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a b s t r a c t 

We develop a high-order finite difference scheme for axisymmetric wave propagation in a cylindrical 

conduit filled with a viscous fluid. The scheme is provably stable, and overcomes the difficulty of the 

polar coordinate singularity in the radial component of the diffusion operator. The finite difference ap- 

proximation satisfies the principle of summation-by-parts (SBP), which is used to establish stability using 

the energy method. To treat the coordinate singularity without losing the SBP property of the scheme, a 

staggered grid is introduced and quadrature rules with weights set to zero at the endpoints are consid- 

ered. The accuracy of the scheme is studied both for a model problem with periodic boundary conditions 

at the ends of the conduit and its practical utility is demonstrated by modeling acoustic-gravity waves in 

a magmatic conduit. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Wave propagation in fluid-filled tubes or conduits arises in

many systems, ranging from pulsatile flow in blood vessels [1,2] to

acoustic-gravity waves in magmatic conduits beneath volcanoes

[3] . Fluid viscosity, a key source of dissipation, introduces diffusion

terms to the governing equations. When expressed in cylindrical

coordinates, the radial component of the diffusion operator (i.e.,

the Laplacian) takes the form 

1 

r 

∂ 

∂r 

(
r 
∂v 
∂r 

)
(1.1)

for velocity field v along the axis of the conduit. Finite difference

discretization of this operator must contend with the coordinate

singularity at r = 0 , the center of the conduit. 

There have been several approaches to the treatment of the

1/ r coordinate singularity using finite difference methods. These

methods are not necessarily limited to axisymmetric problems.

As summarized in [4,5] , the main approaches to treating this
∗ Corresponding author. 

E-mail addresses: bprochnow@alumni.stanford.edu (B. Prochnow), 

ooreilly@stanford.edu (O. O’Reilly), edunham@stanford.edu (E.M. Dunham), 

petersson1@llnl.gov (N.A. Petersson). 

e  

b  

g  

s  

i  

http://dx.doi.org/10.1016/j.compfluid.2017.03.015 

0045-7930/© 2017 Elsevier Ltd. All rights reserved. 
ole have been to use analytic techniques or choose a specific

iscretization to treat the singularity, or to transform the domain

r governing equations to avoid imposing a boundary condition

t the pole. The former approach is used in [6–8] , which impose

’Hôpital’s rule near the pole to write any 1/ r terms in a form

hat is nonsingular near r = 0 . Mohseni and Colonius [9] avoid

he need for a special boundary closure (and the correspond-

ng potential for reduced boundary accuracy) by remapping the

omputational domain such that no grid point is placed on the

ingularity. In [10] , the incompressible Navier–Stokes equations in

ylindrical coordinates are solved on a staggered grid. Terms like

1.1) are never evaluated at r = 0 ; similar terms with coordinate

ingularities involving the radial flux are handled by using r times

he radial flux as a dependent variable instead of the radial flux. 

Summation-by-parts (SBP) finite difference methods, first in-

roduced in [11] and summarized in [12,13] , are well-suited to

odeling wave propagation in fluid-filled conduits since they

llow for the construction of higher-order spatial discretizations

or which the system energy rate can be computed and used to

stablish time-stability. While we focus on a system with periodic

oundary conditions on the top and bottom of the conduit, more

eneral boundary conditions can be weakly enforced using the

imultaneous-approximation-term (SAT) technique [13–15] . The

mplementation of SBP methods for wave propagation in cylindri-
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al coordinates requires finding a way to treat the 1/ r singularity

hile preserving the SBP properties of the operators. In [16] , a

econd order accurate discretization is constructed by using the ax-

symmetry of the system to impose a regularity condition at r = 0 .

his approach uses standard second order centered difference op-

rators (modified to satisfy the regularity condition), but is not di-

ectly generalizable to higher orders of accuracy. A related method

s used in [17] to construct SBP operators that are second- and

ourth-order accurate on interior points by manipulating the sten-

il of standard difference operators near the boundary using regu-

arity conditions and l’Hôpital’s rule to eliminate singular terms. 

