r e  i n  t h e  f l u i d ,  p i s  t h e  
dynamic v i s c o s i t y  o f  t h e  f l u i d  and k i s  t h e  p e r m e a b i l i t y  o f  t h e  medium. 
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The Wairakei geothermal formation has significantly anisotropic 
permeabilities with the horizontal permeability larger than the vertical 
permeability by a factor of approximately 10. However thrbughout most of the 
region these two properties are uniform so it is possible to use the same value 
for both and adjust the horizontal and vertical length scales accordingly. 
Beck (1972) has observed that the form (2.1.2) of the momentum equation is not 
always satisfactory due to the disparity between the order of the space derivatives 
in the equation and the usual number of boundary conditions, however for natural 
convective problems where inertia effects may be ignored this difficulty does not 
arise. 

Conservation of Energy 

Since the flow is slow and therefore predominantly determined by 
differences between boundary and fluid temperatures and not by energy dissipation 
effects, the 

= + x q i  at 

where X is 

appropriate form 

the ratio of the 
saturated formation, and KI- 

of the energy equation as given by Rubin (1974) is 

volumetric heat capacity of the fluid to that of the 
is the thermal dispersion tensor. The thermal 

dispersion tensor incorporates two properties of the system - firstly the molecular 
diffusivity and secondly the intrinsic dispersivity of the porous medium which is 
effectively a measure of the uncertainty that a particular small parcel of fluid 
will keep to a theoretically averaged mean flow path as it moves in a tortuous 
manner through the interstices of the material. The behaviour of a particle of 
fluid moving through a porous material is similar to that of a particle in a 
turbulent flow and the dispersivity may be envisaged as analogous to an eddy 
diffusivity. Dybbs and Schweitzer (1973) have produced a more rigorous derivation 
of the set of conservation equations for flow in a porous medium by defining the 
flow in the interstices and then averaging throughout the material, thus avoiding 
the use of the empirical Darcy’s Law (although this is a consequence in some cases). 
They arrive at a concept which they term the “convective diffusivity” but which is 
another representation of the intrinsic dispersivity. In a non-homogeneous 
porous medium the flow may be vigorous in certain areas and consequently dispersion 
effects surpass those of diffusion, so the thermal dispersion tensor must be 
represented in its complete form, including both longitudinal and lateral fluid 
dispersion. However for the very slow flows of natural convection in geothermal 
areas, dispersion effects are small and the thermal dispersion tensor reduces to 
the scalar molecular diffusivity K of the saturated porous material (Rubin 1974). 
Elder (1966a) and Combarnous (1972) both propose that an estimate of this term may 
be obtained from 

L J  

where m is the porosity of the rock. In general the thermal diffusivity is 
neither constant nor isotropic in geothermal areas, but for simplicity it is taken 
to be so. At Wairakei the difference in horizontal and vertical permeabilities 
means that diffusion may also be less in the vertical direction however as was 
observed earlier this difficulty may be avoided by vertically ”stretching” the 
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solutions obtained using an isotropic diffusivity. The variation of thermal 
diffusivity throughout the various geological formations which make up the system 
is difficult to determine and since the exact geophysical structure is unknown 
there is no other choice but to assume a constant value. Previous authors have 
taken K to represent the thermal diffusivity of the medium alone, but Katto and 
Masuoka (1967) showed that the form (2.1.4) is required to obtain agreement between 
theoretical and experimental results. Combarnous (1972) has found experimentally 
that the heat transfer coefficients are characteristic of the particular fluid and 
medium, and it is hoped that the incorporation of both solid and liquid terms takes 
account of this difficulty. The effect of the thermal conductivity of the satura- 
ting fluid on the heat transfer in a porous medium has also been observed by 
Maksimov and Stradomskii (1971). 

The Equations of State 

The fluid properties which may vary with temperature are the viscosity 
and the density, and it is necessary to use empirical formulae to represent the 
relationships between these quantities. Different representations have been used 
in the past, most authors - Horton and Rogers (1945), Lapwood (1948), Wooding (1957), 
McNabb (1965), Donaldson (1962), Elder (1967 a & b) etc. - used a linear relation- 
ship for density and assumed that the viscosity was constant. Elder (1966a) has 
considered temperature dependent viscosity but without recording what effect this 
would have on the flow. For a temperature differential of 250°C the viscosity of 
water varies by a factor of approximately 10, so the assumption of constant 
viscosity is seemingly inappropriate in a geothermal context, and furthermore the 
variation of density in this range is more closely quadratic. Thus the fluid 
density is better described by 

and the viscosity by 

v z -  "0 
,

l+bl(T-To)+b2(T-To)2+b3(T-To)3 
(2.1.6) 

where al is the more commonly used linear coefficient of thermal expansion of the 
fluid. 

The Boussinesq Approximation 

It is usual in convection problems, as for example in Yih (1969 p.441), 

Torrance (1968), Wooding (1957) and Nield (1968), to invoke the Boussinesq approxi- 
mation by assuming that the variation of fluid density need only be considered in 
buoyancy terms; in the inertia and continuity terms the density is taken to be 
constant. For steady state analyses (e.g. Donaldson 1962) the Boussinesq 
approximation is unnecessary as all the density terms may be combined into the 
fluid velocity terms to create "mass transfer" equations. I n  such a case the 
kinematic viscosity replaces the dynamic viscosity and the mass flux replaces the 
flux velocity, but otherwise the equations are essentially the same as they would 
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be if the Boussinesq approximation were used, Thus the net effect of the 
Boussinesq approximation on the complete transient equations is an unimportant 
change in the viscosity term (for water the dynamic and kinematic viscosities are 
almost the same at most temperatures) and a misrepresentation of the terms 

in the continuity equation. 

If the change in temperature relative to the absolute temperature in any 
part of the fluid is small, the change in density is an order of magnitude less and 
can be neglected as far as continuity is concerned. 

Since the thermal diffusivity is a function of thermal conductivity, 
density and heat capacity, then it is a further consequence of the Boussinesq 
approximation that this quantity is also constant. 

Thus, invoking Boussinesq and substituting for the buoyancy terms, the 
equations become 

(2.1.8) 

(2.1.9) 

where the Laplacian V z  2 x2 + q 2  + 2 2  .

Order of Magnitude Analysis 

At this stage the momentum equations may be simplified further after 
comparison of the relative magnitudes of the separate terms. If U is a 
representative velocity of the fluid passing through the interstices of the porous 
material, and d is a length representative of those interstices, then for the 
inertia, viscous, pressure and buoyancy terms respectively, 
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The ratio of inertial to viscous terms is then of order !!?$! , and for 
flows in which this parameter (the Reynolds number) is much less than unity, the 
inertia terms may be neglected. This condition is satisfied for the slow percola- 
tion of water through soil (Batchelor 1967 p.223) and also for natural convective 
flows. Elder (1966a) observes that with a maximum flux 
and a gap size of 1 mm, the Reynolds number is typically 
should also be remembered that a low Reynolds number was 
assumptions made earlier, that dispersion effects may be 
Law is valid. 

velocity of IO-’ cm/sec 
of the order It 
a prerequisite f o r  the 
ignored and that Darcy’s 

As a consequence of Darcy‘s Law, the pressure and viscous terms are of 
similar order of magnitude, and the appearance of convective flows in this problem 
indicates that the buoyancy effects are capable of overcoming viscous dissipation 
and therefore both pressure and buoyancy terms must remain in the momentum equation. 
By this argument, equations (2.1.8) reduce to 

g.(--) + 1 gi + ; qi = 0 
P-Po 

Po Po 
(2.1.10) 

Non-Dimensionalisation 

The equations may now be expressed in non-dimensional form, following a 
similar analysis to that of Torrance (1968), by introducing the new variables 

xi - -- - xi 
a ’  

T -T T-To e = O  - - -  
T1-To AT ,

after which the equations become 

- au  axi = 0 

where now V 2  f m2 + x? + E 2  .
a 2  a 2  a *  
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Introducing the relations 

and expressing the density and viscosity variations in full, 

p a  = 1 - al(9.AT) - a2(9.AT)' , 

and V* = 3 - 6 3 ,  

then the momentum equations become, 

ap = Ri 
giala2AT v0aZ ui 

(8+ae2) - - 
K 2  

k~ ' (2.1.16) 

Redefining P* = P , w 
and rewriting (2.1.16), dropping the stars immediately for convenience, then 

where R is known as the Rayleigh number and is defined by 

This definition differs to that of earlier authors (e.g. Elder 1966a) due to the 
inclusion of the term h which is necessary for the correct representation of the 
heat content of the solid/liquid combination. Equations (2.1.11), (2.1.17) and 
(2.1.13) are now the governing equations of the flow, 

The Rayleigh Number 

As R increases from below a critical value of Rc ( 4 r 2  for the region 
considered by Lapwood 1948), the flow process changes from conduction to convection. 
This transition has already received some attention from Katto and Masuoka (1967) 
Westbrook (1969), Beck (1972) and Busse and Joseph (1972) and is not of particular 
interest in this investigation. However the second transition discovered by 
Combarnous and Le Fur (1969) in the range 240-280 has been shown by Caltagirone 
et al. (1971) to mark the first appearance of the fluctuating convective state. 

This transition is below the range of values of R that is considered 
likely in geothermal regions (103-104). The uncertainty in this figure is due to 
the difficulty in determining the medium properties at depth. A range of values 
between 0 and 2000 is considered here as this includes both known regime transitions. 
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It should  be no ted  t h a t  t h e  Rayle igh  d e f i n e d  by (2.1.18) i s  based  upon 
t h e  c o l d  water  v i s c o s i t y ,  as  h a s  g e n e r a l l y  been t h e  case i n  model l ing  o f  hydro-  
thermal  systems.  However t h e  added c o m p l i c a t i o n  o f  v a r i a b l e  v i s c o s i t y  g i v e s  t h e  
Rayle igh  number a new meaning; w i t h  a tempera ture  d i f f e r e n t i a l  of 250°C t h e  
e f f e c t i v e  l o c a l  Rayle igh  number close t o  t h e  h e a t e r  may be t e n  times t h e  a p p a r e n t  
" co ld  water" v a l u e .  T h e r e f o r e  i n  s o l u t i o n s  g e n e r a t e d  u s i n g  a v a r i a b l e  v i s c o s i t y  
model t h e  Rayle igh  number c o n s i d e r e d  must be much s m a l l e r  t o  m a i n t a i n  t h e  
c h a r a c t e r  o f  t h e  f lows ( t o  m a i n t a i n  c o n s i s t e n c y  w i t h  p r e v i o u s  work a l l  t h e  v a l u e s  
c i t e d  above are f o r  t h e  c o n s t a n t  v i s c o s i t y  case).  

2 . 2  BOUNDARY CONDITIONS 

There are  two t y p e s  of boundary c o n d i t i o n s  t o  be employed h e r e ,  t h e r m a l  
c o n d i t i o n s  ( t e m p e r a t u r e )  and f l u i d  c o n d i t i o n s  ( v e l o c i t y  and p r e s s u r e ) .  The f l u i d  
boundar ies  are a l s o  d i v i d e d  i n t o  two sub- types ,  enc losed  boundar ies  and t h o s e  
th rough which f l u i d  may p a s s  f r e e l y  ( h e r e a f t e r  kncwn as r e c h a r g e  b o u n d a r i e s ) .  

Temperature Condi t ions  

Heat i n p u t  a t  t h e  b a s e  i s  achieved  by u s i n g  a n  i s o t h e r m a l  c o n d i t i o n  

A t  ground l e v e l  h e a t  i s  l o s t  by c o n v e c t i v e  t r a n s f e r  t o  t h e  atmosphere 
a t  a ra te  p r o p o r t i o n a l  t o  t h e  d i f f e r e n c e  between t h e  ground and a i r  t e m p e r a t u r e s ,  

where kc i s  t h e  c o n d u c t i v i t y  of t h e  f l u i d  s a t u r a t e d  material and h i s  t h e  
c o n v e c t i v e  h e a t  loss c o e f f i c i e n t .  Now fo r  a s a t u r a t e d  medium kc i s  t y p i c a l l y  
3 x cal/cm/sec/°C , f o r  a h o r i z o n t a l  ground s u r f a c e  h i s  o f  t h e  o r d e r  o f  
2 x l o 2  cal/cm2/sec/OC and i n  geothermal r e g i o n s  t h e  average  t e m p e r a t u r e  g r a d i e n t  
is o f  o r d e r  5 x O C / c m .  T h e r e f o r e  t o  main ta in  a ba lance  between t h e  two 
t y p e s  of  h e a t  t r a n s f e r  i n  ( 2 . 2 . 2 ) ,  t h e  t e m p e r a t u r e  d i f f e r e n c e  between ground and 
a i r  must be ex t remely  small. I t  i s  found i n  c a l c u l a t i o n s  u s i n g  t h e  e x a c t  
c o n d i t i o n  t h a t  f o r  a c l o s e d  s u r f a c e  t h e  maximum tempera ture  g r a d i e n t  a T  1 y = l  i s  
such t h a t  (T-To)  i s  a t  most o f  o r d e r  lo-' OC whi le  f o r  r e c h a r g e  s u r f a c e s  it may 
r e a c h  O C .  T h e r e f o r e  it i s  s a t i s f a c t o r y  t o  employ a s i m p l e r  boundary 
c o n d i t i o n  T=To or e = O  , as i f  t h e  atmosphere were an i n f i n i t e  h e a t  s i n k .  

The impermeable s i d e  walls c o n f i n i n g  t h e  porous r e g i o n  are o f  r e l a t i v e l y  
low thermal  c o n d u c t i v i t y ,  p a r t i c u l a r l y  f o r  f lows  i n  which c o n v e c t i v e  h e a t  t r a n s f e r  
may be expec ted  t o  dominate,  as i s  t h e  c a s e  f o r  Rayleigh numbers above Rc . 
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There fo re  t h e s e  v e r t i c a l  walls a c t  approximate ly  l i k e  i n s u l a t e d  boundar ies  
and t h e  t empera tu re  g r a d i e n t  normal t o  t h e  boundary i s  taken t o  be z e r o .  Th i s  z e r o  
g r a d i e n t  c o n d i t i o n  a l lows  t h e s e  boundar ies  t o  be cons ide red  l i n e s  o f  symmetry i n  
which c a s e  t h e  r e g i o n  may be imagined t o  be extended i n  e i t h e r  d i r e c t i o n  normal t o  
t h e  boundary by t h e  a d d i t i o n  o f  "mirror-images" o f  t h e  f low w i t h i n  t h e s e  boundar ies .  

Enclosed Boundaries 

The s i m p l e s t  and most commonly cons ide red  model i s  t h a t  having  c l o s e d  
boundar ies .  I n  t h i s  ca se  t h e  f low of f lu id  i n t o  o r  o u t  o f  t h e  problem r e g i o n  i s  

p r o h i b i t e d  by r e q u i r i n g  t h a t  t h e  v e l o c i t y  normal t o  a l l  boundar ies  be ze ro .  T h i s  
c o n f i g u r a t i o n  i s  n o t  an a c c u r a t e  r e p r e s e n t a t i o n  o f  Wairakei  o r  o f  t h e  many o t h e r  
real  systems where groundwater f low does occu r  nea r  t o  t h e  s u r f a c e  and p o s s i b l y  
also a t  t h e  base  o f  t h e  format ion .  However below t h e  s u r f a c e  t h e  Waiora a q u i f e r  
a t  Wairakei  i s  o v e r l a i n  by t h e  less permeable Huka F a l l s  a q u i t a r d ,  so t h e  c l o s e d  
boundary model does  have some p r a c t i c a l  foundat ion .  Its main use  however i s  i n  
p rov id ing  a comprehensive array of s o l u t i o n s  t h a t  may be  compared t o  t h e  many 
earl ier  expe r imen ta l  a n a l y s e s  for such a r eg ion  ( i n  p a r t i c u l a r  t h e  uns t eady  
s o l u t i o n s  o f  C a l t a g i r o n e  e t  a l .  1971), and which p rov ide  an i n s i g h t  i n t o  t h e  f low 
p r o c e s s e s  w i thou t  unnecessary  compl i ca t ions .  

eotherm 

Recharge Boundaries 

F l u i d  may en t e r  or l e a v e  g la1 ar seas by e i t h e r  n . a t u r  'a1 or a r t i f i c i a l  
p roces ses .  A t  Wairakei  t h e r e  i s  s i g n i f i c a n t  n a t u r a l  d i s c h a r g e  and r e c h a r g e  o f  
s u r f a c e  wa te r ,  a t  a r a t e  of 440 kg / sec  ( F i s h e r  1964). The a r t i f i c i a l  removal o f  
f l u i d  through bo reho le s  t a k e s  p l a c e  a t  rate 4-5 t imes  t h a t  o f  t h e  n a t u r a l  d i s c h a r g e  
and p rov ides  t h e  fundamental  means of energy r e t r i e v a l  from t h e  system. With such 
prominent f lows as t h e s e  it i s  d e s i r a b l e  t o  avo id  t h e  r e s t r i c t i o n  o f  a c l o s e d  
boundary model and a l l ow f l u i d  t o  f low f r e e l y  i n t o  o r  o u t  o f  t h e  upper  boundary o f  
t h e  model. T h i s  r e p r e s e n t s  t h e  n a t u r a l  c o n d i t i o n s  and p rov ides  a r e c h a r g e  sou rce  
f o r  t h e  f l u i d  s i n k s  i n  t h e  models o f  t h e  e x p l o i t e d  f i e l d  t h a t  a r e  cons ide red  la ter .  
Such a n a t u r a l  r echa rge  c o n d i t i o n  h a s  been modelled p r e v i o u s l y  i n  t h e  quas i- s t eady ,  
low Rayle igh  number a n a l y s i s  by E l d e r  (1967a) and a more a r t i f i c i a l  c o n d i t i o n  by 
Donaldson (1962) who cons ide red  a s p e c i f i c  s u r f a c e  ou t f low.  

The r echa rge  c o n d i t i o n  i s  i n c o r p o r a t e d  by s p e c i f y i n g  t h a t  t h e  p r e s s u r e  
a t  t h e  s u r f a c e  i s  uniform ( i . e .  a tmosphe r i c )  and it i s  then  a consequence o f  
Darcy ' s  L a w  ( e q u a t i o n  2.1.2) t h a t  t h e  v e l o c i t y  t a n g e n t i a l  t o  t h e  h o r i z o n t a l  s u r f a c e  
i s  ze ro .  
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2.3 TWO-DIMENSIONAL REGIONS 

Justification 

As has been described in section 1.2, the Wairakei geothermal system is 
situated in a trench of porous rock that is much longer than it is wide or deep. 
Taking the length of the rectangular trench model to be infinite, and assuming that 
the flow is unvarying in this dimension, allows the governing equations to be 
redefined in only two dimensions, although this must be done with caution. Beck 
(1972) has used an energy method to show that at low Rayleigh numbers just above the 
critical value, the most favoured mode of flow in a box of porous material would be 
two-dimensional ro l l s .  This has been confirmed for long regions by Holst and Aziz 
(1972b) at higher Rayleigh numbers, but it is not certain that this would always be 
so.  For wider porous layers Bories, Combarnous and Jaffrenou. (1972) have found 
experimentally that as the Rayleigh number is increased the preferred mode is 
initially polyhedral cells, and only later as the Rayleigh number increases above 2 8 0  

are purely two-dimensional effects (unsteady rolls) observed. These fluctuating 
two-dimensional rolls have been frequently reported in three-dimensional experimental 
regions by various French authors - Caltagirone et al. (1971), Combarnous and Bia 
(1971), Bories, Combarnous and Jaffrenou (1972) and Bories and Combarnous (1973), and 
as these unsteady solutions are of particular interest in this work it is legitimate, 
at least for the initial appraisal of the problem, to use a simplified two- 
dimensional form of the governing equations. Three-dimensional effects undoubtedly 
do occur in both the real situation and in theoretical models, as has been shown 
numerically by Holst and Aziz (1972b), experimentally by Bories and Thirriot (1969) 
and analytically by Straus (1974), therefore for completeness a three-dimensional 
exploration of the two-dimensional solutions is necessary. However, the two- 
dimensional flows are more simply and more economically simulated and therefore have 
been more extensively studied here than the three-dimensional flows. 

The Governing Equations 

The equations of motion written in two-dimensional form are 

E , -  a v = o ,  ax ay 

ap  - ax - m  ’ - _  U 

- a p  = (e+aeZ) - ay  
V 

B o ’  

and = V 2 8  - A(U + V m )  , 
a T  ax 

ae 

where now Q 2  E a 2  a ’  
R2 , z2 * 

The pressure may be eliminated from (2.3.2) and (2.3.3) by cross-differentiation and 
subtraction, reducing the equations to 
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Now, the continuity equation ( 2 . 3 . 1 )  may be satisfied identically 
usual way (Yih 1969 p . 1 4 )  by defining a stream function JI , such that 

in the 

2.3.6) 

after which (2.3.5) becomes 

Stream Function Equation Reformulation 

Although in this form (2.3.7) and (2.3.8) are a suitable pair of governing 
equations for the flow, it turns out that the products of first derivatives in 
(2.3.7) are in a form that is difficult to represent satisfactorily numerically (see 
section 4.2) so it is beneficial to reformulate them replacing (2.3.7) by coupled 
equations in and P . 

The non-linear terms 

in (2.3.7) originate from the term 

in (2.3.5) which may be rewritten in Jacobian form as 

by substitution of U and V from (2.3.2) and (2.3.3). If (2.3.2) and (2.3.3) are 
differentiated and added then, by using (2.3.1) also, a single equation for the 
pressure is obtained, 

If P is now scaled by a factor A/R then (2.3.7) finally becomes 
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The pressure is defined by 

and the same heat transport equation (2.3.8) completes the governing set of three 
equations. 

The Constant Viscosity Model 

A special case of these equations is the simple linearly dependent density 
and constant viscosity model which has a2 zero and bl,b2 and b3 all zero. This 
means that a-0 , B(81-1 and B’(8)=0 , therefore equation (2.3.7) reduces to 

v2JI = - a 
a e  (2.3.11) 

and there are just two governing equations again since the heat transport equation 
(2.3.8) is unchanged and the pressure equation (2.3.10) is now no longer needed since 
the reformulation of the stream function equation (2.3.7) is unnecessary. 
Alternatively the stream function may be eliminated in favour of a pressure formula- 
tion although this is harder to represent numerically. Whichever formulation is 
used, this simpler model produces results that are qualitatively similar to the more 
precise variable viscosity model (see section 5.5) which requires a more complicated 
numerical solution technique. 

Thermal Boundary Conditions 

The heat input distribution at the lower boundary is represented as a 
fraction f of the base held at an elevated temperature 8=1 and the remainder at 
the lower temperature 8 3 0  . Thus the form of the thermal boundary conditions 
introduced in section 2.2 that is relevant to two-dimensional regions is 

on the horizontal boundaries and 

on the insulated vertical boundaries. 

(2.3.12) 

(2.3.13) 

(2.3.14) 



Fluid Boundary Conditions 

As a consequence of (2.3.6), the zero normal velocity condition on 
impermeable boundaries implies that the stream function is constant (arbitrarily 
zero) , 
$ =  0 on all closed boundaries. 

Furthermore the zero tangential velocity on recharge boundaries implies that the 
gradient normal to these boundaries is zero, 

3 = 0 on (horizontal) open boundaries. 