Here we present a novel discretization scheme utilizing SBP

nite difference operators on a staggered grid. This approach

ermits construction of high-order-accurate operators with proper

oundary treatment, thereby allowing stability proofs via energy

stimates. We present these operators first in the 1-D (radial)

ontext, then generalize to the 2-D problem of axisymmetric,

ong-wavelength waves propagating in a cylindrical conduit filled

ith a viscous fluid. This problem features narrow boundary

ayers near the conduit walls when the viscosity is sufficiently

mall. After establishing stability and accuracy of the method, we

resent results regarding optimal selection of grid spacings in the

adial and axial directions based on consideration of the relative

ize of the wavelength and boundary layer thickness. We close

y demonstrating the utility of these new operators for the more

omplex problem of acoustic-gravity waves in magmatic conduits.

hile the operators presented here are specifically designed for

he coordinate singularity problem for the radial component of

he Laplacian operator in cylindrical coordinates, it is likely that

he approach could be extended to related problems in spherical

oordinates, non-axisymmetric problems, or other coordinate 

ystems having coordinate singularities. 

. Continuous formulation of the model problem 

.1. Governing equations 

We consider wave propagation and diffusion in a cylindrical

onduit. The fluid pressure p = p(t, z) and the axial component of

he velocity field v = v (t, z, r) are treated as being axisymmetric

no azimuthal dependence), where r and z are the dimensionless

adial and axial coordinates, respectively. We define a two-

imensional rectangular domain � as 0 ≤ r ≤ 1 and 0 ≤ z ≤ 2 π ,

here r = 0 is at the center of the conduit and r = 1 is at the

all, while z = 0 is the conduit bottom and z = 2 π is the top. By

estricting attention to wavelengths much greater than the conduit

adius, the radial momentum balance establishes, to a good ap-

roximation, the uniformity of pressure in the radial direction [1] .

n this limit, a dimensionless and linearized statement of conser-

ation of mass, together with linearized relations between density

erturbations and pressure (and possibly also perturbations in

ross-sectional area and local pressure), becomes 

∂ p 

∂t 
+ 

∂u 

∂z 
= 0 , (2.1) 

here 

 (t, z) = 2 

∫ 1 

0 

v (t, z, r) r dr (2.2) 

s the cross-sectionally averaged fluid velocity. The factor of 2 is

ncluded such that if v is constant the cross-sectionally averaged

elocity u will equal v exactly. 

The linearized, dimensionless statement of conservation of

omentum includes both a pressure gradient term and a viscous

erm from shearing on axisymmetric surfaces of constant r : 

∂v 
∂t 

+ 

∂ p 

∂z 
= ε

1 

r 

∂ 

∂r 

(
r 
∂v 
∂r 

)
. (2.3) 
dditional viscous terms in the linearized Navier–Stokes equation

re negligible in comparison in the long wavelength limit of

nterest. The dimensionless parameter ε is defined in terms of the

uid viscosity μ, density ρ , and conduit radius R as 

= 

μ

ρR 

2 ω 

, (2.4) 

here ω = ck is the characteristic angular frequency, defined in

erms of the acoustic wave speed c and the axial wavenumber k .

or small values of ε, narrow boundary layers develop near the

onduit walls, where a no-slip boundary condition is imposed: 

 (t, z, r = 1) = 0 . (2.5) 

o make the presentation more concise, we consider periodic

oundary conditions in the axial direction: 

 (t, z = 2 π, r) = v (t, z = 0 , r) , p(t, z = 2 π) = p(t, z = 0) . (2.6) 

.2. Energy balance 

In this section, we derive an energy estimate for the problem.

n cylindrical coordinates, we define the continuous L 2 -norm for

 real-valued function ψ( t, z, r ) as ‖ ψ‖ 2 = 

∫ 2 π
0 

∫ 1 
0 ψ 

2 r dr dz, and

efine the energy 

(t) = 

1 

2 

‖ v ‖ 

2 + 

1 

2 

‖ p‖ 

2 = 

1 

2 

∫ 2 π

0 

∫ 1 

0 

(v 2 + p 2 ) r dr dz. (2.7) 

he first term is the kinetic energy of the fluid, while the second

erm is the potential energy stored through compression/expansion

f the fluid and/or elastic deformation of the conduit walls. 