Pressure Boundary Conditions 

When using the variable viscosity model a set of pressure boundary 
conditions is also required, for the solution of (2.3.10). These conditions are 
derived from the substitution of the fluid boundary conditions into (2.3.2) and 
(2.3.3) and are 

g = o  on vertical boundaries, 

and P = O  on recharge horizontal boundaries. 

Boundary conditions for a simple, enclosed, two-dimensional, constant 
viscosity model are illustrated in figure 2.3.1. 

Y 

t 
st.0 

$4.0 
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Taking the divergence of (2.4.2) and substituting continuity (2.4.1) 

v2p = R ae  x aY, 

or scaling the pressure by , 

The velocity vector may be eliminated between (2.4.2) and (2.4.3) such that 

These last two equations are then the governing pair for the problem, in a form 
described here as the pressure f o r m u t a t i o n .  For  reasons which are explained later 
(section 4.2) this form is not always satisfactory for numerical representations. 

The Vector Potential Formulation 

Due to the solenoidal form of I! in (2.4.1), there is an alternative 
formulation described by Holst and Aziz  (1972b), in which a vector potential 9 
may be introduced such that 

K v = v.9 x (2.4.6) 

Then, taking the curl of equation (2.4.2), 

Now, from its definition 9 is arbitrary to the gradient of a scalar, 
hence it is possible to specify 

V.? = 0 

in the identify VxVxt = v(v.t) - v*? , 

whence ae ae  VZf = (E , 0,  - =I .  (2.4.7) 

Boundary Conditions 

As in the two-dimensional formulation the boundary conditions on the 
pressure are, for closed boundaries 

where 5 i s  an outward pointing normal, and for recharge boundaries 

P = O .  (2.4.9) 
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The Heated Fraction f 

The v a l u e  o f  t h e  parameter  f i s  s i g n i f i c a n t  i n  t h i s  i n v e s t i g a t i o n  as  
t h e  v a r i a t i o n  of t h e  lower t e m p e r a t u r e  d i s t r i b u t i o n  h i g h l i g h t s  t h e  i n f l u e n c e s  t h a t  
boundary c o n d i t i o n s  have on t h i s  p a r t i c u l a r  t y p e  o f  flow problem, These e f f e c t s  
have n o t  so f a r  been r e p o r t e d  by o t h e r  a u t h o r s .  When f=l  t h e  boundary i s  uni formly  
h e a t e d ,  which i s  t h e  c lass ic  c o n f i g u r a t i o n  c o n s i d e r e d  f o r  e i t h e r  t h e  e n c l o s e d  o r  
t h e  s e m i- i n f i n i t e  porous  l a y e r  by Horton and Rogers (1945),  Lapwood (1948) ,  Wooding 
(1957) ,  Donaldson ( 1 9 6 2 ) ,  McNabb (1965), E l d e r  (1966a, 1967 a & b ,  1968), K a t t o  and 
Masuoka (1967), Westbrook (1959), Combarnous and Le Fur (1969), Combarnous (1970), 
Bories and T h i r r i o t  (1969), Combarnous and Bia (1971),  C a l t a g i r o n e  e t  al. (1971), 
Palm, Weber and Kvernvold (1972), Beck (1972), Busse and Joseph (1972) ,  Holst and 
Aziz (1972 a & b ) ,  Gupta and Joseph  (1973),  Combarnous and Bories (1974), Yen (1974) 
and  S t r a u s  (1974) .  I n  t h i s  form t h e  problem i s  symmetrical  and l e n d s  i t s e l f  wel l  
t o  s e v e r a l  d i f f e r e n t  methods o f  s o l u t i o n ,  and t h e  a u t h o r s  r e f e r e n c e d  above have used  
a v a r i e t y  o f  e x p e r i m e n t a l ,  numer ica l  and a n a l y t i c a l  t e c h n i q u e s .  Although t h i s  
un i formly  h e a t e d  problem h a s  been e x t e n s i v e l y  i n v e s t i g a t e d ,  t h e  r a n g e  o f  s o l u t i o n s  
i s  n o t  y e t  e x h a u s t i v e .  I n  p a r t i c u l a r  t h e  c o n t r a d i c t o r y  e x p e r i m e n t a l  r e s u l t s  o f  
C a l t a g i r o n e  e t  a l .  (1969) and Yen ( 1 9 7 4 )  s u g g e s t  f u r t h e r  examination o f  t h e  problem. 

D e s p i t e  t h e  a t t e n t i o n  p a i d  t o  it t h e  uniform h e a t  i n p u t  boundary 
c o n d i t i o n  may be o f  l i m i t e d  p r a c t i c a l  s i g n i f i c a n c e  s i n c e t h e  n a t u r e  o f  t h e  p h y s i c a l  
h e a t  s o u r c e  i s  unknown, b u t  may n o t  be so b e n e v o l e n t l y  uniform. I f  t h e  lower  
boundary i s  h e a t e d  non-uniformly ( i . e .  f < 1) the  symmetry of t h e  un i form problem 
is lost  and t h e  range  of s o l u t i o n  t e c h n i q u e s  i s  r e s t r i c t e d  t o  numer ica l  o r  e x p e r i-  
menta l  s i m u l a t i o n s .  

2 . 4  THREE-DIMENSIONAL REGIONS 

The Governing Equat ions  - P r e s s u r e  Formulat ion 

The s o l u t i o n  o f  t h e  f u l l  th ree- dimens iona l  e q u a t i o n s  n u m e r i c a l l y  i s  a 
v e r y  t ime  consuming procedure  and it i s  t h e r e f o r e  e x p e d i e n t  t o  use  t h e  s i m p l e s t  
p o s s i b l e  form o f  t h e  govern ing  e q u a t i o n s .  T h e r e f o r e  t h e  assumption o f  c o n s t a n t  
v i s c o s i t y  i s  made and t h e  e q u a t i o n s  (2.1.11), ( 2 . 1 . 1 7 )  and (2.1.13), r e w r i t t e n  i n  
v e c t o r  form, become 

0 . u  = 0 , -. 

where i i s  t h e  u n i t  v e c t o r  p o i n t i n g  v e r t i c a l l y  upwards, 
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I n  t h e  e n c l o s e d  r e g i o n  t h e  boundary c o n d i t i o n s  on t h e  f low f i e l d  a re ,  as 
b e f o r e ,  t h a t  t h e  v e l o c i t y  normal t o  t h e  boundary i s  zero .  For i n s t a n c e  on t h e  
p l a n e s  X=O,l t h e  v e l o c i t y  component U i s  z e r o ,  which from e q u a t i o n  (2 .4 .6)  
i m p l i e s  t h a t  p o t e n t i a l  components o 2  and $ 3  are l i n e a r  f u n c t i o n s  o f  z and Y 
r e s p e c t i v e l y .  Following around t h e  remain ing  boundary p l a n e s  and a v o i d i n g  i n c o n s i s -  
t e n c i e s  on t h e  edges  it t u r n s  o u t  t h a t  $2 and b 3  must bo th  be c o n s t a n t  
( a r b i t r a r i l y  z e r o )  on X=O,1 . Due t o  t h e  s o l e n o i d a l  p r o p e r t y  of it i s  t h e n  a 
consequence t h a t  t h e  normal g r a d i e n t  of must a l s o  be zero .  Thus f o r  a c u b i c  
r e g i o n  the boundary c o n d i t i o n s  on a r e ,  

ao  
5x1 = o2  = o 3  0 x = 0,1, 

Y = 0,1, 

z = 0,1, 

(2.4.10) 

f o r  c l o s e d  b o u n d a r i e s ,  whi le  on a h o r i z o n t a l  r e c h a r g e  boundary 

As a consequence of e q u a t i o n  ( 2 . 4 . 7 )  and t h e  boundary c o n d i t i o n s  (2 .4 .10)  t h e  
component o 2  of t h e  v e c t o r  p o t e n t i a l  i s  z e r o  everywhere w i t h i n  t h e  r e g i o n .  Thus 
t h e  f i n a l  form of t h e  v e c t o r  p o t e n t i a l  e q u a t i o n s  may now be w r i t t e n  

2.5 FLUID SINKS AND SOURCES

S i n k s  on Vertical  Boundaries  

Should a f l u i d  s i n k  (or s o u r c e )  be p r e s e n t  i n  a two-dimensional  r e g i o n ,  
f u r t h e r  c o n d i t i o n s  a r e  n e c e s s a r y  t o  i n c l u d e  it i n  t h e  model. The s i m p l e s t  case i s  
a s i n k  o f  s t r e n g t h  q on one of t h e  v e r t i c a l  b o u n d a r i e s ,  say  a t  a p o i n t  (O,Yo), t h e n  
t h e  boundary c o n d i t i o n  i s  

$ l x = o  = - 9 Y o < Y ( l  , (2 .5 .1)  

r e s u l t i n g  i n  a normal v e l o c i t y  o f  
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and a volume d i s c h a r g e  o f  

C l e a r l y  i f  JI i s  s t i l l  zero  a t  t h e  t o p  o f  t h e  v e r t i c a l  boundary on which 
t h e r e  i s  no s i n k ,  t hen  t h e  c o n d i t i o n  (2.5.1) i s  on ly  v a l i d  i f  JI i s  v a r i a b l e  a long  
t h e  t o p  h o r i z o n t a l  boundary. The re fo re  it i s  always neces sa ry  t o  i n c l u d e  a 
r e c h a r g e  boundary a t  t h e  s u r f a c e  i f  a s i n k  i s  p r e s e n t ,  i n  o r d e r  t o  a l l o w  t h e  
s a t i s f a c t i o n  o f  o v e r a l l  conse rva t ion  o f  mass. 

Sinks  or Sources  Within t h e  Boundaries 

If t h e  s i n k  l ies  s t r i c t l y  i n s i d e  t h e  r eg ion ,  s a y  a t  a p o i n t  (Xo ,Yo) ,  t h e n  
a n  a l t e r n a t i v e  f o r m u l a t i o n  i s  r e q u i r e d .  Using t h e  c o n s t a n t  v i s c o s i t y  model 

e q u a t i o n s  as a b a s e ,  bu t  w i thou t  i n t r o d u c i n g  t h e  stream f u n c t i o n ,  t h e n  t h e  governing  
e q u a t i o n s  become: 

where g(X,Y) r e p r e s e n t s  f low t o  t h e  s i n k ,  

m = - u ,  ap 

ap = * e - v ,  R 

( 2 . 5 . 5 )  

( 2 . 5 . 6 )  

and E = v z e  - a [ U  x + v = I  . ae  a e  ae  ( 2 . 5 . 7 )  

The boundary c o n d i t i o n s  a r e  s t i l l  t h a t  U i s  ze ro  on t h e  v e r t i c a l  
bounda r i e s ,  V i s  zero  on t h e  lower h o r i z o n t a l  boundary and P is z e r o  on t h e  
upper  ( r e c h a r g e )  h o r i z o n t a l  boundary. 

I n  o r d e r  t o  accommodate t h e  s i n g u l a r  n a t u r e  o f  t h e  f low t h e  v e l o c i t y  
f i e l d  i s  s e p a r a t e d  i n t o  p a r t s ,  one which d e f i n e s  t h e  f low o f  f l u i d  i n t o  a p o i n t  s i n k  
i n  an  i n f i n i t e  space  and a n o t h e r  which both r e p r e s e n t s  t h e  convec t ive  f low and 
s a t i s f i e s  t h e  f i n i t e  p h y s i c a l  boundary c o n d i t i o n s .  These two f i e l d s  a r e  super-  
posed such t h a t  

where u and v a r e  t h e  s i n k  v e l o c i t i e s  and obey t h e  r e l a t i o n s h i p  
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The v e l o c i t i e s  u‘ and y c  must t h e n  s a t i s f y  

and be c o n s i s t e n t  w i t h  t h e  modi f ied  boundary c o n d i t i o n s  t h a t  are a s u p e r p o s i t i o n  of 
t h e  r e a l  c o n d i t i o n s  and t h e  f a l se  boundary f l u x  due t o  u and v . 

The stream f u n c t i o n  may t h e n  be d e f i n e d  as b e f o r e ,  e x c e p t  t h a t  now 

u *  : E 9 
A ay 3 

and = - ?!k , A ax 

and t h e  f low e q u a t i o n  becomes 

The h e a t  t r a n s p o r t  e q u a t i o n  ( 2 . 5 . 7 )  i s  t h e n  

The stream f u n c t i o n  boundary c o n d i t i o n s  are, on t h e  t h r e e  c l o s e d  
boundar ies  

$I = g(X,Y) , (2.5.10) 

and on t h e  t o p  r e c h a r g e  boundary 

For a p o i n t  s i n k  o f  s t r e n g t h  q a t  l o c a t i o n  ( X o , Y o )  t h e  s i n k  f l o w  i s  
d e f i n e d  by 

Y-Yo 
where tan0  = - x-xo . , rd = ( X - X ~ ) ’  + ( Y - Y ~ ) ’  , (2.5.13) 

and g(X,Y) = - & ( -2 - 2 )  . 2 

rO 
(2.5.14) 

A t  t h e  s i n k  p o i n t  ( X o , Y o )  , u and v are undef ined  and g(X,Y) has  a s i n g u l a r i t y ,  
so it is n e c e s s a r y  t o  t a k e  s p e c i a l  p r e c a u t i o n s  when r e p r e s e n t i n g  t h i s  p o i n t .  T h i s  
may be done by s p e c i f y i n g  



at the singularity. These two relationships are consequences of the zero net 
production of thermal energy and zero net increase in vorticity at the sink. 
Alternatively this difficulty may be evaded, where finite difference methods are 
used, by placing the sink at a location that lies strictly between nodes of the 
grid. 
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Chapter 3 - EXPERIMENTAL SOLUTION I N  

TWO-DIMENSIONAL REGIONS 

The Exper imenta l  Analogy 

The two-dimensional flow of f l u i d  th rough  a porous medium i s  d i r e c t l y  
ana logous  t o  t h e  f low i n  a Hele-Shaw c e l l  (Wooding 1960). It i s  shown by Yih 
( 1 9 6 9  p . 3 8 2 )  t h a t  t h e  mean f low i n  a Hele-Shaw c e l l  w i t h  p l a t e  s e p a r a t i o n  b p r o v i d e s  
a s i m p l e  ana logy  t o  t h e  mean seepage f low through  a material w i t h  p e r m e a b i l i t y  
k = b /12. Given then. t h a t  a f l u i d  moves s i m i l a r l y  th rough  t h e  two sys tems ,  it 
remains  t o  e s t a b l i s h  t h a t  t h e y  are a l s o  t h e r m a l l y  comparable. This  i s  n o t  s t r i c t l y  
so as h e a t  i s  i n e v i t a b l y  l o s t  t o  t h e  sur roundings  th rough  t h e  g l a s s  p l a t e s  of t h e  
Hele-Shaw c e l l ,  i n t r o d u c i n g  t e m p e r a t u r e  g r a d i e n t s  i n  t h e  t h i r d  s p a t i a l  d i r e c t i o n ,  
and a l s o  t h e  h e a t  t r a n s f e r  between s o l i d  and l i q u i d  phases  i s  d i f f e r e n t  i n  t h e  
porous medium. However, t h e  v o l u m e t r i c  r a t i o  of s o l i d  t o  l i q u i d  i s  similar, and 
by scanning  t h e  Bele-Shaw c e l l  w i t h  an  i n f r a - r e d  "Thermovision" camera it was 
found t h a t  t h e  mean tempera ture  th rough  t h e  t h i c k n e s s e s  o f  t h e  g l a s s  and t h e  water 
i s  comparable w i t h  t h e  mean t e m p e r a t u r e  a t  a similar p o i n t  i n  a f l u i d  s a t u r a t e d  
porous  medium a s  r e p o r t e d  by C a l t a g i r o n e  e t  a l .  (1971). Thus a l t h o u g h  t h e  p l a t e  
i n s u l a t i o n  i s  n o t  complete and t h e  ana logy  t h e r e f o r e  o n l y  an  approximate one ,  t h e  
a p p a r a t u s  i s  u s e f u l  f o r  i n d i c a t i n g  s a l i e n t  f e a t u r e s  o f  t h e  f low. 

Experimental  D e t a i l s  

The c e l l  i s  h e a t e d  a l o n g  i t s  b a s e  by a copper  h e a t i n g  j a c k e t  th rough  which 
hot  water i s  p a s s e d  a t  a c o n s t a n t  r a te  f o r  t h e  d u r a t i o n  o f  t h e  exper iment .  Two 
i n p u t  c o n f i g u r a t i o n s  a r e  c o n s i d e r e d ,  a f u l l y - h e a t e d  and a h a l f- h e a t e d  lower  boundary,  
or f = 1 . 0  and f = 0 . 5  r e s p e c t i v e l y .  

Ti-.e upper  boundary is a f r e e  s u r f a c e  and i s  t h e r e f o r e  a s t r e a m l i n e  o f  t h e  
flow. S ince  t h i s  s u r f a c e  does  n o t  n o t i c e a b l y  a l t e r  shape from i t s  i n i t i a l  rest 
c o n d i t i o n  d u r i n g  t h e  exper iments ,  t h e  upper boundary i s  analogous to t h e  c l o s e d  
h o r i z o n t a l  s u r f a c e  i n  t h e  models proposed i n  s e c t i o n  2 . 2 .  Heat i s  lost  t o  t h e  a i r  
s p a c e  a t  t h e  t o p  o f  t h e  c e l l  and t h e  s u r f a c e  remains approximate ly  i s o t h e r m a l  f o r  
t h e  d u r a t i o n  of t h e  exper iments .  Motion o f  t h e  water i n  t h e  c e l l  i s  d e t e c t e d  by 
t h e  i n j e c t i o n  o f  dye th rough  small h o l e s  i n  one o f  t h e  p l a t e s ,  g e n e r a t i n g  s t r e a k l i n e s  
which a r e  u n f o r t u n a t e l y  r a t h e r  d i f f u s e  due t o  t h e  g r a d u a l  n a t u r e  o f  t h e  f l o w .  The 
tempera ture  th roughout  t h e  r e g i o n  i s  v i s u a l i s e d  wi th  t h e  i n f r a- r e d  camera, g i v i n g  
a d i r e c t  r e p r e s e n t a t i o n  o f  i s o t h e r m s  as i n  f i g u r e  3 .1 .  
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The Results 

Two flows are reported, at Rayleigh numbers of approximately 1000 and 
1600 for each of the two configurations. The uniformly-heated flows develop from 
an intricate "proto-sub1ayer"  similar to that described by Elder (1968) as is seen 
in figure 3 . 2 ,  and later exhibit the fluctuating behaviour observed by Caltagirone 
et a1.(1971), generating smaller pairs of cells between dominating circulations, as 
in figure 3 . 2  and more clearly in figure 3 . 3 .  

The flow changes character completely if only half the boundary is heated. 
The pattern soon becomes largely unicellular and instead of irregular fluctuations 
the behaviour is oscillatory, periodically generating "tongues" of fluid in the 
ascending and descending regions of the flow. In figure 3 . 4  (A  to F) these tongues 
may best be seen by observing the prominent triangular streakline in the lower left 
of ( A ) .  In (B) the triangle is depressed at the top as the descending tongue begins 
to develop and impressed at the bottom as an ascending thermal forms over the heater. 
The triangle is further distorted in (C) as the descending disturbance moves across 
and down, while the thermal, now quite prominent, moves leftwards across the heater. 
In (D) and ( E )  the upper tongue continues its downward flight while the lower one 
reaches the left wall and begins to elongate up it. Finally in (F) the ascending 
disturbance has shot rapidly up the left boundary and the descending one has been 
completely dissipated. At this time the flow is at a similar stage to figure (A). 
The period of this oscillation is approximately 9 0 0  seconds in the experiment, which 
corresponds to a non-dimensional time of 0.003. The passage of two ascending 
disturbances is seen in the streakline and isotherm plots of figure 3.5 at a Rayleigh 
number of 1000 only in this case the descending fluctuations are not apparent. 

These results confirm the earlier experimental work of Caltagirone et a1. 
(1971) and appear to refute the assertion of Yen ( 1 9 7 4 )  that the flows are steady. 
The reason for the contradiction is still not clear, particularly since these 
experiments are neither exhaustive nor rigorous. Furthermore there is an additional 
point which requires explanation, namely the reason why the solution is more regular 
in the half-heated case. In the following chapters an alternative approach is used 
to confirm the existence of these effects by representing the flows numerically. 
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Figure 3.1: The Hele Shaw Cell and the AGA Thermovision Camera and
Monitor, and a Typical Set of Thermographs. (This sequence
of isotherms follows that of figure 3.3).



Figure 3.2: Experimental Solution for Rayleigh Number of 1600 - Fully
Heated Boundary.  Sequence recorded at 5 minute intervals.



         A                        B                        C

           D                      E                         F

Figure 3.3: Experimental Solution (Streaklines) for Rayleigh Number of
1000 - Fully Heated Boundary.



           A                        B                       C

           D                        E                       F

Figure 3.3 contd.: Experimental Solution (Isotherms) for Rayleigh
Number of 1000 - Fully Heated Boundary.  See figure 3.1 for
the continuation of this sequence).



         A                         B                           C

         D                        E                           F

Figure 3.4: Experimental Solution for Rayleigh Number of 1600 - Half
Heated Boundary.



          A                        B                         C

          D                         E                        F

Figure 3.5: Experimental Solution (Streaklines) for Rayleigh Number of
1000 - Half Heated Boundary.



            A                       B                        C

            D                        E                       F

Figure 3.5 contd.: Experimental Solution (Isotherms) for Rayleigh
Number of 1000 - Half Heated Boundary.



Chapter 4 - NUMERICAL METHODS 

4.1 PREVIOUS NUMERICAL SOLUTIONS 

Caltagirone et al. (1969) discovered the fluctuating flow in convection in 
a porous medium experimentally, however all earlier and even later numerical studies 
either found steady solutions or did not continue simulations long enough to 
determine the true nature of the flow. As was observed in section 1.3, this was 
largely due to limitations of the numerical techniques employed. The transient 
analysis by Elder (1967b) is of particular interest since the flow region and the 
equations of motion are very similar to those proposed here for an enclosed, constant 
viscosity model. However the numerical techniques used by Elder (1967b) and also 
those of Holst and Aziz  (1972b) (which are described in Aziz and Hellums 1967), 
namely a successive over-relaxation method for the solution of Poisson's equation 
and centred differencing for the first derivatives in the heat flow equation, are 
necessarily an iterative and comparatively slow procedure. Therefore until the 
application of the more advanced numerical techniques in the present work, numerical 
exploration into the type of flow examined by Caltagirone et al. (1971) has not been 
possible. It is interesting to note here that in the Newtonian fluid layer problem 
the numerical results of Moore and Weiss (1973) superseded those of Fromm (1965) and 
Veronis (1966) in the description of an oscillatory regime, largely because of the 
extensive and efficient numerical experiments performed. Moore and Weiss (1973) 
quote computing times of 5 hours on an IBM 360/44 to perform 4000  time steps of their 
numerical procedure, but the equations here are simpler and similar runs (on a 
Burroughs B6700) would take only 50 minutes. 