Prior to the imposition of boundary conditions, the rate of

hange of energy is 

dE 

dt 
= −1 

2 

[ up ] 
2 π
z=0 + ε

∫ 2 π

0 

[
v r 

∂v 
∂r 

]1 

r=0 

dz 

− ε

∫ 2 π

0 

∫ 1 

0 

(
∂v 
∂r 

)2 

r dr dz. (2.8) 

he first term in this expression, which corresponds to the work

one by external forces at the top and bottom of the conduit

 z = 2 π and z = 0 ), equals zero when the periodic boundary

ondition (2.6) is imposed. The second term represents the change

n energy due to external forces at the walls of the conduit ( r = 1 ).

hen the no-slip boundary condition (2.5) is imposed, this term

s zero at r = 1 . With no sources or sinks of mass or singular

orces along the axis, v and ∂ v / ∂ r are bounded at r = 0 , so the

erm is zero at r = 0 as well. The energy rate thus reduces to 

dE 

dt 
= −ε

∥∥∥∥∂v 
∂r 

∥∥∥∥
2 

. (2.9) 

he right hand side of this equation represents the rate of energy

oss due to viscous dissipation in the fluid. Because ε ≥ 0, dE / dt

0. 

. Finite difference approximation of the radial diffusion 

perator 

The construction of a provably stable numerical scheme re-

uires special treatment of the coordinate singularity at r = 0 .

o overcome this challenge, we introduce a shifted grid with

nterior points offset by 	r /2 relative to an equidistant grid with

rid spacing 	r . As shown in Section 2.2 , no boundary condi-

ion should be specified at r = 0 . We proceed by constructing

ummation-by-parts operators that also possess this property. 
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Fig. 1. The r − and r + grids used in the discretization. The difference operator D + 
acts on a grid function on the r − grid and approximates the first derivative on the 

r + grid. The difference operator D − is defined in a similar manner. 
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3.1. Definitions 

We define two grids in the radial direction: r + , which is an

equidistant grid with grid spacing 	r = 1 /N, and r −, which is

staggered relative to r + (see Fig. 1 ). We have 

r + = [ r 0 r 1 . . . r N ] 
T ∈ R 

N+1 , 

r − = 

[
r 0 r 1 / 2 r 3 / 2 . . . r N−1 / 2 

r N 
]T ∈ R 

N+2 , 

where 

r j = j	r, for j ∈ [0 , N] , r j+ 1 / 2 = 

(
j + 

1 

2 

)
	r, for j ∈ [0 , N −

Note that the endpoints of both grids coincide and that the

grid point r 0 is placed at r = 0 . We introduce grid functions φ+ 
and φ− that represent a continuous function φ( r ) on the grids r + 
and r −, respectively. Thus, 

φ+ = [ φ0 φ1 . . . φN ] 
T 
, φ− = 

[
φ0 φ1 / 2 

. . . φN−1 / 2 
φN 

]T 
. (3.1)

We define the difference operator D + to act on a grid function

φ− and approximate the first derivative on the r + grid. Similarly,

we define the difference operator D − to act on a grid function φ+ 
and approximate the derivative on the r − grid. Fig. 1 illustrates an

example with second order accurate difference operators, 

∂φ

∂r 

∣∣∣
r j 

≈ (D 

(2) 
+ φ−) j = 

φ j+ 1 / 2 − φ j−1 / 2 

	r 
, 

∂φ

∂r 

∣∣∣
r 

j−1 / 2 

≈ (D 

(2) 
− φ+ ) j−1 / 2 

= 

φ j − φ j−1 

	r 
. 