4.2 FINITE DIFFERENCE METHODS 

The numerical solution of convection equations is of interest to numerical 
analysts a s  well as to fluid dynamicists because of the difficulty in representing 
them satisfactorily in difference form. Kreiss and Oliger (1973) have examined a 
wide variety of techniques that are applicable to long time numerical integration, 
including the finite difference schemes which are considered here. 
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The Advection Terms 

Torrance (1968) gives a summary of several finite difference methods, both 
explicit and implicit, with special consideration given to the parabolic heat 
transport equation (in this case equation 2.1.13). The main difficulty in solving 
this equation numerically arises from the representation of the non-linear terms. 
In two dimensions these terms appear in Jacobian form 

and are generally known as the a d v e c t i o n  terms. Arakawa (1966) has explained that 
a simple finite difference approximation using central differences causes numerical 
instability due to the occurrence of aliasing errors. High order variations in the 
fields being calculated cannot be resolved between the grid points of a finite 
difference mesh and consequently some lower order variations are represented as 
having an unrealistically high kinetic energy that physically would have been 
dissipated by higher order effects. This kinetic energy can be "accumulated" by 
the numerical procedure and gives rise to the aliasing instability. An example of 
such an unstable approximation would be the central difference 

where +i,j = $(iAX, jAY, nAT ) , 

and A X ,  AY and AT are the spatial and time increments respectively. 

In this form the approximation of the advection term does not conserve the 
kinetic energy of the system, and the numerical solution may produce unrealistically 
vigorous flows. The false energy which appears in the advection term is partially 
dissipated by the diffusion term in (2.1.13) and thus the effect on the solution is 
governed by the relative magnitudes of these two terms. Since the advection is 
multiplied by the Rayleigh number, at larger values of R the diffusion terms are 
relatively weak. In fact the central differenced solutions are numerically 
unstable for Rayleigh numbers above 200 and even below that figure have dubious 
accuracy. 

The Arakawa Schemes 

To avoid aliasing errors Arakawa (1966) developed nine- and thirteen-point 
representations of the Jacobian J which conserve the kinetic energy and mean square 
temperature and which have a truncation error of similar order to the square and 
fourth power of the spatial increment A X  (and are accordingly known as the second- 
and fourth-order Arakawa schemes - see appendix A ) .  Unfortunately the complexity 
of the representation on both the nine- and thirteen-point templates makes an 
implicit implementation infeasible and it is therefore necessary to use an explicit 
method. 

36 



The expedience of using Arakawa methods has recently been questioned by 
Orszag and Iraeli (1974), largely on the grounds of accuracy and efficiency. In 
particular they suggest that the complexity of the Arakawa scheme means that it is 
less efficient than a technique using centred differences but with a false dissipa- 
tion term added, however clearly there is a danger here than in attempting to 
dissipate the aliasing instability the physical instability will also be misrepre- 
sented. Therefore the Arakawa technique is preferable in this case, especially if 
it is made computationally efficient and the fourth-order scheme is used. 

Non-Jacobian Non-Linear Terms 

The Arakawa scheme has been derived for 
Jacobian form, and is not generally extendable to 
example the terms 

products of first derivatives in 
non-Jacobian products, for 

which appear in the three-dimensional pressure formulation (equation 2 . 4 . 5 )  or the 
terms 

which appear in the two-dimensional variable viscosity model (equation 2.3.7). 
The first of these may be avoided by using the alternative vector potential approach 
(see section 2.4) and the variable viscosity equations may also be reformulated to 
bring the derivatives into Jacobian form (as was done in section 2.3). However 
this formulation is more time consuming since the number of governing equations must 
be increased from two to three. 

Alternative Spatial Difference Schemes 

Historically the first of these is the "upwind" differencing scheme 
similar to that of Runchal, Spalding and Wolfshtein (1969) which makes a one-sided 
difference approximation to the first derivatives in (4.2.1) or (4.2.4), using 
either forward or backward differencing depending on the direction of fluid flow at 
the point under consideration. This scheme, with its smaller five-point template, 
is readily implemented using an A.D.I. (alternating direction implicit) method 
(Mitchell, 1969, p.60) but has neither the conservation properties nor the precision 
of either of the Arakawa schemes, being only first-order accurate. 

Another method of implementing the upwind differencing scheme is the 
strongly implicit procedure (S.I.P.) presented by Curry (1974) who uses it with 
central differences. This method is similar to A.D.I. in that it is an approximate 
method of solving the complete matrix equation. However, as its name suggests, 
S . I . P .  is more strongly implicit as it solves the fully updated pentadiagonal 
matrix. It does this by factorising the matrix approximately into tridiagonal 
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upper and lower triangular matrices and iterating until the product of the factors 
approaches the true matrix. Although the upwind scheme is less accurate than the 
second order central differencing methods it is actually less susceptible to 
numerical instabilities. Therefore it can be used closer to the range of Rayleigh 
numbers at which the flow is unsteady, however the value of doing this is question- 
able. 

A far more suitable approximation has been suggested by Kreiss and 
reported in Orszag and Israeli (1974). This Kreiss differencing is fourth order 
accurate and obtains first derivatives 

by the solution of the tridiagonal system 

where Do 8 ;  is the central difference approximation to the derivative. This method 
is "highly recommended" by Orszag and Israeli (1974) but unfortunately its stability 
has yet to be examined and furthermore it is somewhat slower to compute than a 
fourth-order Arakawa implementation. It is useful however in that it can represent 
non-Jacobian terms such as (4.2.4) where the Arakawa schemes cannot. 

A summary of the different space differencing methods considered is 
presented in table I, comparing the computation times f o r  calculations of a constant 
viscosity model using a stream function formulation on a 33 x 33 mesh. The 
solutions of a simple closed problem at a Rayleigh number of 2 5 0  using upwind 
differencing, the second- and the fourth-order Arakawa methods are compared in 
figure 4 .2 .1  to the solution which uses the spectral representation described in 
section 4 . 3 .  

TABLE I Spatial Differencing Techniques 

Differencing Disadvantages Advantages Time/calc. (secs) Order Of 

Accuracy 

Central Unstable Simple, 1.3 Second 

Upwind First 1.5 

Stability Simple 2 . 2  Fourth Kreiss 
Explicit Stable 1.4 Fourth Arakawa 
Explicit Stable 1.3 Second Arakawa 
Unstable Implicit 

Implicit 

Unknown 
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(a) 

FIGURE 4.2.1 - Comparison of spatial differencing techniques. Solution generated under the 
s a m e conditions using; (a) Second-order Arakawa differencing, ( b )  Fourth-order Arakawa 
differencing, (C) Upwind differencing, (d) Spectral Representation (at earlier time). 
Isotherms (+ and Stream1 i nes (- - 4. 

The solutions generated using the spectral representation and upwind 
differencing methods have been illustrated in figure 4.2.1 before they reached a 
steady state and are therefore at an earlier time than the other two solutions. 
This is because the upwind scheme is unstable at this Rayleigh number - at this early 
stage the scheme has not even preserved the symmetry of the solution and at later 
times the results become wildly unrealistic. The spectral scheme is so time 
consuming to use that only a relatively short stage of the flow development can ever 
be simulated. 
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The pressure formulation of the equations for the constant viscosity 
system in the same simple test case has non-Jacobian non-linear terms and is 
therefore best solved by the Kreiss scheme. Figure 4 .2 .2  compares the solutions 
generated using second-order central differencing and fourth-order Kreiss differen- 
cing. The solution by the more accurate method is identical to the Arakawa 
solutions in figure 4.2.1 which'is a notable confirmation of the techniques, but 
the central differencing method is unsatisfactory since it gives totally unrealistic 
solutions even at the early stage at which the diagram is drawn and quickly becomes 
unstable at later times. 

I 

t----------- 

- -  

Figure 4.2.2. - Comparison o f  s p a t i a l  d i f f e r e n c i n g  techniques f o r  non-Jacobian non- l inear  terms. 

L e f t  : Second-order cen t ra l  d i f fe renc ing .  Right  : Fourth-order Kreiss differenclng. 

Isotherms (-) and pressure isobars (-----) 

Time Differencing 

After selection of a difference scheme to represent the spatial derivatives, 
it is also necessary to approximate the time derivative in the heat transport 
equation. The simplest time differencing scheme is the first-order accurate 
forward difference 

which has the advantage that it requires only two time levels f o r  its calculation, 
saving both computer time and memory. The second-order leap-frog method might seem 

40 



to be more acceptable, however it has been observed by Orszag and Israeli (1974)to 
be numerically unstable when used with Arakawa differencing, This instability is 
due to the solution at odd and even time steps becoming uncoupled, destroying the 
conservation properties of the Arakawa scheme as it develops in time. An alterna- 
tive second-order scheme that does not suffer this instability is the Adams- 
Bashforth method (Lilly 1966) using three time levels, 

which normally requires about twice as many time steps over a given period to 
achieve the same accuracy as the leap-frog method (Orszag 1971b). 

The fourth-order Runge-Kutta representation described by Carnahan, Luther 
and Wilkes (1969, p.363) is also applicable, but requires approximately twice as much 
memory space and is four times as time consuming as the forward difference (4.2.5), 
since it requires four time levels for each calculation. A more efficient fourth- 
order scheme is the Hamming predictor-corrector method, also given by Carnahan et al. 
(1969, p.390), which is faster but requires as much memory and more intricate 
programming than the Runge-Kutta method. 

The time step AT must be very small to retain the semi-conservation 
properties of the space differencing schemes. Therefore for a fixed finite time 
interval there is little difference between the various time differencing schemes. 
In fact, comparison of solutions f o r  identical configurations using first-, second- 
and fourth-order time differencing reveals that the choice of method is immaterial 
over the number of time steps that are required to simulate the appearance of an 
oscillatory or fluctuating solution (this is the "worst case" and may take a 
maximum of 1000-1200 time steps). The maximum size of the time step in any 
particular solution depends largely on the Rayleigh number, varying from at 
R=200 to at R=1250. In chapter 8 the solutions are known to be steady so a 
variable time step procedure, analogous to a relaxation process, is used, but this 
is not suitable for the cases considered SO far in which the flows are likely to be 
unsteady. 

The Thermal Diffusion Term 

The last remaining term in the heat transport equation is the thermal 
diffusion term 9'8. This term is less significant than the others in terms of the 
overall stability, having only a stabilising influence on the problem. However, if 
the accuracy of the solutions is to be consistent, then this term should also 
receive due attention. The standard five-point representation of the Laplacian 

(4.2.7) 

is second-order accurate and has been used almost universally, but where a fourth- 
order scheme is used for the advection term, it is also possible to obtain similar 
accuracy in the diffusion term. This may be done at little extra cost in computer 
time since a large template of points has already been accessed by the program to 
evaluate the Arakawa terms. Orszag and Israeli (1974) propose the use of the 



d i f f e r e n c e  formula 

which h a s  f o u r t h- o r d e r  accuracy ,  a l t h o u g h  i s  o n l y  s u i t a b l e  f o r  square  meshes 
(AX = AY) when i n  t h i s  form. 

The Stream Funct ion  Equation 

Because o f  t h e  s imple  shape of t h e  r e g i o n  and t h e  compact form of the  
stream f u n c t i o n  boundary c o n d i t i o n s ,  t h e  s o l u t i o n  of t h e  e l l i p t i c  e q u a t i o n  (2.3.7)  
or (2 .3 .11)  i s  r e l a t i v e l y  s imple t o  a c h i e v e ,  by a p p l y i n g  t h e  Buneman odd-even 
r e d u c t i o n  method d e s c r i b e d  by Busbee, Golub and Nie l son  (1970) which i s  a d i r e c t ,  
n o n - i t e r a t i v e  scheme for t h e  s o l u t i o n  of P o i s s o n ’ s  e q u a t i o n  on a f i n i t e  mesh of 
p o i n t s .  T h i s  a l g o r i t h m  i s  c o n s i d e r a b l y  f a s t e r  t h a n  c lass ical  s u c c e s s i v e  over-  
r e l a x a t i o n  t e c h n i q u e s  and t h e r e f o r e  f a c i l i t a t e s  t h e  r e p e t i t i v e  s o l u t i o n  o f  t h e  stream 
f u n c t i o n  which i s  n e c e s s a r y  for s i m u l a t i o n s  of  l e n g t h y  time developments .  

The f i n i t e  d i f f e r e n c e  r e p r e s e n t a t i o n  o f  t h e  Laplac ian  u s e s  t h e  f i v e  p o i n t  

scheme similar t o  ( 4 . 2 . 7 ) .  The t e m p e r a t u r e  g r a d i e n t  on t h e  r i g h t  hand s i d e  of 
(2.3.11) i s  t h e n  e v a l u a t e d  u s i n g  c e n t r a l  d i f f e r e n c e s  which a r e  o f  similar second- 
o r d e r  accuracy .  It  might a p p e a r  t h a t  t h e  f o u r t h- o r d e r  a c c u r a t e  form o f  t h e  
Laplac ian  (4 .2 .8)  could  be used w i t h  a cor responding  a p p l i c a t i o n  of t h e  K r e i s s  
f o u r t h- o r d e r  scheme t o  t h e  t e m p e r a t u r e  g r a d i e n t  term. T h i s  can i n  f a c t  be  done 
a f te r  m o d i f i c a t i o n  o f  t h e  Buneman a l g o r i t h m  (which i s  se t  o u t  i n  f u l l  i n  appendix B )  
however t h e  modi f ied  form i s  o n l y  one q u a r t e r  as fas t  and t h e  benevolen t  s i m p l i c i t y  
and r a p i d i t y  of t h e  numer ica l  s o l u t i o n  i s  d e s t r o y e d .  The t y p e  o f  s o l u t i o n  r e q u i r e d  
h e r e  would be r e n d e r e d  i n f e a s i b l e  u n l e s s  limitless computa t iona l  r e s o u r c e s  were 
a v a i l a b l e .  

The P r e s s u r e  E q u a t i o n  

The p r e s s u r e  e q u a t i o n  (2 .3 .10)  i s  a l s o  a form o f  Poisson’s  e q u a t i o n  and 
may be handled  by an a d a p t i o n  of t h e  Buneman a l g o r i t h m  used p r e v i o u s l y .  The 
modi f ied  a l g o r i t h m  t a k e s  somewhat l o n g e r  t o  compute s i n c e  t h e  s o l u t i o n  m a t r i x  i s  
l a r g e r  due t o  t h e  Neumann boundary c o n d i t i o n s  (normal d e r i v a t i v e  s p e c i f i e d )  on t h e  
p r e s s u r e .  Furthermore t h e  s o l u t i o n  o f  P o i s s o n ’ s  e q u a t i o n  w i t h  normal d e r i v a t i v e s  
s p e c i f i e d  on a l l  boundar ies  i s  n o t  un ique  and it i s  n e c e s s a r y  t o  a d a p t  t h e  a l g o r i t h m  
t o  explicitly s p e c i f y  a t  least  one p r e s s u r e  i n  t h e  r e g i o n  ( s e e  appendix D ) . T h i s  
i s  ana logous  t o  p r o v i d i n g  a gauge p r e s s u r e ,  
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The Governing Equat ions  i n  F i n i t e  D i f f e r ence  Form 

To summarise, t h e  complete f i n i t e  d i f f e r e n c e  form of t h e  e q u a t i o n s  used 
i n  t h i s  work f o r  t h e  s imple  c o n s t a n t  v i s c o s i t y ,  two-dimensional model i s  

(4 .2 .9)  

(4.2.10) 

where JiYj i s  e v a l u a t e d  u s i n g  t h e  f o u r t h - o r d e r  Arakawa scheme, (Vz8)2  . i s  
e v a l u a t e d  us ing  t h e  f o u r t h- o r d e r  Laplac ian  (4.2.8), and equa t ion  (4 .2 .9 )  i s second- 
o r d e r  a c c u r a t e  and uses  c e n t r a l  d i f f e r e n c e s  throughout .  

*! 

Boundary Cond i t i ons  

The s u b s t i t u t i o n  o f  boundary c o n d i t i o n s  i s  one f a c e t  o f  numer ica l  computa- 
t i o n s  t h a t  o f t e n  r e q u i r e s  c a r e ,  however f o r  t h e  s imple  problems wi th  no f l u i d  s i n k s  
o r  s o u r c e s  t h e r e  i s  no p a r t i c u l a r  problem. The Buneman a lgo r i t hm f o r  t h e  s o l u t i o n  
of t h e  stream f u n c t i o n  can  be modif ied  t o  a c c e p t  e i t h e r  t h e  c l o s e d ,  D i r i c h l e t  
(J ,  s p e c i f i e d )  o r  t h e  recharge, Neumann boundary c o n d i t i o n s  and r e p r e s e n t s  t h e s e  w i th  
t h e  same accuracy as t h e  s o l u t i o n  i n  t h e  i n t e r i o r .  The e x p l i c i t  s o l u t i o n  o f  t h e  
h e a t  t r a n s p o r t  a l s o  a l l o w s  d i r e c t  s u b s t i t u t i o n  of t h e  i so the rma l  c o n d i t i o n s  ( 2 . 3 . 1 2 )  

and (2 .3 .13)  and t h e  Neumann i n s u l a t e d  c o n d i t i o n s  (2.3.14) are achieved by invoking 
symmetry c o n s i d e r a t i o n s  and i n c l u d i n g  "mirror- image" t empera tu re s  from beyond t h e  
boundary. The l a r g e  number of p o i n t s  i n  bo th  t h e  Arakawa t empla t e s  r e s u l t s  i n  a 
boundary r e p r e s e n t a t i o n  t h a t  i s  a t  least as a c c u r a t e  as t h e  s o l u t i o n  a t  i n t e r i o r  
p o i n t s .  

It should  be no ted  h e r e  t h a t  it is t h e  i n c l u s i o n  o f  t h e s e  image tempera-  
t u r e s  t h a t  a l l ows  t h e  use  o f  t h e  Arakawa schemes c l o s e  t o  t h e  v e r t i c a l  bounda r i e s .  
However, one row i n  from e i t h e r  h o r i z o n t a l  boundary t h e  t h i r t e e n - p o i n t  t empla t e  
a t t e m p t s  t o  r e f e r e n c e  p o i n t s  which l i e  o u t s i d e  t h e  problem bounda r i e s ,  and t h e r e f o r e  
t h e  approximat ion  i s  n o t  p e r m i s s i b l e  on t h e s e  two rows ( u n l i k e  t h e  v e r t i c a l  
bounda r i e s  t h e r e  a r e  no image t empera tu re s  beyond t h e  h o r i z o n t a l  bounda r i e s ) .  
T h e r e f o r e  it is neces sa ry  wherever f o u r t h- o r d e r  Arakawa d i f f e r e n c i n g  i s  a p p l i e d  t o  
r e v e r t  t o  t h e  second- order ,  n ine- po in t  t empla t e  on t h e  second and p e n u l t i m a t e  
h o r i z o n t a l  rows o f  t h e  mesh. 

Gr id  Mesh 

The cho ice  o f  mesh s i z e  r e q u i r e s  some c a u t i o n  as it has  been observed by 
Moore and Weiss ( 1 9 7 3 )  t h a t  t o o  c o a r s e  a g r i d  may suppres s  uns teady behaviour  - should  
it be p r e s e n t .  The Buneman a l g o r i t h m  o p e r a t e s  most e f f i c i e n t l y  when t h e r e  a r e  Zk + 1 
sub- matr ices  i n  t h e  s o l u t i o n  e q u a t i o n  (where k i s  any p o s i t i v e  i n t e g e r ) ,  which means 
t h a t  o n l y  c e r t a i n  s i z e s  o f  mesh a r e  p e r m i s s i b l e .  If t h e  odd-even r e d u c t i o n  is 
performed by combination o f  row s o l u t i o n  sub- matr ices  then t h e r e  must  be g k  + 1 rows 

i n  t h e  o r i g i n a l  mesh ( f o r  p r a c t i c a l  problems t h i s  i m p l i e s  1 7 ,  33 o r  65 rows) .  
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The r e d u c t i o n  could  e q u a l l y  well be performed by combining column s u b- m a t r i c e s ,  
a t  least f o r  t h e  s imple  two-dimensional s t r e a m  f u n c t i o n  s o l u t i o n s ,  i n  which case 
t h e  number of columns must be 2k + 1. The column s o l u t i o n  has  t h e  advantage  that  
it e n a b l e s  convenien t  i n c l u s i o n  o f  Neumann r e c h a r g e  boundary c o n d i t i o n s  on t h e  t o p  
h o r i z o n t a l  boundary wi thout  s i g n i f i c a n t l y  r e d u c i n g  t h e  s o l u t i o n  time, a l t h o u g h  f o r  
computer programs w r i t t e n  i n  FORTRAN t h e  a r r a y s  are u s u a l l y  handled more e f f i c i e n t l y  
by t h e  row s o l u t i o n  method. It i s  a l s o  advantageous t o  use  a s q u a r e  mesh ( A X  = AY) 
i n  t h e  f i n i t e  d i f f e r e n c e  schemes as t h i s  o p t i m i s e s  t h e  computat ion time o f  t h e  
Buneman a l g o r i t h m .  

With t h e s e  requi rements  i n  mind, it remains t o  choose a mesh s i z e  by 
s e l e c t i n g  a v a l u e  o f  k . G e n e r a l l y  a more v igorous  s o l u t i o n  r e q u i r e s  a f i n e r  mesh, 
so f o r  v a l u e s  of t h e  Rayleigh number below 500 a 17 x 17 mesh is c o n s t r u c t e d  (for 
a s q u a r e ,  e n c l o s e d  r e g i o n )  w h i l e  above t h i s  v a l u e  a 3 3  x 3 3  g r i d  i s  used .  A s t i l l  
f i n e r  65 x 65 mesh would be  n e c e s s a r y  f o r  f lows  more e n e r g e t i c  t h a n  t h o s e  modelled 
i n  t h i s  work, b u t  i n  t h e s e  cases t h e  s o l u t i o n  p r o c e s s  becomes l e n g t h y .  The 
r e c h a r g e  and porous i n s u l a t o r  c o n f i g u r a t i o n s  r e q u i r e  s p e c i a l  c o n s i d e r a t i o n s  i n  t h e  
choice of a mesh s i z e  f o r  t h e i r  s o l u t i o n ,  and t h e s e  are d e s c r i b e d  l a t e r  as t h e y  arise. 