Difference operators that satisfy the principle of summation-by-

parts are defined by combining central difference approximations

in the interior of the domain and one-sided difference approxima-

tions near the boundary. 

Definition 1. The pair of difference operators D + ∈ R 

(N+1) ×(N+2) 

and D − ∈ R 

(N+2) ×(N+1) are first derivative staggered grid

summation-by-parts operators if 

1. The difference operators D + and D − are 2 p th order accurate in

the interior and at least p th order accurate near the boundary. 

2. There exists (semi-)definite diagonal matrices P + and P − that

define the discrete scalar products, 

ψ 

T 
+ P + φ+ := ( ψ + , φ+ ) + = 	r 

N ∑ 

j=0 

w j ψ j φ j , (3.2)

ψ 

T 
−P −φ− := ( ψ −, φ−) − = 	r 

N−1 ∑ 

j=0 

˜ w j+ 1 / 2 ψ j+ 1 / 2 φ j+ 1 / 2 , (3.3)

with weights w j > 0, ˜ w j+ 1 / 2 > 0 , and corresponding (semi-)

norms ‖ φ+ ‖ 2 + = ( φ+ , φ+ ) + and ‖ φ−‖ 2 − = ( φ−, φ−) −. 

3. The first and last diagonal elements of P − are zero. 

4. The difference operators satisfy the summation-by-parts prop-

erty 

( ψ + , D + φ−) + + (D −ψ + , φ−) − = ψ N φN − ψ 0 φ0 , (3.4)
for all real-valued grid functions ψ + and φ−. This property can

be expressed in matrix form as 

P + D + + D 

T 
−P − = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−1 0 

0 0 

. . . 
. . . 

0 0 

0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

=: B . (3.5)

emark 1. By construction, the scalar products (3.2) and (3.3) rep-

esent quadrature rules and their order of accuracy is addressed in

ppendix A . 

emark 2. The requirement that the first and last diagonal ele-

ents of P − are zero is essential for the treatment of the po-

ar coordinate singularity. This implies that the first and last rows

f D − are only determined by the accuracy constraint (1) of

efinition 1 and can be chosen independently of all other rows in

 −. 

As an example, we show a pair of finite difference operators

hat satisfy the conditions of Definition 1 for p = 1 : 

 + = 

1 

	r 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−2 2 

−1 1 

. . . 
. . . 

−1 1 

−2 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (3.6)

 − = 

1 

	r 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−1 1 

−1 1 

. . . 
. . . 

−1 1 

−1 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (3.7)

he corresponding weights in the scalar products are

 + = 	r diag ( 1 / 2 , 1 , . . . , 1 , 
1 / 2 ) and P − = 	r diag (0 , 1 , . . . , 1 , 0) . 

.2. Construction of higher order staggered grid SBP operators 

Standard SBP approximations of first derivatives are commonly

efined by D = P 

−1 Q , where Q + Q 

T = diag (−1 , 0 , . . . , 0 , 1) . Un-

ortunately, this approach does not generalize to the staggered

ase because the matrix P − is singular, necessitating a different

pproach. 

Let m ( p ) ≥ 2 p be an integer, which equals the number of

odified difference stencils near each boundary. The starting point

f our construction is to choose a compact interior difference

tencil of order 2 p . In the regular grid, the interior stencil will be

sed at the points r j , for j ∈ [ m, N − m ] . In the staggered grid, the

nterior stencil will be used at r j−1 / 2 
, for j ∈ [ m, N − m + 1] . At all

nterior points, the weights in the scalar products are taken to be

o w j = 1 and ˜ w j−1 / 2 
= 1 . 

Let k ≥ 0 be an integer and let the grid functions r k + and

 

k −, be discretizations of the monomial function f (r) = r k , i.e.,

 

k + = [ r k 
0 
, r k 

1 
, . . . , r k 

N 
] T and r k − = [ r k 

0 
, r k 1 / 2 

, . . . , r k 
N−1 / 2 

, r k 
N 

] T . We define a

air of staggered grid SBP operators to have p th order boundary

ccuracy if they satisfy 

 + r k − = k P + r k −1 
+ , (3.8)

 −r k + = k P −r k −1 
− . (3.9)

or k = 0 , 1 , . . . , p. Here, Q + = P + D + and Q − = P −D −. Note that

he first condition is equivalent to D + r k − = k r k −1 
+ , but the second

ondition can not be written on this form because P − is singular. 