S i n k s  and Sources 

The a d d i t i o n  o f  a s i n k  on a v e r t i c a l  boundary r e q u i r e s  no s p e c i a l  n u m e r i c a l  
t r e a t m e n t  as t h e r e  i s  o n l y  a minor change i n  t h e  boundary c o n d i t i o n s ,  which r e t a i n  
t h e i r  D i r i c h l e t  t y p e .  However when t h e  s i n k  i s  l o c a t e d  i n  t h e  i n t e r i o r ,  t h e  a l t e r -  
n a t i v e  a n a l y s i s  u s i n g  e q u a t i o n s  (2.5.8) and ( 2 . 5 . 9 )  must b e  a p p l i e d ,  which r e q u i r e s  
t h e  e v a l u a t i o n  o f  t h e  terms u ,  v ,  g ,  x and & . T h i s  p r e s e n t s  no g r e a t  problem 
as t h e s e  are a l l  a n a l y t i c a l l y  d e f i n e d  f u n c t i o n s  and have e a s i l y  c a l c u l a b l e  v a l u e s  a t  
any  p o i n t  e x c e p t  t h e  s i n k  l o c a t i o n  p o i n t  (Xo, Yo). A t  t h i s  p o i n t  t h e  c o n s i d e r a t i o n s  
of z e r o  n e t  v o r t i c i t y  and thermal  energy  p r o d u c t i o n  a l l o w s  t h e  t w o  combina t ions  of  
t h e s e  terms t o  be equa ted  t o  z e r o  (see s e c t i o n  2 . 5 ) .  Once a g a i n  t h e  v a l u e s  o f  t h e  
boundary c o n d i t i o n s  are  a l t e r e d  b u t  t h e i r  t y p e  is r e t a i n e d  and t h e  same s o l u t i o n  
a l g o r i t h m s  may be used.  

av 

4 . 3  VARIATIONAL TECHNIQUES 

The Galerk in  Method 

A numer ica l  method of s o l u t i o n  for incompress ib le  f low problems which h a s  
r e c e n t l y  ga ined  favour  i s  t h e  s e m i- a n a l y t i c a l  s p e c t r a l  r e p r e s e n t a t i o n  p r e s e n t e d  by 
Orszag (1971 a ,  b ,  c )  and Orszag and I s r a e l i  (1974) which i s  based on t h e  G a l e r k i n  
t e c h n i q u e  d e s c r i b e d  v a r i o u s l y  by S c h e c h t e r  (1965), Kantorovich and Krylov ( 1 9 6 4 )  

and Mikhlin and Smol i t sky  (1967). The s p a t i a l  dependence of t h e  t e m p e r a t u r e  and 
f l o w  f i e l d s  are expanded i n t o  a t r u n c a t e d  s e r i e s  o f  o r t h o g o n a l  f u n c t i o n s ,  f o r  example 
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for some finite cutoff value N , where the orthogonal base functions an(:) must 
be consistent with the boundary conditions but are otherwise arbitrary. The 
Galerkin equations for the coefficients cn(t) are derived as in Schechter (1965) 
by minimising the error caused by substituting the approximation (4.3.1) into the 
equations which describe the field y(z,t) . In this way a system of partial 
differential equations may be reduced to a coupled, ordinary differential set which 
is conceptually easier to solve numerically. The well known finite Fourier 
transform method is a special case of the Galerkin method in which the base functions 
are sines, cosines or complex exponentials. In this investigation the uniformly 
heated problem has periodic boundary conditions which makes it amenable to solution 
by Fourier analysis (see appendix E), which is the method used to generate the 
solution illustrated previously in figure 4 . 2 . 1 . This form of the method is also 
used by Straus (1974) for the analytical study of the stability of this problem. 

Speed of Calculation 

One major disadvantage of the truncated Fourier series expansion is its 
complexity and the correspondingly interminable calculations required to compute the 
coefficients. For example the direct calculation of sine and cosine Fourier 
coefficients in the solution illustrated in figure 4.2.1 is at least an order of 
magnitude slower than a similarly accurate solution using the fourth-order Arakawa 
differencing scheme. However the method does have the attractive advantages that 
it is accurate, has conservation properties similar to the Arakawa schemes and takes 
proper account of the boundary conditions. Orszag (1971a) has invented a very 
worthwhile optimisation of the method that uses further complex exponential transforms 
to speed up calculation of the coefficients to a level that is at least comparable 
with finite difference schemes if the fast Fourier transform algorithm described by 
Cooley, Lewis and Welch (1967) is available. 

This faster method is capable of adaption to the conditions used here, but 
unfortunately only in the simple case of uniform isothermal boundaries. Even then 
the complex Fourier transform is not itself directly applicable and requires anomalous 
definitions of the early terms in the series to avoid inconsistencies of symmetry 
(Orszag 1971b). Orszag (1971c) has demonstrated that a Chebyshev polynomial expan- 
sion can handle the boundary conditions satisfactorily without defining a special 
transform, but in this case fast Fourier transform techniques are no longer directly 
applicable. To derive a similar spectral method for the problem at hand is not 
infeasible as is evident from the parallel adaptation by Young (1974) but since the 
technique would still only be applicable to uniform boundary conditions, such an 
analysis is not attempted. The simple and direct calculation method is considerably 
easier to apply and although unsuitable for protracted solutions it provides a 
useful basis for comparison with the finite difference methods which are more 
generally valid. 

Finite Element Methods 

Another numerical method which is also derived from variational principles 
is the finite element approach which has been applied to fluid flow problems by Cullen 
(1974). This technique is a more functional method for the examination of real 



Slow Heating 

However, if the lower boundary is heated slowly to a final temperature 
9=1 , a largely unicellular motion is obtained which is unsteady at all Rayleigh 
numbers larger than approximately 280 - a figure which is in agreement with the range 
240 - 280 predicted by Caltagirone et al. (1971), and identical to the value observed 
by Combarnous and Le Fur (1969). This unsteady unicellular motion also develops if 
as well as rapid initial heating an initial unicellular perturbation is introduced 
to the flow. These fluctuating solutions exhibit a behaviour very similar to that 
observed in the Hele-Shaw results (chapter 3 )  which is comparable to the fluctuating 
convective state summarised by Bories and Combarnous (1973). The fluctuating 
solution at R=500 is illustrated in figure 5.1.2, and the solutions for this section 
are summarised in table 11. 

FIGURE 5.1.2 - Uniformly heated fluctuatlng solution at R = 500. An equally spaced sequence of 
Isotherms (full lines). Broken lines in (a) are streamlines. 
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Chapter 5 - RESULTS FOR THE TWO-DIMENSIONAL 

PROBLEMS 

5.1 THE UNIFORMLY HEATED MODEL - f = 1 

A set of solutions to the uniformly heated, constant viscosity problem was 
generated to obtain a representation of the experimental solutions reported by Combarnous 
and Le Fur (1969) and by Caltagirone et al. (1971). It was found that the results of 
these authors can only be reproduced when certain initial conditions are applied. 

Rapid Heating 

Beginning the solution with the initial condition that the flow is everywhere 
stationary and the lower boundary raised suddenly to the high temperature 8=1 , it is 
found that, in contradiction both to the experimental results of chapter 3 and to those 
of Caltagirone et al. (1971), the flows become multicellular and steady (or only mildly 
transient) at Rayleigh numbers between 300 and 500. Such a solution is seen in 
figure 5.1.1. 

FIGURE 5 . 1 . 1  - Uniformly heated steady so lu t i on  a t  R = 500.  Lef t :  Isotherms Right:  Streamlines 



systems w i t h  a r b i t r a r y  shapes ,  b u t  f o r  t h e  r e g u l a r  t e s t  systems c o n s i d e r e d  h e r e  t h e  
f i n i t e  d i f f e r e n c e  s o l u t i o n s  are s i m p l e r  and f a s t e r .  The f i n i t e  element  method 
r e q u i r e s  t h e  s o l u t i o n  of matrices t h a t  are of similar s i z e  t o  t h o s e  s o l v e d  by t h e  
Buneman a l g o r i t h m ,  b u t  t h e y  are less  s p a r s e  and must be so lved  by i n e f f i c i e n t  
e l i m i n a t i o n  t e c h n i q u e s .  T h e r e f o r e  t h e  f i n i t e  e lement  method i s  n o t  as u s e f u l  for 
time dependent  s o l u t i o n s  and i s  u n l i k e l y  t o  be workable i n  t h r e e  dimensions.  
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T a b l e  II - R e s u l t s  f o r  Uniformly Heated Problem 

1 Steady  S o l u t i o n  

R I Mesh 
S i z e  

No. of 
Cells 1 Nu.+ 

17x17 
17x17 
17x17 
33x33 
33x33 

1000 3 3 x 3 3  

1 2 5 0  33x33 

1 . 0 1  
4 . 5 1  
6.17 
7.79 - 
- 
- 

F l u c t u a t i n g  S o l u t i o n  

Interval"  Numean 

- - - 
c - - 

0 . 0 1 3 2  5 . 3 1  5.81 
0 . 0 0 6 8  6.30 7.11 

0,0045 8.58 10.04 
0 . 0 0 2 2  11.81 12.90 
0.0017 14.20 15.69 

t Nu t h e  N u s s e l t  number i s  a parameter  r e l a t i n g  t h e  c o n v e c t i v e  h e a t  t ransfer  t o  
t h e  c o n d u c t i v e  h e a t  transfer - see appendix C. 

The i n t e r v a l  g i v e n  i s  t h e  closest p e r i o d  between a n y  two s u c c e s s i v e  r e l a t i v e  
maxima i n  t e m p e r a t u r e  a t  a p a r t i c u l a r  p o i n t  i n  t h e  f i e l d .  

Heat T r a n s f e r  

When t h e  s o l u t i o n  t o  a problem such as t h i s  t e n d s  towards  a s t e a d y  s tate  
(as it does  i n  t h e  m u l t i c e l l e d  s o l u t i o n s )  it does  so i n  such a way t h a t  the energy  
t r a n s f e r r e d  by t h e  sys tem is maximised (see Platzman 1 9 6 5 ) .  A t  a Rayle igh  number 
of 500  t h e  N u s s e l t  number (which i s  d i r e c t l y  r e l a t e d  t o  t h e  amount o f  h e a t  convected 
across t h e  sys tem - see appendix  C) f o r  t h e  s t e a d y  t r i c e l l u l a r  mode i s  7 . 7 9 ,  whereas 
f o r  t h e  f l u c t u a t i n g  s tate  it v a r i e s  i n  time w i t h  a mean v a l u e  o f  6 . 3 0  and a maximum 
of 7.11 ( c o n s i d e r e d  o v e r  a p e r i o d  i n  which f o u r  r e l a t i v e  maxima a p p e a r ) .  T h i s  
i n d i c a t e s  t h a t  t h e  s t e a d y  s o l u t i o n  p r o v i d e s  g r e a t e r  energy  t r a n s f e r  a t  t h i s  Rayleigh 
number and i s  t h e r e f o r e  t h e  p r e f e r r e d  mode of f low. However it a p p e a r s  t h a t  an  
energy  maximum o c c u r s  d u r i n g  t h e  f o r m a t i o n  o f  a s t e a d y  p a t t e r n ,  and t h i s  may p r e v e n t  
such a s o l u t i o n  from deve loping .  

S o l u t i o n s  f o r  s t e a d y  c o n v e c t i o n  i n  a porous l a y e r  w i t h  no r e s t r a i n i n g  s i d e  

walls have been o b t a i n e d  by Combarnous (1970) and O 'Sul l ivan  (1973) who d i s c o v e r e d  
t h a t  Rayle igh  numbers of approximate ly  2 8 0 ,  400  and 700 r e s u l t  i n  c e l l  wid ths  o f  0.5, 
0 . 3 3  and 0.25 r e s p e c t i v e l y  fo r  t h e  p r e f e r r e d  f low. It  is n o t  s u r p r i s i n g  t h e n  t h a t  
t h r e e  cel ls  are p r e f e r r e d  i n  t h e  s o l u t i o n  a t  R=500 examined above. 

The S o l u t i o n  A l t e r n a t i v e s  

For r a p i d  i n i t i a l  h e a t i n g  a m u l t i c e l l e d  " pro to- sublayer"  forms i n  a manner 
similar t o  t h a t  d e s c r i b e d  by E l d e r  ( 1 9 6 8 )  and t h e  number o f  c e l l s  a d j u s t s  t o  form 
t h e  p r e f e r r e d  s t a b l e  mode. However once a small i n i t i a l  u n i c e l l u l a r  motion h a s  been 
i n t r o d u c e d ,  e i t h e r  a r t i f i c a l l y  o r  by commencing h e a t i n g  a t  an  e f f e c t i v e  Rayleigh 
number a t  which t h e  u n i c e l l u l a r  mode i s  p r e f e r r e d ,  t h e  s o l u t i o n  remains l a r g e l y  un i -  
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cellular and adopts the fluctuating convective state. In the experimental solutions 
of Caltagirone et al. (1971) and of chapter 3 ,  slight physical disturbances or non- 
instantaneous experimental heating would explain the similar unsteady behaviour. 
In the Hele-Shaw experiments of chapter 3 ,  the heating was sufficiently rapid to 
allow a "proto sublayer" to form initially but slow enough to result in an unsteady 
flow at later times. 

The Steady Solutions 

It seems probable that the steady multicellular alternative has less 
practical significance since it requires such artificial conditions for its original 
generation. Although stable and more "favourable" at later times, this solution is 
susceptible to two-dimensional, unicellular perturbation until quite late in its 
development. According to the analysis of Straus (1974) a steady two-dimensional 
solution is eventually destined to become unstable to three-dimensional perturbations 
at higher Rayleigh numbers. The steadiness of the flow in the solutions generated 
here becomes uncertain as the Rayleigh number is increased above 400. In the 
solutions at Rayleigh numbers around 500 small fluctuations are present in a tri- 
cellular mode. 

If a steady mode of convection occurs at Rayleigh numbers above this figure 
then the preferred number of cells would be four or more, which is beyond the 
resolution of a 3 3 x 3 3  mesh. In any event the results of Straus (1974) indicate that 
the preferred mode of flow at Rayleigh numbers above 400 (at which the flow is two- 
dimensional and tricellular) is three-dimensional. Further study requires the 
representation of three-dimensional flow and is considered later in chapter 6. 

The Unsteady Solutions 

A possible explanation for the unsteady behaviour is that the fluctuations 
which appear in the unicellular solutions are an attempt by the system to resort to 
the more favourable steady multicellular pattern which is repressed by the dominant 
circulation. However there is a finite energy requirement to transform the solution 
from one alternative state to the other - once formed, the fluctuating convective state 
is stable to temperature perturbations. An attempt to assist the solution between 
states was made by the introduction of thermal energy in the form of a 10% random 
variation (or "noise") however this proved unsuccessful. This indicates that both 
solutions are physically significant although the reason for the existence of two 
solutions is still not  clear. 

In the following section the results indicate that altering the heating 
element reinforces or reduces the "unfavourability" of the single-celled mode, and 
thus solutions to the non-uniformly heated problem clarify the processes observed 
here. 
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The Fluctuation Period 

The fluctuation period is defined as the closest interval between any two 
successive relative temperature maxima at a reference point in the field. The log- 
log plot in figure 5.1.3 indicates that the fluctuation period is proportional to 
R-3/2 

1250- 

1000 - 
750 - 

R 
500 - 
375 - 

The Nusselt Number Variation 

The mean Nusselt number for the fluctuating solutions and the steady state 
Nusselt number for the steady solutions are plotted in figure 5.1.4. The values lie 
close to the lower bound of the envelope results of Elder (1967a), Combarnous and 
Le Fur (1969), Buretta and Berman (1974) and Gupta and Joseph (1973) that are summarised 
in a single plot by Gupta and Joseph (1973 p.513) which is reproduced in outline here. 

Nu Steady 

Fluctuating 

I I I  1 I I  

100 250 375 500 750 1000 1250
R 

FIGURE 5.1.4 - P l o t  o f  Nusselt number Nu vs Raylelgh number R f o r  uniformly heated solut lons.  
F u l l  l i nes  are the  d e l i m i t e r s  of t h e  range of values obtained by e a r l i e r  authors (see 
t e x t ) .  Log-log scale. 
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5.2 THE NON-UNIFORMLY HEATED MODEL - f < 1 

The Range of Results 

For simulations of flow in a region heated non-uniformly from below and 
with constant viscosity, a range of Rayleigh numbers between 250 and 1250 was employed 
and a diversity of input conditions was achieved by using values of f=0.25, 0.5 and 
0.75. The results of these simulations are summarised in table III and include 
completely regular oscillatory flows. Such flows have not been previously obtained 
numerically. The period T~ of these oscillations is defined as the interval between 
successive temperature maxima at a point in the rising plume of the flow. 

Table III - Results for Non-Uniformly Heated Problem 

R 

250 
500 
750 

1000 
1250 

250 
375 
500 
500 
625 
750 

1000 
12 50 

250 
375 
500 
750 

1000 
1250 

Mesh 
Size 

17x17 
17x17 
17x17 
33x33 
33x33 

17x17 
17x17 
17x17 
33x33 
33x33 
33x33 
33x33 
33x33 

r 

17x17 
17x17 
17x17 
17x17 
3 3x3 3 
33x33 

The Oscillatory Solutions 

Steady Solutions 

No. of 
Cells 

3 
3 
3 
3 

3 

1 
1 

1 
1 

NU 

3.36 
6.02 
7.45 
8.41 
9.15 

3.45 
4.20 

3.29 
4.09 

T Oscillatory Solutions 

=P 

0.0093 
0.0091 
0.0064 
0.0053 
0.0031 
0.0024 

0.0194 
0.0089 
0.0063 
0.0051 

Numean 

4.41 
4.42 
5.18 
6.33 
8.05 
9.53 

4.63 
4.95 
5.59 
7.62 

NUmax 

4.42 
4.43 
5.26 
6.51 
8.29 
9.87 

4.72 
5.01 
5.77 
7.97 

The oscillatory solutions to the half-heated problem are comparable with 
the Hele-Shaw results of chapter 3, however certain features that are not immediately 
obvious in the experiments are now apparent. It seems that the rising disturbances 
are generated at approximately twice the frequency of the descending ones so that two 
ascending thermals pass in every complete cycle, the first largely dissipating before 
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( a )

FIGURE 5.2.1 - Ha l f  heated osci  I l a t o r y  s o l u t i o n  a t  R = 750. A sequence o f  isotherms ( f u l l  Iines) 
equa l l y  spaced I n  time. Broken l i nes  i n  ( a )  are streamlines. 
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the passage of the second. The progress of a solution through a pair of ascending 
oscillations of such a flow is illustrated in figure 5.2.1, in this case the flow is 
at a Rayleigh number of 750 and the solution generated on a 33x33 mesh. 
The sequence is a set of isotherm plots and the diagrams, for greater clarity, are 
constructed of the solution and its mirror image, joined at the centre. A summary 
plot of the same oscillation is given in figure 5.2.2, which illustrates the variation 
of the Nusselt number and of typical temperatures in the ascending and descending 
portions of the f low.  

h 

FIGURE 5.2.2 - Variation in time of the half heated oscillatory solution at R = 750. Nusselt 

temperature at a point in the descending flow (+++++). 
number (---),  Reference temperature at a point in the ascending flow (-1, Reference 

These oscillatory solutions appear almost identically on both 17x17 and 
33x33 meshes at a Rayleigh number of 500, which indicates that this behaviour is not 
merely the result of numerical disturbances, thus the existence of the regular 
oscillatory solution previously intimated in chapter 3 is confirmed. The results 
demonstrate that significant transiency is possible for non-uniform heat input distri- 
butions at Rayleigh numbers greater than approximately 480 for f=0.5 and 450 for 0.25. 

The Oscillation Period 

The dependence of oscillation period T on the Rayleigh number R is 
indicated by figure 5.2.3 for f=0.5 and 0.25, and in both cases the lines 

P 

approximately fit the points, as was the case for the fully heated solutions in the 
previous section (figure 5.1.3). 

The two experimental values of T for f=0.5 obtained in chapter 3 do not 
differ greatly from the values expected for numerical simulations at the same Rayleigh 
numbers, however they are not plotted since experimental inaccuracies make their 
quantitative validity doubtful. 

P 



'"E 250 DO2 .W3 .ooL .006 ,008 .01 .Ob .02 

F 
FIGURE 5.2.3 - Plot of oscillation period -rP vs Raylelgh number R for half and quarter heated 

solutlons. Log-log scale.

The Three Quarters Heated Solutions 

When the lower boundary is three quarters heated the flow patterns are 
quite different to the oscillatory solutions, being multicellular and comparatively 
steady. The solution at a Rayleigh number of 250  is illustrated in figure 5.2.4. 

FIGURE 5.2.4 - Three quarters heated steady solution at R = 250. Left: Isotherms, Right : 
Stream I 1 nes. 
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The s t e a d i n e s s  of t h e  f lows i n  t h i s  s e t  of r e s u l t s  i s  p a r t i c u l a r  s i g n i f i c a n t  
s i n c e  it r a t i f i e s  t h e  a s s e r t i o n  made e a r l i e r  t h a t  t h e  system ach ieves  o r  a t t e m p t s  t o  
ach ieve  a p r e f e r e n t i a l  and minimally uns teady s tate  whenever p o s s i b l e .  An unheated 
p o r t i o n  of t h e  boundary t h a t  i s  s i m i l a r  t o  t h e  c e l l  width  f o r  t h e  p r e f e r r e d  s t e a d y  
f low a t  a p a r t i c u l a r  Rayleigh number f o r c e s  a more f avourab le  and s t e a d i e r  p a t t e r n  t o  
occu r .  The s h o r t e r  h e a t e r  l e n g t h s  r e i n f o r c e  t h e  fo rma t ion  of a s i n g l e  c e l l e d  mode 
and d i s c i p l i n e  t h e  f low i n t o  r e g u l a r  o s c i l l a t i o n s .  

Rectangular  Regions 

I f  t h e  r eg ion  i s  e longa ted  from t h e  squa re  shape it has  been g iven  so f a r ,  
t h e  t empera tu re  g r a d i e n t s  a r e  reduced and uns teady e f f e c t s  l e s s  e a s i l y  e s t a b l i s h e d .  
Mainta in ing  t h e  h e a t e r  l e n g t h  t o  he h a l f  as  long  as t h e  unchanging v e r t i c a l  dimension 
and ex t end ing  t h e  r e g i o n  t o  X = 1 . 3  a t  a Rayle igh  number of 7 5 0  r e s u l t s  i n  t h e  r e d u c t i o n  
o f  t h e  descending e f f e c t s  whi le  t h e  ascending the rma l s  con t inue  t o  form i n  p a i r s  w i th  a 
p e r i o d  o f  0 . 0 0 4 9 .  The mean Nusse l t  number i s  then  5 . 5 3  (maximum 5 . 6 8 )  and t h e  i so the rm 
and s t r e a m l i n e  p l o t s  a r e  i l l u s t r a t e d  i n  f i g u r e  5 . 2 . 5 .  

FIGURE 5.2.5 - Unsteady solution i n rectangular region X = 1.3 a t  R = 750. I so therm (-) 
and stream1 i nes (- - -9. 

56 



Insulated Lower Boundary 

Replacing the low temperature condition on the unheated portion of the 
lower boundary by a restriction of zero heat withdrawal does not significantly affect 
the generation of thermals over the heater (see figure 5.2.7) except that the value 
of the Rayleigh number above which oscillatory flows occur is increased to around 900. 

FIGURE 5.2.7 - Unsteady solution in h a l f  heated region with insulated lower boundary at R = 1000. 
. 

An insulated unheated portion of the lower boundary is more realistic physically 
because it does not produce the singular temperature gradients between the heated and 
unheated sections of the boundary that are a feature of the non-uniformly heated 
models considered so far. The isothermal condition was used initially to obtain a 
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r e p r e s e n t a t i o n  o f  t h e  c o n d i t i o n s  i n  t h e  Hele-Shaw c e l l ,  however as it t u r n e d  o u t ,  such  
a c o n f i g u r a t i o n  i s  b e t t e r  f o r  observ ing  uns teady  e f f e c t s  which occur  a t  lower  Rayle igh  
numbers t h a n  i n  t h e  more r e a l i s t i c  i n s u l a t e d  model. 

5 .3  REVIEW OF CONSTANT VISCOSITY SOLUTIONS 

Before c o n t i n u i n g  wi th  t h e  d i s c u s s i o n  o f  s i m u l a t i o n s  u s i n g  t h e  more r e f i n e d  
models it i s  p o s s i b l e  t o  p r e s e n t  a u n i f i e d  s y n o p s i s  of t h e  r e s u l t s  a l r e a d y  r e c o r d e d  
which by themselves  improve t h e  c u r r e n t  unders tanding  of n a t u r a l  convec t ion  i n  porous  
media. 

The Thermal Boundary Layer 

( a )  S teady  S o l u t i o n s  

A s  h a s  been mentioned a l r e a d y ,  Combarnous (1970) and O 'Sul l ivan  (1973) have 
observed  t h a t  f o r  a n  assumed q u a s i- s t e a d y  c o n v e c t i v e  s ta te  i n  a porous l a y e r ,  t h e  
p r e f e r r e d  c e l l  wid th  d e c r e a s e s  w i t h  i n c r e a s i n g  Rayle igh  number. Although q u a s i -  
s t e a d y  f lows  may n o t  o c c u r ,  t h i s  d e c r e a s e  i n  c e l l  wid th  does  a t  l e a s t  i n d i c a t e  a 

tendency  o f  t h e  s o l u t i o n s .  

Now, i n  t h e  f u l l y  h e a t e d  problem c o n s i d e r e d  i n  s e c t i o n  5 . 1 ,  when t h e  lower  
boundary i s  suddenly  h e a t e d  a thermal  boundary l a y e r  forms by conduct ion  close t o  t h e  
heater.  Across t h i s  t h i n  l a y e r  t h e  t e m p e r a t u r e  v a r i e s  from i t s  maximum 8.1 , t o  a 
v a l u e  c l o s e  t o  i t s  minimum 820 . Thus i n  t h i s  r e g i o n  t h e  effective Rayle igh  number 
i n c r e a s e s  w i t h  t h e  t h i c k n e s s  o f  t h e  l a y e r .  The l a y e r  e x t e n d s  by conduct ion  u n t i l  it 
r e a c h e s  a c e r t a i n  t h i c k n e s s  a t  which t h e  e f f e c t i v e  Rayle igh  number a t t a i n s  i t s  c r i t i c a l  
v a l u e .  It may t h e n  be expec ted  t h a t  a l a r g e  number o f  small square  c e l l s  w i l l  g e s t a t e  
i n s i d e  t h e  l a y e r .  Following t h i s ,  two p r o c e s s e s  occur .  F i r s t l y  t h e  thermal  l a y e r  
c o n t i n u e s  t o  ex tend  by conduct ion  and c o n v e c t i o n ,  i n c r e a s i n g  t h e  e f f e c t i v e  Rayle igh  
number and e l o n g a t i n g  t h e  convec t ion  ce l l s .  Although t h e  a s p e c t  r a t i o  o f  t h e  c e l l s  
would normal ly  t e n d  t o  i n c r e a s e  w i t h  Rayle igh  number it does so a t  a l e s s e r  r a t e  t h a n  
t h a t  caused by t h e  c e l l  l e n g t h e n i n g  and t h u s  t h e  c e l l s  become t o o  t a l l  and t h i n  f o r  
t h e i r  t h e r m a l  environment.  Secondly,  because t h e s e  c e l l s  are now t o o  numerous t h e r e  
i s  i n s u f f i c i e n t  energy  i n p u t  a t  t h e  lower boundary t o  m a i n t a i n  them a l l ,  and t h o s e  
which happen t o  be smaller are swept away and d i s s i p a t e d  by l a r g e r  ones .  I n  t h i s  way 
t h e  system a d j u s t s  so  t h a t  by t h e  time h e a t  i s  t r a n s f e r r e d  r i g h t  across t h e  r e g i o n  t h e  
number of  c e l l s  has  reduced t o  approximate ly  t h e  p r e f e r r e d  f i g u r e .  T h i s  p r o c e s s  i s  
t h e  development and c o l l a p s e  of t h o  "pro to- sublayer"  observed  by E l d e r  (1968) .  



( b )  Unsteady S o l u t i o n s  

If, on t h e  o t h e r  hand,  t h e  lower boundary i s  hea t ed  s lowly  enough, t h e  
t empera tu re  d i f f e r e n c e  a c r o s s  t h e  boundary l a y e r  i s  such t h a t  t h e  e f f e c t i v e  Rayleigh 
number does no t  r e a c h  i t s  c r i t i ca l  va lue  u n t i l  t h e  l a y e r  h a s  extended well a c r o s s  t h e  
r eg ion  i n  which case on ly  a s i n g l e  c e l l  forms. The same n e t  r e s u l t  o c c u r s  i f  a uni-  
c e l l u l a r  p e r t u r b a t i o n  i s  a p p l i e d  t o  a uni formly  s t r a t i f i e d  conduct ion  s o l u t i o n .  Once 
t h i s  lower o r d e r  f low regime h a s  become dominant t hen  h i g h e r  o r d e r  and more f avourab le  
f low p a t t e r n s  a r e  suppres sed .  The s m a l l e r  number o f  ce l l s  does n o t  remove h e a t  from 
t h e  lower boundary as fast  as t h e  p r e f e r r e d  p a t t e r n  would, and t h e r e f o r e  a the rma l  
boundary l a y e r  forms by conduc t ion  i n  r e g i o n s  of stagnant f low above t h e  h e a t e r .  

A small squa re  ce l l  then  beg ins  t o  form wi th in  t h i s  l a y e r ,  bu t  as i n  t h e  s t e a d y  case  
t h i s  cell  h a s  o n l y  a b r i e f  l i f e  and neve r  r eaches  s u f f i c i e n t  magnitude t o  e n t e r  t h e  
o v e r a l l  f low p a t t e r n .  I n  t h i s  c a s e  it i s  ensnared  i n t o  t h e  dominant c i r c u l a t i o n  and 
d i s s i p a t e d ,  l e a v i n g  behind it a d e p l e t e d  the rma l  boundary l a y e r .  

. . . . . . .  . 

( c )  Exper imenta l  S o l u t i o n s  

The f lows  observed i n  t h e  exper iments  o f  c h a p t e r  3 show f e a t u r e s  o f  both  t h e  
uns teady and s t e a d y  a l t e r n a t i v e  f lows ,  namely t h e  i n i t i a l  " p ro to  sub laye r "  w i th  a 
d e c r e a s i n g  number o f  cel ls  and t h e  l a t e r  g e n e r a t i o n  and d i s s i p a t i o n  o f  new c e l l s  between 
dominant p a i r s .  I n  f i g u r e  3 . 2  t h e r e  a r e  i n i t i a l l y  e i g h t  cel ls  a c r o s s  t h e  base  o f  t h e  
a p p a r a t u s  ( i n  t h e  photographs  a t  5 and 1 0  minutes  a f t e r  commencement of h e a t i n g ) ,  b u t  
a f te r  65 minutes  t h e  c e l l  number h a s  reduced t o  f o u r .  By 90 minutes  t h e  ce l l  number 
i n c r e a s e s  t o  e i g h t  a g a i n  b u t  40 minutes  la te r  ( a t  120) t h e r e  are o n l y  f o u r .  Thus i n  
t h e s e  f l ows  t h e  t he rma l  boundary l a y e r  does n o t  form s lowly  enough t o  produce j u s t  a 
s i n g l e  c e l l ,  however it i s  n o t  so r a p i d  t h a t  t h e r e  are s u f f i c i e n t  c e l l s  i n  t h e  system 
t o  r each  t h e  p r e f e r r e d  number and t h e r e f o r e  t h e  f low remains  uns teady.  . . . . . . 

Adjustment o f  Cell Number 

T h i s  d i s c u s s i o n  o f  t h e  hehaviour  o f  t h e  t he rma l  boundary l a y e r  has  
i n t roduced  a fundamental  and major p o i n t  concerning  t h e  t r a n s i e n c e  of convec t ive  
f l ow i n  porous  media.  The m u l t i c e l l u l a r  f low becomes s t e a d y  a f t e r  an i n i t i a l  
p e r i o d  o f  development o n l y  because  it i s  a b l e  t o  reduce t h e  number of c e l l s  i n  t h e  
f low t o  a t t a i n  a p r e f e r e n t i a l  p a t t e r n  which r e s u l t s  i n  maximum energy t r a n s f e r .  
However t h e  u n i c e l l u l a r  f l ow remains t r a n s i e n t  because  it cannot  increase  t h e  number 
o f  cells i n  t h e  p a t t e r n ,  as new c e l l s  are des t royed  by t h e  e x i s t i n g  l a r g e r  one b e f o r e  
t h e y  can  abso rb  s u f f i c i e n t  energy.  The system c o n t i n u a l l y  a t t e m p t s  t o  i n c r e a s e  t h e  
r a t e  o f  h e a t  t r a n s f e r  from t h e  lower boundary by improving t h e  f a v o u r a b i l i t y  o f  t h e  
number o f  cells.  

The Reformation I n t e r v a l  

After t h e  f l i g h t  o f  a n a s c e n t  c e l l  t h e  d e p l e t e d  boundary l a y e r  r e q u i r e s  a 
certain time i n t e r v a l ,  dependent on t h e  Rayle igh  number, t o  r e fo rm t o  such an e x t e n t  

t h a t  y e t  a n o t h e r  p r o s p e c t i v e  c e l l  can  evolve .  These s t a g e s  o f  g e s t a t i o n  and f l i g h t  

59 

! 



are also apparent in the fluid layer problem considered by Denton and Wood (1974) who 
observed rising thermal disturbances similar to those first described by Howard (1964). 
Sparrow, Husar and Goldstein (1970) found that the rate of generation (in the same 
fluid layer problem) was proportional to R 2 ' 3  , a result which has also been separately 
obtained by Krishnamurti (1970b) and by Willis and Deardorff (1970). An example of 
the approach of Sparrow, Husar and Goldstein (1970) applied to the present problem is 
given in appendix F. Their approach neglects the flow of fluid over the heater and 
considers only conductive heat transfer, which is a not unreasonable approximation in 
the case of a fluid layer problem in which there is a fluid boundary layer. However 
there is no fluid boundary layer in the porous medium problem and the neglection of 
hydrodynamic conditions in appendix F leads to the prediction of shorter reformation 
intervals T a R-2 than are observed here. 

Fluctuation Regularity 

The fluctuations observed in the unsteady fully heated flows are less 
regular than the oscillations in the half-heated flows. This is due to the lack of 
constraint on the location at which the thermal boundary layer can fcrm in the 
uniformly heated configuration. When f=0.5 it is inevitable that for a unicellular 
flow the fluid must rise over the heater and fall on the opposite side of the region. 
Thus the thermal boundary layer is restricted to form within a certain small area of 
the heater, and the flight of thermals occurs at regular intervals from the same 
location. On the other hand a disturbance can evolve anywhere on a uniformly heated 
boundary and when f = 1 the disturbances are released at irregular intervals from 
indefinite locations. The descending "antithermals" in the half-heated case occur 
more randomly than the corresponding ascending disturbances because they form on a 
uniformly isothermal boundary. However these effects experience a certain induced 
regularity due to the periodic impingement on the upper boundary of oscillations in 
the rising plume, and therefore are not as random as those in the fully heated case. 

Other Boundary Conditions 

The solutions for rectangular regions confirm that the thermal boundary 
layer provides the mechanism for the production of transient effects, and also 
indicates the effect of the confining vertical boundaries. With very long, cool 
portions of the region, the flow is slower and the isotherms spread further than in a 
similarly heated square region. Thus the rising plume is wider which results in a 
weaker thermal boundary layer. It should be explained here that a thermal boundary 
layer is indicated by an area of maximum of thermal gradient which generally implies 
a conductive region (in a convective flow the advective regions of the flow transport 
heat more effectively than conductive regions and do not permit accumulations of thermal 
energy). Comparing the isothermal plots of figures 5.2.5 and 5.2.6 it is seen that 
the conductive region (in which isotherms and streamlines are approximately parallel) 
in the wider cell is approximately as thick (remembering the difference in vertical 
length scales) but has a much reduced temperature differential across it. Thus the 
effective Rayleigh number never reaches its critical value and the solution remains 
steady. 
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A similar effect occurs in the flows in a region with an insulated lower 
boundary. The fluid transported over the downstream end of the heater is warmer 
than in the isothermal lower boundary case and consequently the temperature differen- 
tial and thus the effective Rayleigh number in the thermal boundary layer are both 
reduced. 

Thus it has been demonstrated that, for the simple enclosed porous region, 
the natural convective flow regime is influenced both by the presence of vertical 
boundaries (since the steadiness of the pattern depends on the ability of the preferred 
number of cells to form within the problem boundaries) and by the method and extent of 
heat input employed. 

5.4 THE RECHARGE-DISCHARGE SOLUTIONS 

"Natural" Conditions 

Solutions f o r  the half-heated, constant vi sc blem osity, surface recharge prc 
(in the absence of any point fluid sinks o r  sources, corresponding to the natural 
state of a geothermal field) were generated on 33x33 meshes for selected values of the 
Rayleigh number in the range 250 to 1000. The finer mesh is imperative at lower 
values of R than those previously requiring this grid because the outflow of fluid 
through the surface draws the rising plume right to the upper boundary, resulting in 
severe thermal gradients in this area. In fact at higher values R 750 a slight 
numerical instability becomes apparent at the top of the rising column, however the 
effects of this are advected out of the region with the surface discharge. 

When the Rayleigh number exceeds a value in the vicinity of 350 the flow is 
regular oscillatory, periodically generating thermals or pairs of thermals in the 
ascending portion of the flow only. This behaviour may be seen in the summary plot 
of figure 5.4.1 and a thermal is illustrated in mid-flight in figure 5.4.2. 
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FIGURE 5 . 4 . 1  - Var ia t ion  I n  t ime of the  o s c i l l a t o r y  recharge s o l u t i o n  a t  R = 500. Nussel t  number 
(---I and Reference temperature a t  a p o i n t  w i t h i n  t h e  r i s i n g  plume (-1. 
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FIGURE 5.4 .2  - Oscillatory solution for recharge problem at R = 500. Isotherms (-1 and 
stream1 i nes (- - -) . 

The value of the Rayleigh number at which the solution becomes unsteady 
(350) is lower than the value 480 observed fo r  the half-heated, closed boundary model 
of section 5.2. The recharge from the surface transports cold fluid down to the 
heater, contracting the rising plume and reinforcing the thermal boundary layer. 
The large temperature differential across the layer means that the effective Rayleigh 
number is high, and temperature disturbances form more rapidly. The flow of fluid 
into the surface also prohibits the formation of a thermal gradient at the upper 
boundary above the descending portion of the flow, and therefore prevents the genera- 
tion of descending temperature disturbances. The ascending pulses are generated by 
the same mechanism as their enclosed system counterparts, but with higher frequency. 

Comparison of the temperature profiles on the left vertical boundary in 
figure 5.4.3 (which is a pair of plots of a superposition of the profiles at several 
successive time intervals) reveals that the recharge disturbances have a larger 
amplitude and move both faster and further. A summary of these natural recharge 
solutions is presented in table IV. 
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FIGURE 5.4.3 - Plots of temperature profiles along left hand vertical boundary at various times 
for R = 750. Left: Closed system of Figure 5.2.1. Right: Recharge system. 

Table IV Recharge - Discharge Solutions 

R 

250 
312 
375 

500/lst pulse 
500/2nd pulse 
750/lst pulse 
750/2nd pulse 

1000 

NUmin 

2.68 
2.68 
2.42 
2.29 
2.19 
2.84 
2.34 
2.72 

2.68 
2.68 
3.18 
3.58 
3.88 
4.78 
4.56 
4.82 

0.057 
0.053 
0 . 0 5 1  

0.051 

0.052 
0.053 
0.054 
0.058 

z 
P 

- - 
0.0068 
0.0037 
0.0042 
0.0021 
0.0024 
0.0017 

I I I I 

Biperiodic effects 

At intermediate values of the Rayleigh number, namely 500 and 750, successive 
thermals have different magnitudes and evolve unevenly spaced in pairs. For instance 
at R=500 a large pulse precedes a smaller one by an interval of 0.0037, and the 
subsequent large pulse, identical to the first, follows 0.0042 after that. This 
biperiodicity is apparent in figure 5.4.1 above. As one thermal rises through the 
porous matrix it creates a velocity perturbation that interrupts the gestation of the 
thermal which has formed on the heater behind it. This correspondingly smaller 
thermal is drawn off earlier than its predecessor and makes a premature flight. 
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When the Rayleigh number is larger, successive disturbances appear so rapidly 
that the interaction between them extends beyond adjacent disturbances, and when 
R = 1000 the oscillations are regular, On the other hand at a lower Rayleigh number 
the thermals are widely spaced in both time and position and do not interact signifi- 
cantly at all, so when R = 375 the oscillations are again regular. 

There appears to be a similar biperiodic effect in the experimental results of 
Sparrow, Husar and Goldstein (1970, figure 2a, p.797) for a Newtonian fluid layer 
heated from below. Also  Krishnamurti (1970b) and Willis and Deardorff (1970) have 
mentioned paired effects with reference to this problem. In the half-heated closed 
boundary model of section 5 . 2  the thermals are weaker than here and do not interact 
noticeably in this way, however there is another biperiodicity due to the descending 
disturbances having approximately half the frequency. This second type of biperiodi- 
city, due to the interaction of two different fluctuating sections of the flow, may 
be observed in the results of Denton and Wood (1974) for a stratified fluid layer 
problem except that there the different disturbances are separated physically by a 
fluid interface. 

These effects emphasise the importance of the coupling between the velocity and 
the temperature fields and stress the necessity of maintaining accuracy when represent- 
ing the advection terms. 

The Addition of Fluid Sinks 

With the existence of oscillatory effects established in a model more realistic 
than the enclosed model in which they were discovered, the effect of including fixed 
"unnatural" fluid withdrawals may be evaluated. Taking the solution at R = 500 as a 
typical case, sinks of strengths between 0.012 and 0.10 are installed on the left 
vertical boundary (corresponding to a borehole above a heat island if this boundary 
is envisaged as a line of symmetry). The strengths of these sinks range from k to 
twice the natural discharge ($max -. 0.05) observed in the preceding results, In its 
present state, the drawoff from the Wairakei field is approximately four or five times 
the natural discharge of 440 kg/sec  although this fluid is withdrawn through many wells. 
On the scale of the model used here, several of these wells may be considered to act 
together as a single point sink which corresponds to the configuration modelled. The 
remainder of the bores are neglected for the meantime since it is the effect of the . 
sink that is of interest rather than the faithful representation of the Wairakei system 
alone. The results of the flows for this "centreline sink" configuration are 
tabulated in table V. 



Table V Sink - Recharge Solutions R = 500 

Sink Strength NUmin NUmax 

0/lst pulse 2.29 3.58 
0/2nd pulse 2.19 3.88 

0.012/lst pulse 3.62 4.56 
0.012/2nd pulse 3.58 4.72 
0.025/lst pulse 5.86 1.39 
0.025/2nd pulse 5.41 7.50 
0.05 3.91 8.42 
0.10/lst pulse 5.13 12.71 
0.10/2nd pulse 4.99 13.79 

%MX =P 

0,051 0.0037 
0 . 0 5 2  0.0042 
0.041 0.0037 
0.042 0.0042 
0.054 0.0037 
0.055 0.0042 
0.056 0.0042 
0.100 0.0040 
0.100 0.0043 

It was found during introductory tests on the model that the instant at 
which the sink was "turned on" was not an important factor and the solution eventually 
reached the same state regardless of when the sink had been introduced. Therefore 
in each case the flow was permitted to develop from time zero with the sink in force. 
Typical flows at sink strengths of 0.025 and 0.1 are illustrated in figures 5.4.4 and 
5.4.5, which should be compared to the zero withdrawal solution presented previously 
in figure 5.4.2. 

I I 
I 

FIGURE 5.4.4 - O s c i l l a t o r y  s o l u t i o n  f o r  recharge problem a t  R = 500 w i t h  s i n k  of s t reng th  0.025 on 
l e f t  v e r t i c a l  boundary ( c e n t r e l i n e  i n  t h i s  diagram). 
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FIGURE 5.4.5 - Oscillatory solution for recharge problem a t  R = 500 w i t h  s i n k  of strength 0.1 on 
l e f t  vertical boundary. 

The E f f e c t  of Sink  S t r e n g t h  

Although t h e  r i s i n g  plume c o n t r a c t s  under t h e  i n f l u e n c e  of t h e  s i n k  and t h e  
N u s s e l t  number i s  c o n s i d e r a b l y  i n c r e a s e d ,  t h e  g e n e r a t i o n  of t h e  thermals  i s  o n l y  
s l i g h t l y  a f f e c t e d .  When t h e  s i n k  s t r e n g t h  i s  0 . 1  t h e  motion i s  dominated by t h e  s i n k  
f l o w  ( i n d i c a t e d  by t h e  v a l u e  o f  Jlmax) b u t  t h e  time p e r i o d  lengthened  o n l y  s l i g h t l y  a s  
t h e  thermal  boundary l a y e r  e v o l v e s  less  e a s i l y .  The s o l u t i o n  i s  unusua l  when t h e  
s i n k  s t r e n g t h  i s  c l o s e  t o  t h a t  o f  t h e  n a t u r a l  d i s c h a r g e  (-. 0.05) as t h e  maximum stream 
f u n c t i o n  i s  u n c h a r a c t e r i s t i c a l l y  l a r g e  and t h e  f low comple te ly  r e g u l a r .  The f o r c e d  
f low o v e r r i d e s  t he  weaker c o u p l i n g  between t h e  v e l o c i t y  and tempera ture  f i e l d s  and 
d i s r u p t s  t h e  i n t e r a c t i o n  between thermal p a i r s .  

Sink Location 

A similar r e g u l a r i s a t i o n  o c c u r s  i f  t h e  s i n k  i s  p l a c e d  o v e r  t h e  i n t e r i o r  end 
of t h e  h e a t e r ,  a l t h o u g h  i n  t h i s  case t h e  ampl i tude  of t h e  o s c i l l a t i o n  i s  reduced t o  
approximate ly  2 0 %  ( s e e  f i g u r e  5 . 4 . 6 )  and t h e  p e r i o d  becomes 0 . 0 0 4 1 .  

T h i s  r e p o s i t i o n i n g  o f  t h e  s i n k  a l s o  r e s u l t s  i n  a r e d u c t i o n  o f  t h e  h e a t  
t r a n s p o r t e d  th rough  t h e  system as t h e  N u s s e l t  number v a r i e s  o n l y  between 2.60 and 
3 .56 .  The i n c r e a s e d  f low through  t h e  r e g i o n  i s  choked by t h e  flow between t h e  
s u r f a c e  and t h e  s i n k  and consequent ly  t h e  volume o f  f l u i d  p a s s i n g  t h e  h e a t e r  i s  
reduced .  T h i s  i s  i n d i c a t e d  by t h e  s h o r t e r  g e s t a t i o n  p e r i o d  o f  t h e  thermal  boundary 
l a y e r .  The s i n k  i s  a l s o  drawing f l u i d  of much lower t e m p e r a t u r e  when i n  t h i s  
p o s i t i o n  and i t s  u s e f u l n e s s  i s  reduced t o  such an e x t e n t  t h a t  t h e  system produces l ess  
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FIGURE 5.4.6 - Oscillatory solution f o r  recharge problem a t  R = 500 w i t h  s i n k  of strength 0.05 
over interior e n d  of  heater (mid-region). 

h e a t  t h a n  i n  i t s  “ n a t u r a l ”  s t a t e .  Moving t h e  s i n k  f u r t h e r  o v e r  t h e  h e a t e r  as i n  
f i g u r e  5 .4 .7  i n c r e a s e s  t h e  Nusse l t  number t o  vary  between 3.79 and 4 .62  and i n  t h i s  
c a s e  t h e  s o l u t i o n  i s  b i p e r i o d i c  a g a i n .  