Since the interior stencil is 2 p th order accurate and the weights

n the scalar products equal one in the interior, we only need to



B. Prochnow et al. / Computers and Fluids 149 (2017) 138–149 141 

e  

s

c  

t

 

fi  

(  

o  

n

 

i

T  

s

Q

 

 

 

 

 

 

 

 

 

 

 

T  

s  

p  

r  

Q  

r  

d

 

a  

T  

e  

c  

t  

D

 

i  

a

3

 

s  

e  

c  

t  

t  

s

w  

(  

p

w  

l  

p

u

o

E

 

i  

c  

t

S

L  

g  

c

v

M  

A  

B

P

i  

fi  

t  

u

D

T  

D

Q

w  

R

D

 

(

w

 

a  

t

L  

e

N N 0 0 
nforce (3.8) and (3.9) for the first and last m rows. Furthermore,

ymmetry considerations imply that the last m rows of Q + and Q −
an be constructed from the first m rows of the same matrix. We

herefore only need to consider the first m rows of (3.8) and (3.9) . 

Because the first and last diagonal elements of P − are zero, the

rst and last columns of Q 

T − = D 

T −P − are zero. The SBP property

3.5) implies that the only non-zero element in the first column

f Q + = P + D + is (Q + ) 00 = −1 . By the same argument, the only

on-zero element in its last column is (Q + ) N,N+1 = 1 . 

For example, the interior difference stencil for 4th order

nterior accuracy ( p = 2 ) correspond to 

Q + φ+ 
∣∣

j 
= 

1 

24 

φ j−3 / 2 
− 9 

8 

φ j−1 / 2 
+ 

9 

8 

φ j+ 1 / 2 −
1 

24 

φ j+ 3 / 2 . 

he above considerations imply that Q + must have the following

tructure: 

 + = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−1 q 01 q 02 q 03 q 04 0 0 0 0 0 

0 q 11 q 12 q 13 q 14 0 0 0 0 0 

0 q 21 q 22 q 23 q 24 0 0 0 0 0 

0 q 31 q 32 q 33 q 34 1 / 24 0 0 0 0 

0 0 0 1 / 24 −9 / 8 9 / 8 −1 / 24 0 0 0 

0 0 0 0 −1 / 24 −q 34 −q 33 −q 32 −q 31 0 

0 0 0 0 0 −q 24 −q 23 −q 22 −q 21 0 

0 0 0 0 0 −q 14 −q 13 −q 12 −q 11 0 

0 0 0 0 0 −q 04 −q 03 −q 02 −q 01 1 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.10) 

o conserve space, the matrix only has one row where the interior

tencil is used. In practice, that stencil is used at all interior

oints, which gives the matrix a banded structure. For symmetry

easons, the 4 × 4 block of unknown coefficents q ij at the top of

 + also occurs at the bottom, but with opposite sign and reversed

ows and columns. The structure of the matrices Q + and Q − is

iscussed in detail in Section 3.3 . 

The matrix (3.10) has 16 unknown coefficients q ij . There are

lso 4 unknown weights in P + , and 4 unknown weights of P −.

hese 24 unknowns are determined by satisfying the first 4

quations of (3.8) , the first 4 equations of (3.9) , and the SBP

onstraint (3.5) . This leads to an under-determined system where

he solution is chosen to minimize the spectral radius of D + and

 −, their truncation errors, or some combination thereof. 

We have derived SBP operators with 4 th , 6 th , and 8 th order

nterior accuracy. MATLAB implementations of these operators are

vailable at: http://github.com/ooreilly/sbp/ . 