I I I 
I 
I 
I 
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I 

c 

FIGURE 5.4.7 - Oscillatory solut ion for recharge problem a t  R = 500 w i t h  s i n k  of  strength 0.05 
over centre of heater. 
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The Upper R e s e r v o i r  

Now t h a t  a method has  bean developed t o  r e p r e s e n t  s u r f a c e  r e c h a r g e  and f l u i d  

wi thdrawal ,  it i s  p o s s i b l e  t o  c o n s t r u c t  a model o f  t h e  “upper r e s e r v o i r ”  which was 
d e s c r i b e d  i n  c h a p t e r  1. The upper r e s e r v o i r  may be c o n s i d e r e d  as a c o n v e c t i v e  sys tem 
i n  i t s e l f ,  f e d  w i t h  h o t  water from below, as sugges ted  by Donaldson (1974). To 
r e p r e s e n t  t h i s  s i t u a t i o n  t h e  boundary c o n d i t i o n s  remain similar t o  t h o s e  used i n  t h e  
deep ,  n a t u r a l  r e c h a r g e  model except  t h a t  now f l u i d  i s  i n t r o d u c e d  through  a s o u r c e  i n  
t h e  lower  boundary, as i n  f i g u r e  5 . 4 . 8 .

FIGURE 5.4.8 - Steady solution for recharge problem a t  R = 500 w i t h  point source of strength 
0.05 a t  centre of heater. 

I n  t h i s  case t h e  p o i n t  s o u r c e  i s  of s t r e n g t h  0 . 0 5  and i s  p o s i t i o n e d  a t  t h e  
c e n t r e  o f  t h e  h e a t e r .  T h i s  cor responds  t o  t h e  i n t r o d u c t i o n  o f  h o t  water a t  t h e  
b a s e  o f  t h e  system through a major  f i s s u r e .  The f low from t h e  s o u r c e  e x p e l s  t h e  
t h e r m a l  boundary l a y e r  from t h e  lower boundary and p r e v e n t s  t r a n s i e n t  behaviour.  
The f l o w  p a t t e r n s  are  s i m i l a r l y  s t e a d y  i f  t h e  i n f l u x  of f l u i d  i s  d i s t r i b u t e d  o v e r  the 
e n t i r e  h e a t e r ,  as i n  f i g u r e  5 . 4 . 9 .  The r e s u l t s  of s i m u l a t i o n s  u s i n g  t h e s e  f o r c e d  
i n f l o w  models are  t a b u l a t e d  i n  t a b l e  V I .  

Tab le  VI Source - Discharge  S o l u t i o n s  R = 500  

0 . 0 5 0  d i s t r i b u t e d  - 0 . 0 4 6  0 . 0 9 6  
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FIGURE 5.4.9 - Steady solution for recharge problem at R = 500 with distributed source of 
strength 0.05 over heater. 

The addition of a fluid sink of strength 0 . 0 5  corresponding to exploitation 
of the upper reservoir, is shown in figure 5.4.10. In this case the Nusselt number 
is increased by a factor of three, to approximately 21. 

These results demonstrate that unsteady effects cannot develop at higher 
levels of a geothermal region if the rising plume of hot fluid is already steady. 
However, when disturbances originate at depth as has been observed in the more com- 
plete models used earlier in this work, clearly these thermal anomalies will rise 
through the upper reservoir. Thus restricting the long term modelling of geothermal 
regions to just shallower sub-systems may give limited understanding of the problem. 

FIGURE 5.4.10 - Steady solution for recharge problem at R = 500 with source of strength 0.05 
over heater and sink of strength 0.05 on left vertical boundary (centreline). 
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F l u i d  R e i n j e c t i o n  

Recent ly  it h a s  been sugges ted  t h a t  t h e  u s e f u l  o u t p u t  from geothermal a r e a s  
may be improved by t h e  r e i n j e c t i o n  o f  water t o  r e p l a c e  t h a t  removed through  b o r e h o l e s .  
T h i s  i s  done a t  t h e  Geysers  f i e l d  i n  t h e  U.S.A., l a r g e l y  as a means o f  d i s p o s i n g  o f  
e x c e s s  w a r m  water from t h e  power s t a t i o n .  I n  o r d e r  t o  a c h i e v e  t h e  b e s t  p o s s i b l e  
r e s u l t s  from r e i n j e c t i o n  it i s  n e c e s s a r y  t o  i n j e c t  t h e  r e c h a r g e  f l u i d  i n t o  t h e  
descending  r e g i o n  of t h e  f low, as  i n  f i g u r e  5 .4 .11 .  

/ 

' I  

I 
/ 

/ 
/ 

FlGURE 5.4.11 - Oscillatory solution for recharge problem a t  R=500 w i t h  source of strength 
0.05 on r i g h t  vertical boundary and s i n k  of strength 0.05 on left vertical boundary 
(centre1 i n e ) .  

The i n j e c t e d  f l u i d  t h e n  makes i t s  way down t o  t h e  h e a t  s o u r c e  w i t h  t h e  " n a t u r a l "  
r e c h a r g e  from t h e  s u r f a c e .  It should  be no ted  t h a t  it i s  o n l y  n e c e s s a r y  t o  r e i n j e c t  
a t  a d e p t h  a t  which t h e  sur roundings  have t h e  same t e m p e r a t u r e  as  t h e  i n j e c t e d  f l u i d .  
I n  t h i s  way no h e a t  i s  l o s t  from t h e  f l u i d  t o  t h e  s u r r o u n d i n g s ,  p rovided  t h e  s o u r c e  i s  
n o t  so s t r o n g  t h a t  i n j e c t e d  f l u i d  t e n d s  t o  r i s e  towards  t h e  s u r f a c e  a g a i n .  A s o u r c e  
of s t r e n g t h  similar t o  t h e  maximum stream f u n c t i o n  o f  t h e  n a t u r a l  f l o w  a t  t h e  time t h e  
s o u r c e  is i n t r o d u c e d  should  s a t i s f y  t h i s  requi rement .  There i s  l i t t l e  t o  be ga ined  
by i n t r o d u c i n g  t h e  f l u i d  a t  g r e a t e r  d e p t h ,  which would n e c e s s i t a t e  deeper  wells and 
t h e  i n s t a l l a t i o n  o f  h i g h e r  p r e s s u r e  pumps. The r e i n j e c t i o n  sys tem i l l u s t r a t e d  i n  
f i g u r e  5 . 4 . 1 1  u s e s  a s o u r c e  of  s t r e n g t h  0 . 0 5  a t  t h e  same depth  as a s i n k  o f  s t r e n g t h  
- 0.05 i n  t h e a s c e n d i n g p l u m e .  T h i s  r e su l t s  i n  a maximum Nusselt number of 8 . 6 0  
compared t o  t h e  v a l u e  8 . 4 2  for t h e  same system w i t h o u t  t h e  r e i n j e c t i o n .  It should  
be  no ted  t h a t  t h e  behaviour  of  t h e  system i s  s t i l l  o s c i l l a t o r y .  
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Forced Convection 

F i n a l l y ,  it shou ld  be noted  t h a t  t h e  models used i n  t h i s  s e c t i o n  have 
d e v i a t e d  from t h e  f r e e  convec t ive  problem f o r  which t h e  governing  e q u a t i o n s  were 
d e r i v e d  i n  s e c t i o n  2 . 1 .  However t h e  Reynolds number o f  t h e s e  s o l u t i o n s  i n  i n c r e a s e d  
a t  most by a f a c t o r  of two, and no t  by t h e  o r d e r  o f  magnitude t h a t  would i n v a l i d a t e  
t h e  use o f  t h e  approximat ions  t h a t  Darcy ' s  Law i s  v a l i d ,  t h a t  energy d i s s i p a t i o n  i s  
n e g l i g i b l e ,  t h a t  i n e r t i a  e f f e c t s  may be ignored  and t h a t  t h e  Boussinesq approxima- 
t i o n  i s  a p p r o p r i a t e .  

5.5 THE VARIABLE VISCOSITY MODEL 

P h y s i c a l  Parameters  

From e m p i r i c a l  t a b l e s  g iven by Engineer ing  Sc i ences  Data (1968) a least  
s q u a r e s  f i t  i s  o b t a i n e d  t o  de termine  t h e  c o e f f i c i e n t s  f o r  t h e  v a r i a t i o n  of t h e  
v i s c o s i t y  and d e n s i t y  o f  water wi th  t empera tu re .  These v a l u e s  are: 

a = 0.9229 AT I 

8 1  = 2.606 AT ,

8 ,  = 1.335 (AT)Z , 
and 6 3  = -0.4762(AT)' , 

where AT i s  expres sed  i n  u n i t s  of 100°C,  r e s u l t i n g  i n  a n  approximat ion  t o  t h e  
v i s c o s i t y  dependence i l l u s t r a t e d  i n  f i g u r e  5.5.1. 

L 
1 I I I I 

25 5; 75 lW 125 150 175 200 225 250 

1 I'CI 

FIGURE 5.5, I - Cubic approxlmatlon t o  the  v a r i a t i o n  of  non-dlmensional k inemat ic  v iscos i ty  v i  
with temperature T i n  pure water.  
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As has been mentioned previously, when using the variable viscosity equations, 
convection that is at least as vigorous as that in the constant viscosity model may 
occur at considerably lower a p p a r e n t  Rayleigh numbers (which are based on v o ) .  

Consequently for a temperature differential AT of l5OoC a range of R between 50 and 
160 is considered which corresponds to a range of "cold water" Rayleigh numbers 
between 400 and 1250. 

The results are collated in table VII for the closed boundary conditions as 
in section 5.2 and the recharge conditions as in section 5.4. A 33x33 finite 
difference grid is necessary in all cases. 

Table VII Variable Viscosity Solutions, f = 0.5, AT = 1.5 

I Boundaries 

L Closed 

L Recharge 

R NUmin JImax TP Flow regime 

50 Regular oscillatory 0.0248 0.259 5.10 3.60 
80 Regular oscillatory 0.0024 0.281 5.71 5.59 

160 Regular oscillatory 0.0013 0.312 8.23 8.13 

50 Steady - 0.342 3.29 3.29 
80 Approximately 0.0031 0.265 3.55 2.80 

regular oscillatory 
160 Irregular fluctuation -0.00025 0.295 3.80 2.75 

The Flow Patterns

These solutions show greatest similarity to the constant viscosity 
models at the intermediate value 80 in the range of Rayleigh numbers; figures 5.5.2 
and 5.5.3 are illustrations of the two configurations at this value. 

FIGURE 5.5.2 - Unsteady solution for variable viscosity, closed, half heated problem at R = 80.
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FIGURE 5.5.3 - Unsteady solution for variable viscosity, recharge problem at R = 80. 

At the high value of 160 the recharge solution exhibits an almost triperiodic 
behaviour, generating three evenly spaced thermals at irregular intervals. The time 
interval reported in table VII  is the spacing between these disturbances, but the sets 
of three occur at intervals up to six times this value. As a result of the sharp 
decrease in viscosity as a thermal boundary layer forms, the local effective Rayleigh 
number close to the heater increases more than it would have done had the viscosity 
been constant. The thermal boundary may then be thought of as a reservoir of less 
viscous fluid as well as of thermal energy. Thermals then form in a series that is 
typical of the effective Rayleigh number, stripping away the boundary layer. After 
a certain quantity of heat has been removed from the layer, usually after the flight 
of just three thermals, the reservoir of less viscous fluid is expended and the 
disturbances lapse until a new thermal boundary layer has gestated. Although this 
process is not identical to those in the constant viscosity model, the mechanism is 
basically similar. 

At the lower values R = 50 and 80 the closed solution is distinctive since 
the comparatively small Rayleigh number and large temperature difference emphasise 
the viscosity effects. In this case the rising plume follows a less viscous 
"channel" that was formed early in the development of the flow when the pattern was 
bicellular. In all previous half-heated solutions the leftmost of the two cells was 
dissipated, shifting the plume towards the adjacent vertical wall as that boundary 
heated up. Here however the smaller reverse cell is maintained (see figure 5.5.4), 
varying in size as the plume wavers during the formation of the descending disturbances 
in the thermal boundary layer at the surface. 
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FIGURE 5.5 .4  - Unsteady solution fo r  variable viscosity, closed problem at R = 50. 

Fluid Speeds 

The descending disturbances are much more gradual than the ascending ones 
due to the acceleration of the fluid in higher temperature regions. Comparing the 
streamlines to those in a constant viscosity model, as in figure 5 . 5 . 5 ,  the fluid is 
less viscous close to the heater and flows more rapidly than it does along the 
surface where the streamlines are more widely spaced. 

FlGURE 5.5.5 - Comparison of streamlines in vat-table and constant viscosity models. Left: 

solution at R = 500. 
Variable viscosity recharge solution at R = 80. Right: Constant viscosity recharge 



. .  

As a further comparison, a fully heated solution is generated at a Rayleigh 
number of 5 0 ,  and displays the now familiar three-celled pattern. The flow is 
unsteady with fluctuations appearing at intervals of the order 0.0045 and a Nusselt 
number varying approximately within the range 6-10. As before, the solution shows an 
acceleration of the flow close to the heater, as in figure 5 . 5 . 6 .  

3 
FIGURE 5.5 .6  - Unsteady solution for variable viscosi ty ,  closed, uniformly heated problem at 

R = 50. Left: Isotherms, Right: Streamlines. 

Applicability of Constant Viscosity Models 

Although the simulations performed using the variable viscosity model are by 
no means exhaustive, they reveal that the commonly used constant viscosity models are 
inexact but not entirely without use. Generally the flows are similar in character 
for the two models, however extensive numerical experimentation is more expensive with 
the variable viscosity model which takes approximately twice as long to compute. 

It must be remembered when using the elementary model that the effective 
Rayleigh number may be ten times larger than its apparent "low temperature" value. 
Consequently the stream function, which is scaled by the Rayleigh number, seems 
unrealistically large, however the actual fluid velocities are similar in both models 
(except for the differences noted already). 
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Chapter 6 - THREE-DIMENSIONAL TRANSIENT FLOW 

6.1 INTRODUCTION 

As the solution of the equations governing convective flow through porous 
media is so time consuming in two dimensions, it is not surprising that the three- 
dimensional situation is considered less frequently. Most of the research reported 
has been experimental, for example Bories and Thirriot (1969), Combarnous and Le Fur 
(19691, Caltagirone et al. (1971) and Combarnous and Bia (1971). However Holst and 
Aziz (1972b) have performed a short transient numerical solution, and Beck (19721, 
Busse and Joseph (1972), Gupta and Joseph (1973) and Straus (1974) have viewed the 
problem analytically. Mercer (1973) has a different approach to hydrothermal 
modelling, sectioning the region horizontally instead of vertically and using a finite 
element approach, but this does not take proper account of vertical fluid motion and 
therefore is not a three-dimensional analysis. A s  was explained earlier, the 
numerical methods of Holst and Aziz (1972b) using central differencing and iterative 
successive over-relaxation techniques are restrictive in that only low Rayleigh 
numbers can be considered, and even then with dubious accuracy. Since the numerical 
analysis used here has proved successful so far, it seems expedient to apply it to 
this new case also. The behaviour of a three-dimensional system with a non-uniform 
heat input is more relevant to actual geophysical systems than the simple flows 
modelled in previous sections since the flow patterns are unlikely to be two- 
dimensional in a real situation. 

6.2 THE RANGE OF SOLUTIONS 

The Alternative Formulations 

The pressure formulation is the less attractive of the two alternatives 
since it has non-linear terms in a non-Jacobian form which would require the use of 
unsatisfactory central differencing or very time consuming Kreiss techniques, 
Furthermore the Neumann type of pressure boundary conditions ( 2 . 4 . 8 )  produce a 
singular solution sub-matrix in the Buneman algorithm which requires special treatment 
unless the upper surface boundary is a recharge boundary (see appendix D). 
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The advantages of the vector potential formulation are twofold. Firstly 
the non-linear terms are in Jacobian form and are therefore amenable to Arakawa 
differencing and secondly the boundary conditions are of Neumann type on only two of 
the six boundaries, a configuration which can be handled by a much more economical 
form of the Buneman algorithm. In fact it is possible to solve both vector 
potential equations (2.4.11) and (2.4.12) faster than the single pressure equation 
(2.4.4), although memory requirements are slightly larger. On the Burroughs B6700 
calculation of a single time step of the complete pressure solution on a 17x17x17  mesh 
(using central differencing), requires 28 secs of processor time compared to 21 secs 
for the vector potential solution (using Arakawa differencing), although the latter 
requires 24K words of data storage against 19K for the pressure solution program. 

Boundary Configurations 

With such large machine requirements even the faster, more accurate vector 
potential formulation does not permit extensive numerical experimentation and specific 
solutions must be sought. For the purposes of this work it is desirable to investigate 
further the recent work by Straus (1974) who shows that for Rayleigh numbers larger 
than about 380 no two-dimensional solutions are stable in an infinitely wide region, 
and explains the transition below this value observed by Combarnous and Le Fur (1969) 
as being from two-dimensional to three-dimensional modes of flow. Now although this 
transition had a l r e a d y  been observed by Caltagirone et al. (1971) in a layer of finite 
width to be a passage into a fluctuating two-dimensional state, it is not possible to 
confirm this with certainty from the results of chapter 5 in which the analysis is 
two-dimensional. Even though Straus' approach specifically precludes the existence 
of oscillatory solutions, his conclusions raise the question as to whether or not any 
pseudo-two-dimensional unsteady solution is a correct representation of a three- 
dimensional flow. 

Having already determined in chapter 5 that in some instances there are 
alternative solutions in this type of flow depending on the initial conditions, it is 
believed that the proposed three-dimensional flows of Straus (1974) may represent an 
alternative to the two-dimensional flows of Caltagirone et al. (1969). This 
possibility is not precluded by the analysis of Straus (1974) who in stability 
considerations calculated only the eigenvalue with the lowest absolute value. 

To resolve the apparent contradiction, flows were simulated at a Rayleigh 
number of 5 0 0  in two closed cubic boxes, one heated uniformly and the other heated 
over only half the bottom surface. 

6.3 THE NUMERICAL RESULTS 

Despite attempts to perturb the solutions into three-dimensional modes of 
flow by raising in temperature one point adjacent to the heater not on a line of 
symmetry, both configurations maintain two-dimensional flows. The uniformly heated 
case is strictly two-dimensional and generates smaller unsteady cells exactly as 
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observed in the experiments of Caltagirone et al. (1971) (see figure 6.3.1), while 
the half-heated case is almost steady except for a small, non-increasing three- 
dimensional secondary flow just above the heater that is a residual of the introduced 
perturbation (figure 6.3.2). The left and centre illustrations in figure 6.3.1 and 
6.3.2 represent the streamlines (see appendix G )  and isotherms on a vertical section 
passing through a diagonal of the horizontal surfaces and the right hand diagram is 
and isothermal plot on a section at the horizontal mid-plane. 

FIGURE 6.3.1 - Unsteady solution for three-dimensional uniformly heated region at R = 500. 

section). Right: Isotherms (horizontal mid-plane). 
Left: Streamlines (vertical diagonal section). Centre: isotherms (vertical diagonal 

r 

FIGURE 6.3.2 - Steady solution for three-dimensional half heated region at R = 500. 

Uniformly Heated Boundary 

Thus it appears that fluctuating two-dimensional r o l l s  a r e  the most likely 
mode of flow in the uniformly heated problem and although the three-dimensional 
solution of Straus ( 1 9 7 4 )  may be the preferred s t e a d y  flow at this Rayleigh number, 
it does not necessarily occur. This behaviour corresponds to the alternative steady/ 
unsteady solutions in section 5.1 where the supposedly preferred steady solution, 
which is determined originally by considering an infinitely wide layer (as is the 
solution of Straus 1974), is commonly rejected in favour of the unsteady solution. 
Once again the solution is altered by the presence of confining boundaries. 
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Half -Heated Boundary 

Although at a Rayleigh number of 500 the solution to the half-heated 
problem should just be oscillatory (the cutoff value is ~480) this behaviour is not 
apparent for two possible reasons. Either the 17x17x17  mesh used may be too coarse 
(a finer mesh is not practical for three-dimensional problems) or more probably the 
duration of simulation is too short to reach the oscillatory stage, which takes some 
time for marginally unsteady solutions. 

Three- Dimensional Non-Uniformity 

The flow is truly three-dimensional but still unsteady if only one quadrant 
of the lower boundary is heated and in this case regular oscillations occur at intervals 
of 0.0073 (see figures 6.3.3 and 6.3.4). 

FIGURE 6.3.3 - O s c i l l a t o r y  so lu t ion  f o r  three-dimensional quar te r  heated region a t  R = 500. 

1.7 

75-  

0 

5- - 
.25- 

d 

FIGURE 6.3.4 - Var ia t ion  i n  t ime o f  reference temperature a t  the  mid-point o f  t h e  v e r t i c a l  edge 
boundary adjacent t o  t h e  hea te r  i n  the  quar te r  heated three-dimensional region.  
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These solutions were all generated on a 17x17x17  mesh and took of the 
order of 350 minutes each. This represents a considerable expenditure on 
computing resources, and it is expected that this type of three-dimensional 
modelling will have limited use in geothermal applications except for s p e c i f i c  
representations. A more suitable technique would be to use an axisymmetric 
analysis - this would be more useful f o r  modelling geothermal problems but could 
not be used to investigate the physics of the flow as has been done here. 
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Chapter 7 - THERMOHALINE CONVECTION I N  POROUS 

MEDIA 

7.1 INTRODUCTION 

To this point the working fluid considered has been a single component 
liquid, which corresponds to a pure water geothermal system, but this need not always 
be the case. Although Wairakei is believed to be a water dominated system (about 
12000 ppm dissolved solids), there are hydrothermal areas (for example Reykjaves in 
Iceland and Niland, U . S . A . )  where the saturating fluid is an aqueous solution, 
containing a significant proportion (Reykjaves 40,000 ppm, Niland 200,000 ppm) 
of dissolved mineral salts, which has a concentration dependent density. Although 
the unsteady effects observed so far have been in the thermal problem it is also known 
that opposing stabilising and destabilising influences in thermohaline convection can 
cause oscillatory instability. Thermohaline or double diffusive convection in a 
fluid layer has been studied numerically by Elder (1969), experimentally by Foster 
(1968 and 1969), Shirtcliffe and Turner (1970), Lambert and Demenkow (1971), Hurle and 
Jakeman (1971), Platten and Chavepayer (1973) and Shirtcliffe (1973), and analytically 
by Nield (1967), Baines and Gill (1969), Joseph (1970), Legros, Platten and Poty (1972) 
and Hart (1973). In several cases "overstable" solutions were predicted and a good 
summary plot of the stability of this problem is given by Baines and Gill (1969) in the 
Rayleigh number/solutal Rayleigh number plane. These analyses have all been performed 
for the fluid layer problem and represent only a small proportion of research in this 
field. The thermohaline problem in a porous medium which is of interest here has 
been less extensively investigated. Taunton, Lightfoot ana Green (1972) have performed 
a similar linear stability analysis to Baines and Gill (1969) in the porous medium case, 
and extended the earlier study by Nield (1968). Both investigations noted the 
possibility of overstable oscillatory solutions and determined the conditions under 
which they can occur, but neither revealed what form these oscillations might take or 
what processes cause them. An energy stability analysis was considered by Wankat and 
Schowalter (1970) but without specific reference to oscillatory solutions. 