.3. Enforcement of boundary conditions 

To demonstrate how to enforce boundary conditions, we con-

ider the diffusion equation in one dimension as a motivating

xample. Here we focus on the diffusion operator in a Cartesian

oordinate system. The key results from this section will be used

o enforce the no-slip boundary condition. We contend with

he polar coordinate singularity in the axisymmetric case in the

ubsequent section. 

Consider the diffusion equation 

∂u 

∂t 
= 

∂ 2 u 

∂x 2 
, 0 ≤ x ≤ 1 , t ≥ 0 , (3.11) 

here u = u (x, t) . The energy method is applied by multiplying

3.11) with u and integrating over the domain, and integrating by

arts: 

1 

2 

d‖ u ‖ 

2 

dt 
= 

[
u 

∂u 

∂x 

]1 

x =0 

−
∫ 1 

x =0 

(
∂u 

∂x 

)2 

dx, (3.12) 

here ‖ u ‖ 2 = 

∫ 1 
0 u 2 dx . We obtain an energy estimate for this prob-

em by enforcing appropriate boundary conditions at each end-
oint. We restrict attention to homogeneous Dirichlet conditions: 

 (0 , t) = 0 and u (1 , t) = 0 , (3.13) 

r homogeneous Neumann conditions: 

∂u 

∂x 
(0 , t) = 0 , and 

∂u 

∂x 
(1 , t) = 0 . (3.14) 

ither choice of these conditions results in the energy rate 

1 

2 

d‖ u ‖ 

2 

dt 
= −

∫ 1 

x =0 

(
∂u 

∂x 

)2 

dx ≤ 0 . (3.15) 

Next, we construct a semi-discrete approximation of (3.11) us-

ng the staggered SBP operators and enforce the boundary

onditions by injection. To separate out the boundary points from

he interior points we introduce the matrix S , 

 = 

⎡ 

⎢ ⎢ ⎣ 

0 1 0 

0 1 0 

. . . 
. . . 

. . . 

0 1 0 

⎤ 

⎥ ⎥ ⎦ 

∈ R 

N ×(N +2) . (3.16) 

et v − = [ v 0 v 1 / 2 v 3 / 2 . . . v N−1 / 2 v N ] T ∈ R 

(N+2) denote a stag-

ered grid function and let v̄ = [ v 1 / 2 v 3 / 2 . . . v N−1 / 2 ] 
T ∈ R 

N be the

orresponding interior grid function. We have 

¯
 = Sv −, v − = 

[ 

v 0 
v̄ 
v N 

] 

. 

ore generally, SA removes the first and last rows from

 ∈ R 

(N+2) ×n , and BS T removes the first and last columns from

 ∈ R 

m ×(N+2) . Thus, the diagonal matrix 

¯
 − = SP −S T = diag ( ̃  w 1 / 2 

, ˜ w 3 / 2 
, . . . , ˜ w N−1 / 2 

) ∈ R 

N×N , 

s positive definite. Because of the accuracy constraint (3.9) , the

rst and last rows of Q − are zero. We can therefore only define

he difference approximation at the interior staggered points, i.e.,

¯
 = D̄ −v + , where 

¯
 − = P̄ 

−1 
− Q̄ − ∈ R 

N ×(N +1) , Q̄ − = SQ − ∈ R 

N ×(N +1) . (3.17) 

o separate out boundary and interior points when evaluating

 + v −, we notice that Q + has the structure 

 + = 

[
−e 0 Q̄ + e N 

]
, Q̄ + = Q + S T , (3.18) 

here e 0 = [1 0 0 . . . 0] T ∈ R 

(N+1) and e N = [0 0 . . . 0 1] T ∈
 

(N+1) . Because D + = P 

−1 
+ Q + , 

 + v − = P 

−1 
+ 

(
−v 0 e 0 + v N e N + Q̄ + ̄v 

)
= : P 

−1 
+ ( −v 0 e 0 + v N e N ) + D̄ + ̄v , D̄ + = P 

−1 
+ Q̄ + . (3.19) 

Using the above definitions, the semi-discrete approximation of

3.11) becomes 

d ̄v 

dt 
= D̄ −

[
P 

−1 
+ (v N e N − v 0 e 0 ) + D̄ + ̄v 

]
, (3.20) 

here v N and v 0 are determined from the boundary conditions. 

The semi-discrete approximation is stable because it satisfies

n energy rate equation analogous to (3.15) , as is made precise by

he following lemma. 

emma 3.1. The semi-discrete approximation (3.20) satisfies the en-

rgy rate equation 

1 

d‖ ̄v ‖ 

2 
− = −( ̄D + ̄v ) v + ( ̄D + ̄v ) v − ( ̄D + ̄v ) T P + ( ̄D + ̄v ) . (3.21) 
2 dt 

http://github.com/ooreilly/sbp/
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Proof. Our proof is based on the energy method. Taking the time

derivative of ‖ ̄v ‖ 2 −, using (3.20) , and the above definition of D̄ −,

results in 

1 

2 

d‖ ̄v ‖ 

2 
−

dt 
= v̄ T Q̄ −P 

−1 
+ (v N e N − v 0 e 0 ) + v̄ T Q̄ −D̄ + ̄v . (3.22)

Because of (3.18) , it follows from the SBP property (3.5) that 

Q̄ + + Q̄ 

T 
− = 0 . (3.23)

Hence, the definition of D̄ + gives v̄ T Q̄ −P 

−1 
+ = −( ̄D + ̄v ) T and we ar-

rive at (3.21) . �

Corollary 3.2. (Dirichlet boundary conditions) If the initial conditions

satisfy v 0 = 0 and v N = 0 , the semi-discrete approximation 

d ̄v 

dt 
= D̄ −D̄ + ̄v , t ≥ 0 , (3.24)

satisfies homogeneous Dirichlet boundary conditions for all t > 0, and

is stable. 

Proof. The homogeneous Dirichlet condition (3.13) are discretized

by 

v 0 = 0 and v N = 0 . (3.25)

Inserting (3.25) into (3.20) , leads to (3.24) . Because the scheme

does not change the boundary values of v −, the Dirichlet condi-

tions are satisfied for all t > 0. By inserting (3.25) into (3.21) , it

follows that this semi-discrete approximation satisfies the energy

rate equation 

1 

2 

d‖ ̄v ‖ 

2 
−

dt 
= −( ̄D + ̄v ) T P + ( ̄D + ̄v ) ≤ 0 , 

which proves energy stability. �

Corollary 3.3. (Neumann boundary conditions) The semi-discrete ap-

proximation 

d ̄v 

dt 
= D̄ −

[
−( ̄D + ̄v ) N e N − ( ̄D + ̄v ) 0 e 0 + D̄ + ̄v 

]
, (3.26)

is stable and enforces the discrete homogeneous Neumann conditions 

(D + v −) 0 = 0 and (D + v −) N = 0 . 

Proof. The discrete boundary conditions are equivalent to

(Q + v −) 0 = 0 and (Q + v −) N = 0 . Because the matrix Q + has the

decomposition (3.18) , these conditions are satisfied by taking 

−v 0 + ( ̄Q + ̄v ) 0 = 0 and v N + ( ̄Q + ̄v ) N = 0 . (3.27)

Inserting (3.27) into (3.20) , leads to (3.26) . By inserting (3.27) into

(3.21) , it follows that this semi-discrete approximation satisfies the

energy rate 

1 

2 

d‖ ̄v ‖ 

2 
−

dt 
= ( ̄D + ̄v ) 2 N (P + ) NN + ( ̄D + ̄v ) 2 0 (P + ) 00 − ( ̄D + ̄v ) T P + ( ̄D + ̄v ) 

= −
N−1 ∑ 

j=1 

( ̄D + ̄v ) 2 j (P + ) j j ≤ 0 . 