It seems desirable then to adapt the numerical approach used in chapters 5 

and 6 to the two-dimensional thermohaline problem in a porous medium in order to 
explore another instability mechanism which may be present in geothermal systems. 
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7 . 2  THE E Q U A T I O N S  OF MOTION 

The d e r i v a t i o n  of t h e  governing equa t ions  c l o s e l y  f o l l o w s  t h a t  o f  s e c t i o n  2 . 1 ,  
excep t  t h a t  t h e  f l u i d  d e n s i t y  v a r i a t i o n  i s  now a f u n c t i o n  o f  bo th  t h e  change i n  d i s s o l v e d  
sa l t  c o n c e n t r a t i o n  and t h e  excess  t empera tu re ,  Thus (2.1.5) i s  r e p l a c e d  by 

where C i s  t h e  s a l t c o n c e n t r a t i o n  and t h e  prime deno te s  q u a n t i t i e s  a s s o c i a t e d  wi th  it 
( t h i s  makes a t  t h e  c o e f f i c i e n t  of  s o l u t a l  expansion o f  t h e  f l u i d ) .  Combining wi th  
( 2 . 1 . 1 )  and ( 2 . 1 . 2 )  and invoking t h e  Boussinesq approximat ion ,  t h e  e q u a t i o n s  become 

- aqi 
axi = o ,  ( 7 . 2 . 2 )  

I t  i s  a l s o  neces sa ry  t o  i n c o r p o r a t e  an equa t ion  t o  d e s c r i b e  t h e  t r a n s p o r t  of d i s s o l v e d  
s a l t ,  and t h i s  i s  t h e  w e l l  known d i f f u s i o n  equa t ion  (Holman 1 9 6 8  p.336) 

( 7 . 2 . 5 )  

where K '  i s  t h e  s o l u t a l  d i f f u s i v i t y .  A s  b e f o r e  t h e  i n e r t i a  te rms may be  neg lec t ed  
and t h e  e q u a t i o n s  r e w r i t t e n  i n  non-dimensional form. Def in ing  t h e  a d d i t i o n a l  v a r i a b l e  

c - co 
c* = - 

- co 
,

and i n t r o d u c i n g  $ as i n  (2.3.6), t h e  equa t ions  ( 7 . 2 . 3 )  become (d ropp ing  t h e  *
immediately f o r  convenience) ,  

and 

which may be s i m p l i f i e d  by c r o s s - d i f f e r e n t i a t i o n  and s u b t r a c t i o n ,  t o  

v2JI = a 0  ac 
- a - y  3x ,

where Y i s  t h e  buoyancy r a t i o  %?%.L%%) 
a ( T I -  T o )  

Equat ions  (7.2.4) and (7.2.5) become r e s p e c t i v e l y  

v z e  = - R  13 E - 9 3 0 1  , 
ay ax  a x  
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and G O ~ C  = ~ - R / A c $ $ ~  - % % I  . 

These last three equa t ions  c o n s t i t u t e  t h e  set governing  t h e  f low,  

( 7 . 2 . 8 )  

Boundary Cond i t i ons  

The problem boundar ies  a r e  t h e  same as t h o s e  cons ide red  i n  t h e  o r i g i n a l  
enc losed  model ( s e c t i o n  2.2), b u t  s i n c e  it is expected  tha t  t h e  appearance of a 
r e g u l a r  o s c i l l a t o r y  s o l u t i o n  is now dependent on t h e  presence  o f  t h e  s a l i n i t y  g r a d i e n t  
it i s  advantageous  t o  c o n s i d e r  a uniform h igh  t empera tu re  sou rce  (f = 1) which would 
n o t  normal ly  produce a r e g u l a r l y  f l u c t u a t i n g  f low.  The d i s s o l v e d  sa l t  c o n c e n t r a t i o n  
v a r i e s  from a minimum va lue  Co a t  t h e  s u r f a c e  t o  a maximum o f  C1 a t  t h e  base ,  or 
0 and 1 r e s p e c t i v e l y  i n  te rms o f  t h e  non- dimensional  c o n c e n t r a t i o n .  Th i s  co r r e sponds  
t o  a c o n f i g u r a t i o n  i n  which h o t t e r  f l u i d  h o l d s  more s o l u t e  t h a n  c o l d e r  f l u i d  c l o s e r  t o  
t h e  s u r f a c e .  A uniform s t r a t i f i c a t i o n  between t h e s e  two limits is i n i t i a l l y  s t a b l e  
i f  t h e  salt s o l u t i o n  i s  dense r  t h a n  t h e  s o l v e n t  (as i s  u s u a l l y  so) ,  i n  which case a' 
and t h e  buoyancy r a t i o  y are b o t h  n e g a t i v e .  

P h y s i c a l  Parameters  

The f low is d e s t a b i l i s e d  by t h e  thermal g r a d i e n t  and s t a b i l i s e d  by t h e  
s a l i n i t y  e f f e c t s ,  t h e  i n t e r a c t i o n  between t h e s e  oppos ing  i n f l u e n c e s  be ing  dependent 
on t h e  v a l u e s  of t h e  d i f f u s i v i t y  r a t i o  , t h e  buoyancy r a t i o  y and t h e  Rayle igh  
number R . The f low i s  i n h e r e n t l y  more s t e a d y  t h a n  t h e  s i n g l e  component ca se  due 
t o  t h e  s t a b i l i s i n g  s o l u t a l  e f f e c t s  and t h u s  f o r  convec t ive  s o l u t i o n s  t h e  Rayle igh  
number i s  compara t ive ly  l a r g e  (>  2 0 0 0 ) .  For t h e  purposes  o f  t h i s  s e c t i o n  t h e  s o l i d  
porous m a t r i x  i s  cons ide red  t o  be  a poor conductor  so t h e  h e a t  c a p a c i t y  r a t i o  X i s  
t a k e n  t o  be u n i t y ,  and from E lde r  (1969) and Taunton,  L igh t foo t  and Green (1972) t h e  
buoyancy r a t i o  i s  t y p i c a l l y  o f  o r d e r  -1. and t h e  c o n d u c t i v i t y  r a t i o  o f  o r d e r  0 . 0 1  . 
Since  t h e  s o l u t a l  Rayle igh  number S used by t h e s e  a u t h o r s  is r e l a t e d  t o  t h e  t h e r m a l  
Rayle igh  number R by t h e  e x p r e s s i o n  

(7.2.9) 

t h e n  t h e s e  v a l u e s  r e p r e s e n t  a s i t u a t i o n  which l i e s  w e l l  w i t h i n  t h e  comple te ly  non- 
convecting zone i n  t h e  s t a b i l i t y  l o c u s  p l o t  o f  Taunton,  L igh t foo t  and Green (1972) w i t h  
a tendency towards  o v e r s t a b i l i t y  r a t h e r  t han  monotonic convect ion .  The r e s u l t s  of 
t h i s  s e c t i o n  con f i rm  t h a t  f o r  any r e a l i s t i c  s i t u a t i o n  t h a t  i s  l i k e l y  t o  occu r  i n  a n  
a c t u a l  geothermal  sys tem,  a permanently u n s t a b l e  s o l u t i o n  i s  improbable w i th  t h e s e  
boundary c o n d i t i o n s .  However t e m p o r a r i l y  t r a n s i e n t  f lows can occu r  f o r  s h o r t  
d u r a t i o n s  and t h e  p h y s i c a l  parameters  may be en l a rged  beyond t h e i r  l i k e l y  p h y s i c a l  
magnitude i n  o r d e r  t o  observe  what form t h e s e  o v e r s t a b l e  s o l u t i o n s  may t a k e .  S teady 
convec t ion  p a t t e r n s  can a l s o  occu r  f o r  very  weak s a l i n i t y  g r a d i e n t s  but  t h e s e  are less 
l i k e l y  t o  occu r  t han  t h e  o v e r s t a b l e  f lows ,  and i n  any case  a r e  c l o s e l y  a l i g n e d  t o  t h e  
t he rma l  c o n v e c t i v e  s o l u t i o n s  which have a l r e a d y  been ob ta ined  i n  s e c t i o n  5 . 1 .  It 
would be p o s s i b l e  t o  s tudy  t h e  e f f e c t  of a d e s t a b i l i s i n g  s a l i n i t y  g r a d i e n t  (as might 
be t h e  s i t u a t i o n  i n  t h e  case  of h e a v i l y  mine ra l l ed  wa te r s  f l a s h i n g  t o  steam a t  higher 
l e v e l s  and d e p o s i t i n g  t h e i r  s o l u t e s )  b u t  as t h e  equa t ions  a r e  so s i m i l a r  t h e  s o l u t i o n s  
would a l s o  be n o t  u n l i k e  t h e  t he rma l  s o l u t i o n s  of t h e  p rev ious  c h a p t e r s .  



7.3 THE NUMERICAL RESULTS 

The numerical representation of (7.2.6), (7.2.7) and (7.2.8) may be achieved 
in a manner similar to that of chapter 4 ,  using fourth order Arakawa differencing for 
the advection terms and Bunemen odd-even reduction f o r  the Poisson equation. The 
system is initially presented with a conduction solution and a small unicellular 
perturbation. The solutions so generated are summarised in table VIII and fall 
into three main groups - a set at realistic values of the diffusivity and buoyancy 
ratios over a range of Rayleigh numbers, a set at similar Rayleigh numbers with a 
more positively stabilising salinity gradient, and a third set with an unrealistically 
strong salinity gradient. In all solutions the final result is a motionless flow 
with uniformly stratified temperature and salinity fields, but in some cases a decay- 
ing oscillation with period T occurs beforehand. P 

Table VIII Thermohaline Solutions 

3500 

1000 
1000 
1000 

500 
1000 
1500 
2000 
2500 

500 
500 

1000 
2000 
3000 

K'/C 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

0.05 
0.05 
0.05 

0.10 
0.10 
0.10 
0.10 
0.10 

0.5 
1.0 
1.0 
1.0 
1.0 

V 

-1.0 
-1.0 
-1.0 
-1.0 
-1.0 
-1.0 

-1.0 
-0.5 
-0.75 

-1.0 
-1.0 
-1.0 
-1.0 
-1.0 

-1.0 
-1.0 
-1.0 
-1.0 
-1.0 

1 
P 

- 
- 
- 

0.0465 
0.0250 
0.0170 

- 
- 

0.024 

- 
- 

0.055 
0.025 
0.013 

- 
- 
- 
- 
- 

Process Observed 

Conduction 
Conduction 
Conduction 

Decaying Oscillation 
Decaying Oscillation 
Decaying Oscillation 

Conduction 
Conduction 

Decaying Oscillation 

Conduction 
Conduction 

Decaying Oscillation 
Decaying Oscillation 
Decaying Oscillation 

Conduction 
Conduct ion 
Conduction 
Conduction 
Conduction 

This oscillation takes the form of a pair of cells that periodically change their 
direction of rotation so that t he  central plume between them alternatively rises and 
falls (see figure 7.3.1). 



FIGURE 7.3.1 - O s c i l l a t o r y  solut i 'on f o r  thermohaline problem a t  R = 3500, y = -1 , d l f f u s i v i t y  
r a t l o  = 0.01. Evenly spaced sequence of isotherms ( l e f t )  and streamlines ( r i g h t ) .  
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This results in a characteristic "flag-waving" motion of the isotherms which is 
reflected in the salinity isoclines only rather more diffusely. Increasing the 
stabilising salinity gradient intensifies the effect which then takes place with 
greater frequency. 

The Oscillation Mechanism 

The mechanism of these oscillations depends on the coupling between the 
temperature and concentration fields. The two components of the system diffuse at 
different rates (the diffusivity of heat is 100 times greater) and thus a parcel of 
fluid which is displaced vertically loses excess heat faster than excess salinity. 
The parcel of fluid then has a strongly stabilising force acting upon it and it tends 
to descend again, producing the reversal of the plume. As it descends the opposite 
effect occurs as heat diffuses in faster than salinity diffuses out and the concentra- 
tion effects have a decreasingly stabilising influence as the lower and denser levels 
of the salinity stratification are reached. The oscillation continues several more 
times, decaying due to thermal dissipation. At no time does the flow become 
significantly convective with major circulations like those in the thermal solutions 
in previous chapters, and the motion is due entirely to the temperature/concentration 
interaction (this is indicated by the fact that the oscillations do not appear when 
the diffusivity ratio is increased). 

Interpreting these results in a physical sense, it is seen that stabilising 
salinity gradients could have the effect of preventing motion in a geothermal system. 
However, this is not the case in actual systems such as Reykjaves and Niland in 
which convective heat transfer is prominent, where more complex processes occur. 
Firstly a major characteristic of a brine geothermal system is the importance of the 
steam phase. Flashing of water to steam at shallow levels produces a heavy concen- 
tration of salts at the surface, which produces a local destabilising gradient. 
Secondly a constant heat flux source at the base cf the formation will accumulate 
thermal energy in a stabilised, non-convecting system until a stage is reached where 
locally the destabilising temperature gradient may overcome the stabi1ising salinity 
gradient and the system being to convect. These two phenomena lie beyond the 
capabilities of the present model which considers only single phase flow and an 
isothermal heat source. This simpler model is useful for demonstrating the mechanics 
of the interactions which may occur between conflicting influences on the flow, 
without paying too much attention to specific instances of occurrence. 
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Chapter 8 - THE POROUS INSULATOR PROBLEM 

8.1 INTRODUCTION 

The model regions considered in chapters 4 - 7 have all been heated from below, 
and although this is the more commonly studied case, a porous enclosure raised in 
temperature on one of its vertical sides as in figure 8.1.1 is of some interest also. 

Y 

# = O  

9-1 

p . 0  

9 = O  

- X  

FIGURE 8. I .  I - Problem boundaries for porous insulator problem. 

Such a situation arises in porous insulators; for example within nuclear reactors, 
fibreglass building materials, hot water pipe lagging and refrigerator walls. If 
convection occurs in a homogeneous layer of insulating fluid, for instance an air gap 
in a house wall, the heat transfer across the layer is greater than if only conduction 
takes place. If the gap is of finite thickness but infinite height and width it has 
been proven by Gill (1969) that the introduction of a porous material reduces 
inertial effects to such a point that convection cannot happen, and improves the 
effectiveness of the system as an insulator (provided of course that the permeable 
solid is not highly conductive). However for a sealed porous slab of finite propor- 
tions Betbeder and Jolas (1972) found experimentally and numerically that convective 
motion is possible, which confirmed the earlier numerical results of Chan, Ivey and 
Barry (1970). Jannot, Naudin and Viannay (1973) investigated a different case in 
which the unheated and cooler vertical boundary is open to the environment with a 
forced flow of fluid through it, but they too observed convective solutions. 
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8 . 2  THE NUMERICAL SOLUTIONS 

The s o l u t i o n  p r o c e s s  f o r  t h i s  problem is e s s e n t i a l l y  similar t o  t h a t  fo r  
t h e  f u l l y- h e a t e d  r e g i o n  i n  c h a p t e r  2 e x c e p t  t h a t  t h e  g r a v i t y  v e c t o r  i s  r o t a t e d  
th rough 90' w i t h  r e s p e c t  t o  t h e  r e g i o n  boundar ies  - so  t h a t  (2.3.10) becomes 

Q 2 J ,  = - ,
a e  (8.2.1) 

and t h e  h e a t  t r a n s p o r t  e q u a t i o n  (2 .3 .9)  remains unchanged. A s  it happens t h e  flows 
o b t a i n e d  are always s t e a d y  and u n i c e l l u l a r  which p e r m i t s  t h e  use  of  a v a r i a b l e  s i z e d  
time s t e p  i n  t h e  numer ica l  scheme, i n c r e a s i n g  t h e  increment  as t h e  s o l u t i o n  approaches  
a s t e a d y  s ta te ,  t h e r e b y  r e d u c i n g  t h e  l e n g t h  and i n c r e a s i n g  t h e  accuracy  o f  the 
c a l c u l a t i o n .  A t  e a c h  s t a g e  of t h e  computat ion t h e  p r o s p e c t i v e  a l t e r a t i o n s  t o  t h e  
t e m p e r a t u r e  m a t r i x  (E . A T )  are scanned and t h e n  s c a l e d  un i formly  so t h a t  t h e  
maximum a l t e r a t i o n  i s  always by t h e  same amount a t  e v e r y  time s t e p .  T h i s  e n s u r e s  
b o t h  t h a t  t h e  time d i f f e r e n c i n g  does  n o t  become n u m e r i c a l l y  u n s t a b l e  due t o  the 
t e m p e r a t u r e  changes becoming t o o  l a r g e  and t h a t  t h e  s o l u t i o n  proceeds  as r a p i d l y  as 
p o s s i b l e  w i t h o u t  it becoming so. T h i s  procedure  i s  analogous t o  s u c c e s s i v e  over-  
r e l a x a t i o n  i n  a q u a s i- s t e a d y  s o l u t i o n  method. 

a e  

The r e s u l t s  p r e s e n t e d  below i n  t a b l e  I X  are n o t  as remarkable  as t h e  

uns teady  f lows  observed  i n  e a r l i e r  c h a p t e r s ,  however they conf i rm and e x t e n d  t h e  
e x p e r i m e n t a l  r e s u l t s  o f  Betbeder and Jolas (1972) and v e r i f y  once a g a i n  t h e  v i a b i l i t y  
of t h e  numer ica l  method. 

T a b l e  I X  H o r i z o n t a l  Temperature Gradien t  S o l u t i o n s  

I Square Cell T 
R Mesh 

S i z e  

25 

3 3x3 3 1500 
3 3x3 3 1250 
3 3x3 3 1 0 0 0  

33x33 500 
17x17 200 
17x17 50 
17x17 

N u s s e l t  Number Dependence 

Nu JImax 

1.11 

0.028 8.78 
0.038 4.89 
0.057 1.99 
0.065 

12.40 0.022 
13.09 0 . 0 2 0  
14.42 0.018 

Rectangular  C e l l  (2x1) 

17x33 1 . 1 0  0.055 
17x33 1 . 4 2  0.053 

17x33 3.03 0,040 
33x65 4.98 0.029 
3 3x6 5 7 . 2 1  0 .021  
3 3x6 5 8 .11  0.019 
3 3x6 5 8.65 0.018 

Comparison of t h e  r e s u l t s  fo r  t h e  square  and f o r  t h e  t a l l  r e c t a n g u l a r  c e l l  
r e v e a l s  t h a t  i f  t h e  height of t h e  c e l l  i s  i n c r e a s e d  wi thout  changing i t s  wid th  or t h e  
v a l u e  of t h e  Rayle igh  number, t h e n  t h e  N u s s e l t  number d e c r e a s e s ,  a s  i n  f i g u r e  ( 8 . 2 . 1 ) ,  
i n  accordance  w i t h  t h e  a s s e r t i o n s  of Betbeder and J o l a s  ( 1 9 7 2 )  which are  a l s o  com- 
p a t i b l e  w i t h  t h e  c o n c l u s i o n s  o f  G i l l  ( 1 9 6 9 )  f o r  t h e  i n f i n i t e l y  t a l l  c e l l .  T y p i c a l  
s o l u t i o n s  a t  Rayle igh  numbers of 50 and 1 0 0 0  a r e  i l l u s t r a t e d  i n  f i g u r e s  8 .2 .2 ,  
8.2.3,  8.2.4 and 8 . 2 . 5 .  
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FIGURE 8.2.1 - Plot  of Nusselt number Nu vs Rayleigh number R for porous insulator problem. 

Hor i zon ta l  Boundaries 

Th i s  a n a l y s i s  s e r v e s  t o  h i g h l i g h t  t h e  a r t i f i c i a l i t y  o f  t h e  c o n d i t i o n s  
cons ide red  by G i l l  ( 1 9 6 9 )  - a l though  i n  t h e  i n f i n i t e  case t h e r e  is no convec t ive  h e a t  

t r a n s f e r ,  f o r  a l l  r e a l  r e g i o n s  t h e  f low i s  convec t ive  even a t  ve ry  small Rayle igh  
numbers. The i n t r o d u c t i o n  of a h o r i z o n t a l  boundary i n t o  t h e  p a t h  o f  f l u i d  r i s i n g  
a d j a c e n t  t o  t h e  v e r t i c a l  h e a t e r  r e d i r e c t s  t h e  f low p e r p e n d i c u l a r l y  and t h u s  results 
i n  a t r a n s v e r s e  advec t ion  o f  h e a t .  Thus i n  t h i s  c a s e  it i s  t h e  p re sence  of t h e  
e n c l o s i n g  h o r i z o n t a l  bounda r i e s  t h a t  i s  i n s t r u m e n t a l  i n  producing  a convec t ive  
s o l u t i o n .  Although t h i s  e f f e c t  i s  c l e a r l y  u n l i k e  t h e  i n f l u e n c e  t h a t  t h e  v e r t i c a l  
boundar ies  have on t h e  h y p o t h e t i c a l  s t e a d y  m u l t i c e l l u l a r  motions o f  s e c t i o n  5 . 1  and 
three- dimensional  motions o f  c h a p t e r  6 ,  t h i s  i s  t h e  t h i r d  t i m e  t h a t  it has  been 
demonstrated t h a t  s o l u t i o n s  de r ived  f o r  an  i n f i n i t e  r eg ion  are i n a p p l i c a b l e  t o  real 
boundar ies .  
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FIGURE 8.2.2 - Porous insulator solution, R = 50. square cell. Isotherms (---I and streamlines 
(---- ). 

FIGURE 8 .2 .3  - Porous insulator problem, R = 1000, square cell 

FIGURE 8.2.4 - Porous insulator problem, R = 50, 
rectangular cell. Isotherms (left) and 
streamlines (right). 

FIGURE 8.2.5 - Porous Insulator problem, R = 1000 
rectangular ce I I. 
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Chapter 9 - SUMMARY AND CONCLUSIONS 

9.1 EVALUATION OF THE RESULTS 

The character of the flow of a fluid in a porous medium is not only 
governed by its equations of motion, but is also shown to be influenced by the 
presence of the boundaries of the region. This configuration dependency is evident 
in the results both for regions heated from below and those heated from the side. 
The dependency of the flow on inherent fluid properties is demonstrated in the thermo- 
haline instabilities in chapter 7 and in the generation of thermals observed in 
chapters 5 and 6 (most clearly in the recharge solutions of section 5.4). Although 
the two different dependencies are contiguous and often cannot be disassociated, it 
is useful to review them separately. 

9.2 THE THERMAL BOUNDARY LAYER 

The generation of thermal disturbances is the most notable characteristic 
of the behaviour of fluid flowing in a porous medium. The fundamental mechanism 
of this process is the coupling between the temperature and velocity fields within a 
thermal boundary layer which is formed over the heat source. Thermal anomalies 
evolve in this layer by conduction and are swept away and dissipated by dominant 
circulating velocities. 

The appearance of the thermal boundary layer depends on the flow conditions 
that already exist in the region. In general, a flow pattern with a larger number 
of convection cells removes energy from the heater more quickly than a single celled 
flow, and so the thermal boundary layer may not necessarily form sufficiently to 
produce thermal disturbances when the cell number is increased. The layer may also 
be expelled by the injection of fluid close to the heater or by the expansion of the 
rising convective plume caused by the lateral extension of a rectangular region. 
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9.3 THE PREFERRED SOLUTION 

At any particular Rayleigh number, a region of a certain shape has a 
p r e f e r r e d  s o l u t i o n that results in maximum heat transfer across the system. F o r  
example in a square, uniformly heated, closed boundary region at R = 4 0 0  the 
preferred solution is a steady two-dimensional tricellular flow. The preferred 
solution is Rayleigh number dependent and so the alteration of the effective Rayleigh 
number during the course of the development of a flow can have quite remarkable 
effects on the eventual solution (which need not necessarily be the preferred one). 
This is one of the most significant consequences of the results presented in this 
work. 

If the actual Rayleigh number is l e s s  than the Rayleigh number which is 
characteristic of the number of cells in the flow at the time, then it is possible 
f o r  the flow pattern to adjust by dissipating excess cells to form the preferred 
solution. However when the actual Rayleigh number exceeds the value implied by the 
number of cells, the flow pattern cannot adjust because potential new cells do not 
form properly before being absorbed by the dominant flow. The flow then becomes 
fluctuating or regularly oscillatory as new cells continue to form and disappear. 

9.4 DISTURBANCE INTERACTIONS 

The regularity of an unsteady solution depends on the interaction between 
the temperature disturbances. In the closed boundary model there is a forward 
interaction, as ascending disturbances may influence descending ones which are forming 
in front of them, however the effect is only weak. A much stronger backward inter- 
action is seen in the recharge solutions in section 5.4 ; this is caused by the 
interruption of a gestating disturbance by its predecessor. 

These reactions are different to those proposed by Keller (1966) and 
Welander (1967) for a simple loop model, in which a disturbance is envisaged as being 
preserved throughout a complete circuit of the convection cell (a loop in their case). 
The disturbance then receives a boost on rearrival over the heater and makes another 
circuit of the cell. This conception may be used to explain periodic effects in the 
loop models, and also in the fluid layer model of Moore and Weiss (1973), but cannot 
account for periodicity in convection through porous media. The presence o f  the 
porous matrix dissipates the thermal disturbances before they can complete a circuit 
o f  the cell. Furthermore the periodicity persists even in the recharge solutions 
in which fluid enters and leaves the system through the upper surface and only 
passes the heater once in its path. In the porous medium problem the regularity is 
inherent in the genera t ion  of thermal anomalies rather than their behaviour after 
formation as in the fluid loop. The intervals between the disturbances is Rayleigh 
number dependent and obeys a 3 1 2  power relationship. 
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9 . 5  TEMPERATURE/SALINITY EFFECTS 

In the thermohaline convection probl em in a p orous medium there is a 
coupling between the temperature and salinity concentration equations (via the 
momentum equation), and it is the interaction of these two influences that produces 
the motion. The pulsating flow which ensues is simpler to explain than the 
unsteady flows in the thermal problem since in this case the effects are explicitly 
opposing and there is no overlying convective motion. A thermal disturbance 
carries with it an increasingly stabilising concentration anomaly that eventually 
halts it and reverses the direction of travel. This behaviour is less prevalent 
than in the fluid layer thermohaline problem due to the less significant inertial 
effects. 

9.6 THE PRESENCE OF BOUNDARIES 

One of the most unexpected discoveries in this investigation is the signifi- 
cance of physical boundaries in this problem. Elder (1967a) refers to "end effects" 
in his solutions at low Rayleigh numbers, however it is well established here that at 
higher Rayleigh numbers certain major features of the flow in porous media are 
produced by the presence of boundaries. The flow in the uniformly heated regions of 
section 5.1 has alternative steady and unsteady modes depending on how much of the 
preferred solution has been introduced into the closed region. In an infinite region 
the comment made earlier, that the number of convection cells cannot increase, does 
not apply. Therefore the unsteady two-dimensional rolls occur only in finite regions. 

A similar argument may be used when considering the three-dimensional flows. 
Once a two-dimensional mode of flow has been set up in the region it is not possible 
to increase the number of cells in the (finite) third dimension. The flow remains 
two-dimensional even though the preferred solution in an infinite region would be 
three-dimensional. 

The flow in the horizontal temperature gradient configurations of chapter 8

also differs significantly from the infinite region solution, since the flows are con- 
vective if horizontal boundaries are present. 

9.7 THE PHYSICAL IMPLICATIONS 

Assuming a depth of 5 km fluctuations such as those observed in chapter 5 
would appear in a real geothermal system at intervals of the order of 500-1000 years 
and the simulations predict that they would require up to 50,000 years from the 
initial evolution of the system before they occurred. The calculated history of the 
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Wairakei system suggest a past life of around lo6 years (Elder 1966a). It has been 
suggested by Hochstein (1974) that geological evidence from bore samples and gravi- 
metric surveys of the Broadlands geothermal field indicate that mineral deposits are 
in excess of those expected from the system in its current form. This suggests that 
the region has existed as a steam or brine system at some time in the past, as might 
have been the case if a higher temperature anomaly had risen up through the system. 
Using a statistical survey of the world's hydrothermal systems Hochstein (1974) 
deduced that the interval for which the anomalous system might exist would be of the 
order of 500 years. The large variability of the parameters and the simplistic 
structures modelled in this work do not permit quantitative conclusions concerning 
the effects, however the implication of the transient behaviour observed in the 
numerical models is suggestive. 

9.8 EXPLOITATION 

Although the removal of water from a geothermal system would not prevent 
the appearance of low frequency transiency, the reinjection of water might do so. 
If cold water is introduced into fissures which feed fluid to the heat source the 
thermal boundary layer over the hot rock is interrupted and unsteady effects would 
not occur. The more realistic injection system which introduces fluid at shallower 
depths, results in an increase in the quantity of heat that may be retrieved from 
the system, however in this case transient behaviour is still possible. In order 
to achieve maximum heat transfer through the system from the energy source to the 
surface, it is necessary to properly locate the collection and reinjection bores. 
Such an optimisation has not been performed here, but the possible wastage of heat by 
the incorrect positioning of wells is indicated. 

9.9 FUTURE MODELLING OF GEOTHERMAL FIELDS 

The range of conditions considered in this work falls short of a complete 
representation of a real geothermal region. In the Wairakei geothernal system the 
additional features of two-phase flow, non-isotropic permeability and mechanical 
response of the porous rock still need to be accommodated. Two-phase considerations 
are necessary for the simulation of upper "reservoir" although they may be omitted 
from the deep models used here. Incorporation of permeability variation requires a 
more concise description of the geophysical structure of the system than is 
currently available. The mechanical response of the medium to alterations in the 
flow (changes from water to steam, closing of fissures, subsidence etc.) is a problem 
in solid mechanics and is as important a field for investigation as the investigation 
of the convective flow itself. Although three-dimensional flows in a simple model 



have been simulated in this work, the full scale numerical representation of an 
actual geothermal system in three dimensions is likely to be enormously expensive 
(although not impossible). However this difficulty may be evaded by the development 
of an axisymmetric model - in terms of applicability to geothermal regions this 
would lie somewhere between the two-dimensional and three-dimensional models derived 
in this work. 
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APPENDIX A - THE ARAKAWA DIFFERENCING SCHEMES 

The Arakawa f i n i t e  d i f f e r e n c e  r e p r e s e n t a t i o n s  o f  t h e  a d v e c t i o n  term 
( e q u a t i o n  4 . 2 . 1 )  are as follows (Arakawa 1966): 

t h i s  b e i n g  t h e  second- order  scheme, and 

forms t h e  f o u r t h- o r d e r  c o r r e c t i o n  where t h e  f o u r t h  o r d e r  scheme i s  g i v e n  by 

Equat ion  ( A . 2 )  d i f f e r s  from t h a t  i n  t h e  o r i g i n a l  paper  i n  which t h e r e  i s  a t y p o g r a p h i c a l  
er ror .  Also t h e  e i , j  t e rms  i n  ( A . 1 )  are redundant  and may be c a n c e l l e d  o u t ,  r e s u l t -  
i n g  i n  a s l i g h t l y  f a s t e r  c a l c u l a t i o n .  
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APPENDIX B - AN EXTENSION OF THE BUNEMAN ALGORITHM TO FOURTH-ORDER ACCURACY 

The a l g o r i t h m  o f  Busbee, Golub and Nie lson ( 1 9 7 0 )  f o r  t h e  s o l u t i o n  of 
P o i s s o n ' s  equa t ion  

v 2 x  Y , 

w i t h  Dirichlet boundary c o n d i t i o n s ,  uses t h e  u s u a l  
t i o n  of t h e  Laplac ian  

(B.1) 

second- order  accurate r e p r e s e n t a -  

( B . 2 )  

where h i s  t h e  s p a t i a l  increment i n  a squa re  MxN mesh (M = N ) ,  and c o n s t r u c t s  a 
s o l u t i o n  m a t r i x  equa t ion  i n  t h e  form 

where -xj = xi , j  i = 2 , 3 , 4  ... M - 1  

i = 2 , 3 , 4  .. . M - 1  , 

and A i s  a t r i d i a g o n a l  m a t r i x  o f  t h e  form 

and T i s  an (M-2)x(M-2) i d e n t i t y  ma t r ix .  Now t h e  s u b s t i t u t i o n  I f o r  T a l l o w s  t h e  
d e r i v a t i o n  of  a s imple  and p a r t i c u l a r l y  u s e f u l  computa t ional  procedure ,  however i f  t h e  
f o u r t h- o r d e r  r e p r e s e n t a t i o n  

, j t l  ' Xit1,j-I ' Xi-1,jt1 ' Xi-1,j-l )I ,

is used as sugges t ed  by Orszag and I s r a e l i  (1974) t hen  A i s  o f  t h e  form 

(B. 5) 
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A =  

-10 
3 

2 
5 

3 
2 -E 

3 3 
2 

5 
2 -x 

- 

3 

and T is of the form 

T =  

-10 
3 
- 

, (B.6) 

( B . 7 )  

In this case the simplified derivation of Busbee, Golub and Nielson (1970) 
does not follow, and must be generalised to accommodate the case T # I . 

Considering the rows ( j - l ) ,  j and (j+l)  of the original (and perfectly 
general) equations ( B . 3 ) ,  dropping the vector signs for simplicity - 

The first reduction is achieved by multiplying the first and third equations by T 
and the second by A and subtracting the second from the sum of the first and third - 

This reduction is performed on every alternate row j = 3,5,7 etc. and therefore 
halves the number of rows in the solution matrix. Following the complete reduction 
new contracted matrices and vectors may be defined as 

,

or 

where A(1) (2T2 - A’) 

98 



or introducing 

and qil) 

then (1) 
yj 

Now after performing 

y?+l) 

and 

Combining these last 

similar reductions 

two equations 

r+l times 

and substituting 

implies 

Now if N = gk+’ + 1 , then k reductions may be performed resulting in 
the single vector equation (provided the boundary conditions are homogeneous) 

which is readily solved for the vector x2k+l , since A(k) may be reduced to a set 
of qk tridiagonal factor matrices, after which the remaining vectors x may be solved 
by back solving 

o r  in rewritten form 

The algorithm hinges on the calculation of the sets of vectors ( r )  and

simplified if T (and hence all T ( r ’ ) )  are identity matrices since in this case the 

qir) defined by ( B .  8 )  and ( B .  9). It is seen that these equations are greatly pj 
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s o l u t i o n  r educes  t o  t h e  s o l v i n g  o f  t h e  2r t r i d i a g o n a l  f a c t o r s  of A") , a p r o c e s s  
which i s  compu ta t iona l ly  e f f i c i e n t .  It is  t h e r e f o r e  a s i n g l e  matr ix s o l u t i o n  f o r  
p i r )  t hen  s imple  a d d i t i o n  t o  o b t a i n  q i r )  , and it i s  t h i s  benevolent  s i m p l i c i t y  
t h a t  makes t h e  Buneman a l g o r i t h m  so compu ta t iona l ly  s t r e a m l i n e d .  However i f  T is 
no t  an i d e n t i t y  m a t r i x  t h e r e  a r e  t h r e e  a d d i t i o n a l  m a t r i x  s o l u t i o n s  t o  be performed 
a t  each r e d u c t i o n ,  w i th  t h e  r e s u l t  t h a t  t h e  problem is g r e a t l y  compl ica ted  and t h e  
procedure  as a whole t a k e s  longe r .  
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APPENDIX C - THE NUSSELT NUMBER 

The Nusselt number is defined as the ratio of the total heat transfer 
through a system to the heat transfer by conduction alone. For example, in the 
simple partially heated model proposed in section 2 . 2  the heat lost (per unit 
width) through the unheated and uninsulated boundaries will be 

where k in this case is the conductivity of the fluid filled medium, and the purely 
conductive heat loss would be 

where 8' is the temperature field which would exist if fluid motion was disallowed. 
Provided the boundary is held at temperature 9=0 , these equations are equally viable 
for closed or recharge boundaries. Thus the Nusselt number is given by the ratio 

a e  

ae' 
Nu = (C. 3) 

which may be calculated approximately from the fields 8 and 9 '  using Simpson's 
rule. The purely conductive terms in the denominator are termed the "conduction 
coefficient" and need only be calculated once for each configuration that is considered. 
A table of conduction coefficients is given in table X below. 

Table X - Conduction Coefficients 

Dimensionality 

~~ 

Two-dimensional 

Three-dimensional 

Shape 

Square 

Rectangular nxl 
Rectangular 2x1 

4x3 
Square-insulated 
lower boundary 

Cube 

Heat input 

~~ 

Uniform f=1.0 
Non-uniform f=0.75 

f=0.5 
f=0.2 5  

Uniform 
Non-uniform f=0.5 
Non-uniform f=0.5 

Non-uniform f=0.5 

Uniform 
Two quadrants 
One quadrant 

Conduction 
Coefficient 

1.0 
1.43 
1.40 
0.94 
n 
1.13 
1.23 

0.55 

8.0 
9.94 
1.37 
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The presence of a source or sink also affects the heat transfer through 
the system. The flow of fluid out of the system (per unit width) wil be R.q K 

(taking into account the non-dimensionalisation) which results in an additional 
heat transfer of 

which is added to the transfer (C.1) and appears on the top line of (C .  3 ) as a term 
R . q . 8  since the factor  is unity from the definition of the thermal diffusivity. 

102 



APPENDIX D - AN EXTENSION OF THE BUNEMAN ALGORITHM TO NEUMANN-TYPE BOUNDARY 
CONDITIONS IN TWO AND THREE DIMENSIONS 

The Buneman algorithm as previously described by Busbee, Golub and Nielson 
(1970) and in appendix B, can be extended to the three-dimensional solution of 
Poisson's equation, in which case the vectors x. and yj in (B.3) are replaced 
by corresponding plane matrices 

-1 

c Xk 1 = xi,j,k i = 2,3 ..., M-1 ' Yk yi,j ,k j = 2,3 ..., N-1 
and the new A sub-matrix will itself be of the same form as the entire solution 
matrix on the left hand side of (B.3) except with a -6 instead of a -4 down the 
leading principal diagonal. Since the second-order representation is used, T is 
an identity matrix. The solutions of the reduction equations of the type 

are now each achieved by using a complete two-dimensional odd-even reduction sequence 
that is similar to the entire solution in the previous case (the only difference 
being the value of the diagonal element). In the case of Dirichlet boundary conditions 
this is not difficult to perform, but the Neumann conditions required for the pressure 
solutions of section 4 . 2  introduce difficulties as outlined below. 

When the ACr) matrices are factorised they take the form 

2r 
A(') = - II (A + 2cOse(r)) ,

j=1 j 
(D.1) 

for Dirichlet boundary conditions, and are always non-singular. However when Neumann 
conditions are specified the final solution matrix becomes 

and in two dimensions one of the factors (when j = 2 k is singular. This is to be 
expected as the solution of Poisson's equation is not unique in this case, however this 
one singular factor matrix may be modified such that effectively a Dirichlet condition 
is specified at one end of the row. This is equivalent to setting a reference 
pressure at a single point in the region to be zero, thereby restraining the entire 
field to be relative to that point. 

In three dimensions the factor matrices must themselves be factorised and 
in this case the A in (D.2) is of the form 

- (A' + 2c0sa(~)) 
zr 
3 j 
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where A '  is t h e  o r i g i n a l  t r i d i a g o n a l  matrix 

: -6 2 
1 -6 1 

1 -6 1 

i 

.... 

-6 * i  
Thus t h e  g e n e r a l  form o f  t h e  most b a s i c  factor m a t r i x  i s  

- d  2 

1 d 1 
1 d 1 ..... 

where d = -6 + 2cosa + 2 ~ 0 ~ 9  
j j .  

T h i s  m a t r i x  h a s  z e r o  d e t e r m i n a n t  and one z e r o  e i g e n v a l u e  when 

d = 0  o r  d = + 2  -

which is o n l y  p o s s i b l e  when 

o r  case. = 2 -  COS^ 
1 j 

Thus t h e  m a t r i x  i s  s i n g u l a r  i f  b u t  o n l y  i f  a j  and e j  are  b o t h  - . 2;c+ln 

Once a g a i n  t h i s  i s  e q u i v a l e n t  t o  s p e c i f y i n g  a r e f e r e n c e  p r e s s u r e  i n  t h e  2k 

f i e l d .  

1 0 4



APPENDIX E - SPECTRAL REPRESENTATION OF EQUATIONS OF MOTION 

Considering the equations of motion (2.3.8) and (2.3.11) with the uniform 
boundary conditions (2.3.12), (2.3.13) and (2.3.14) and f = 1, the transformation into 
Fourier space is made by defining 

M N  

M N  
and e = (1-Y) + mgo nZ1 e& cosmnX sin nnY (E.2) 

The conduction solution ( 1 - Y )  is separated making the Fourier boundary conditions 
homogeneous and identically satisfied by the choice of transform. To simplify the 
notation the stars are dropped on the Fourier coefficients e&, and @&, - confusion 
may be avoided by remembering that only the transformed variables carry subscripts. 

The transformed equations are determined by substitution of (E.1) and (E.2) 
into the two original equations (2.3.8) and (2.3.11), multiplying throughout by 
sin knX sin LnY and cosknX sinLnY respectively, integrating over the range 0 2 X 2 1, 
0 5 Y 5 1 and substituting the Euler properties of transcendental integrals. This 
procedure is well known and is not set out fully here. 

The streamfunction equation transforms to 

which may be substituted into the transformed temperature equation which is 

provided m + k 5 M and n + E L  N and n # L in appropriate terms (which are otherwise 
zero). Since the Euler property is only valid for non-zero integers the case k = 0 
requires special attention and is described by the equation 
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These equations may be solved simultaneously using the fourth-order Runge- 
Kutta method described in Carnahan, Luther and Wilkes (1969 p.361). The solution 
process is much lengthier than a similar finite difference procedure since each "point" 
in the spectral mesh references every other "point". In a finite difference solution 
the temperature at each point in the grid depends only on the values at the points on 
the grid which are immediately adjacent to it. The spectral method may be computed 
far more efficiently by using further transforms (Orszag 1971a) although it is then 
not possible to use the simple transforms defined here in (E.1) and (E.2). 
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APPENDIX F - EVOLUTION OF THE THERMAL BOUNDARY LAYER 

As an example o f  t h e  a n a l y s i s  o f  Sparrow, Husar and G o l d s t e i n  (1970) t o  
de termine  t h e  rate  o f  e v o l u t i o n  o f  t h e  thermal  boundary l a y e r ,  t h e  hydrodynamic 
c o n d i t i o n s  are ignored  and on ly  conduct ive  h e a t  t r a n s f e r  cons ide red .  For a sudden 
t empera tu re  r ise a t  t h e  boundary of a s e m i - i n f i n i t e  r e g i o n ,  t h e  t empera tu re  e i n  
t h e  medium obeys t h e  r e l a t i o n s h i p  

as g iven  by Holman ( 1 9 6 8  p .79) .  I n  t h e  range  0 - 0 .8  t h e  e r r o r  f u n c t i o n  i s  approxi-  
mate ly  l inear ,  so i f  t h e  conduct ion  l a y e r  i s  cons ide red  t o  l i e  between t empera tu re s  o f  
1 . 0  and 0 . 2  t h e n  t h e  non-dimensional t h i c k n e s s  6 of t h i s  l a y e r  is 

Now s i n c e  t h e  e f f e c t i v e  l o c a l  Rayleigh number i s  d i r e c t l y  dependent on t h e  t h i c k n e s s  
6 , t h e n  it f o l l o w s  t h a t  Rlocal i n  t h e  boundary l a y e r  i n c r e a s e s  as 6 u n t i l  it 
r e a c h e s  i t s  c r i t i c a l  va lue  when convect ion  beg ins  t o  occu r  i n  t h e  l a y e r .  The i n t e r v a l  

7 r e q u i r e d  f o r  t h e  s o l u t i o n  t o  r each  t h i s  s t a g e  i s  dependent on t h e  t empera tu re  
d i f f e r e n t i a l  a c r o s s  t h e  l a y e r ,  which i s  d e r i v e d  from t h e  true Ray le igh  number f o r  t h e  
o v e r a l l  system. Thus t h e  i n t e r v a l  i s  r e l a t e d  t o  R by t h e  e x p r e s s i o n  

P 

7 a R - ~  . (F.3) 
P 

T h i s  r e l a t i o n s h i p  d e s c r i b e s  t h e  rate o f  fo rma t ion  o f  t h e  boundary l a y e r  i n  
t h e  absence  o f  o t h e r  c o o l i n g  e f f e c t s ,  p a r t i c u l a r l y  t h e  f low o f  f l u i d  a c r o s s  t h e  
h e a t e r .  It i s  n o t  s u r p r i s i n g  then  t h a t  (F.3) p r e d i c t s  s h o r t e r  g e s t a t i o n  t imes  than  
t h e  r e l a t i o n s h i p  

t h a t  is obse rved  i n  t h e  f l ows  o f  c h a p t e r  5, i n  which t h e r e  i s  no f l u i d  boundary l a y e r .  

Unfo r tuna t e ly  it i s  n o t  p o s s i b l e  t o  perform a similar a n a l y s i s  f o r  t h e  case  
of f o r c e d  c o o l i n g  o f  t h e  boundary l a y e r  s i n c e  t h e  v e l o c i t i e s  are n o t  c o n s t a n t .  
However t h e  r e s u l t  (F.3) does  i n d i c a t e  a tendency o f  t h e  f low and c o r r e c t l y  p r e d i c t s  
t h a t  t h e  boundary l a y e r  evo lves  more qu ick ly  than  i n  t h e  f l u i d  l a y e r  (Benard) 
problem . For a porous medium problem wi thou t  major c i r c u l a t i n g  v e l o c i t i e s ,  Wooding 
( 1 9 6 9 )  de termined t h a t  t h e  ce l l  width is dependent on t h e  squa re  r o o t  o f  t h e  time 
i n t e r v a l ,  which conf i rms t h e  rate o f  growth o f  t h e  boundary l a y e r  p r e d i c t e d  by (F.2). 
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Therefore defining a pseudo-streamfunction 

$* = - ( $ 3  - $ 1 )  , 1 
JT 

then v 1 -$  , 

and U ' = $ ,  

and a representation of the streamlines on the centre diagonal plane may be obtained 
by plotting contours of this function. 
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APPENDIX G - STREAMLINE REPRESENTATION IN THREE-DIMENSIONAL FLOWS 

In two dimensions streamlines are easily determined as lines of equal 
stream function value, but in three dimensions their visualisation is not so simple. 
The velocity field in three dimensions is given by 

Now the horizontal axes X and Z are rotated through 4 5 O  as in figure G.l so that 
the new axis X' lies along the diagonal of the region. 

FIGURE G.1 - Rotation of Axes 

so that the vertical velocity 

and, provided X' is an axis of symmetry, 

l a  v = - -  
6 

( $ 3  - $ 1 )  .

The velocity along the X' axis is given by 

(G.1) 
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