Thus the discretization is energy stable. �

3.4. Construction of the radial diffusion operator 

We now return to the model problem in cylindrical coordi-

nates. By focusing only on the radial and time dependence of v ,

the diffusive part of the momentum balance expression (2.3) can

be expressed in the form 

∂v 
∂t 

= 

ε

r 

∂ 

∂r 

(
r 
∂v 
∂r 

)
(3.28)

for v = v (t, r) and with the no-slip boundary condition 

v (t, r = 1) = 0 . (3.29)
e approximate (3.28) by 

d ̄v 

dt 
= εD 2 v . 

he difference operator D 2 approximates the radial component of

he Laplacian and is constructed along the lines of (3.20) : 

 2 v − = R̄ 

−1 
− D̄ −

[
P 

−1 
+ (r N v N e N − r 0 v 0 e 0 ) + R + ̄D + ̄v 

]
∈ R 

N , 

here R + = diag ( r + ) ∈ R 

(N+1) ×(N+1) and R̄ − = diag ( ̄r −) ∈ R 

N×N ,

¯
 − = Sr −. This difference approximation avoids the computation of

he numerical solution at the coordinate singularity r = 0 and also

njects the no-slip boundary condition (3.29) by taking v N = 0 .

ince r 0 = 0 , it is not possible to specify v 0 . After injecting the

o-slip boundary condition, we get 

 2 ≡ R̄ 

−1 
− D̄ −R + ̄D + ∈ R 

N×N (3.30)

nd 

d ̄v 

dt 
= εD 2 ̄v . 

ence, the dependent variables consist of the interior points in

he staggered grid. 

In the second order case ( p = 1 ), the radial diffusion operator

ecomes 

 2 = 

1 

	r 2 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− r 1 
r 1 / 2 

r 1 
r 1 / 2 

r 1 
r 3 / 2 

− r 1 + r 2 
r 3 / 2 

r 2 
r 3 / 2 

. . . 
. . . 

. . . 
r N−2 

r N−3 / 2 
− r N−2 + r N−1 

r N−3 / 2 

r N−1 

r N−3 / 2 
r N−1 

r N−1 / 2 
− r N−1 +2 r N 

r N−1 / 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

. Semi-discrete approximation of the model problem 

We now implement the discrete operator (3.30) in the context

f the model problem defined in Section 2 . This 2-D problem

equires the construction of a grid in the z direction with cor-

esponding ∂ / ∂ z operators in addition to the radial grids and

ssociated difference operators defined in Section 3 . We define

irculant first derivative operators that act in the z direction and

eflect the periodicity condition at the bottom ( z = 0 ) and top

 z = 2 π ) of the domain. By discretizing the 2-D problem using SBP

perators, we prove energy stability for the system. 

.1. Grid definitions 

To create a discretization of our 2-D model problem, we use

he r + grid defined in Section 3 , as well as the truncated grid

¯
 − = Sr −. The number of grid points on r̄ − is N r . The z direction

an be discretized using either a single grid for both p and v or

sing staggered grids. Since the dispersion error is smaller for

entral first derivatives on staggered grids compared to collocated

rids, we discretize the z direction using staggered grids as well.

he grids are given by: 

 + = [ z 0 z 1 z 2 . . . z N z −1 ] 
T , z − = [ z 1 

2 
z 3 

2 
. . . z N z − 1 

2 
] T , (4.1)

here 

z j = j	z for 0 ≤ j ≤ N z − 1 , 

 j+1 / 2 = 

(
j + 

1 

2 

)
	z for 0 ≤ j ≤ N z − 1 

or step size 	z = 2 π/N z , where N z is the number of grid points in

he z direction. It is important to note that these grids do not have

he same structure as the staggered grids in the radial direction

i.e., the + and - grids do not share the same endpoints). The point

 N z is not stored, since by the periodicity condition it is equal to z 0 .
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Fig. 2. The mesh used in the implementation of the model problem. p and u are 

1D fields stored on the z + and z − grids respectively, while v is a 2-D field stored 

on the r̄ − and z − grids. 

4

 

u

v

T  

d

�v

w  

s

u

w  

g

 

u  

e  

e  

s  

s  

t  

D

D

U  

p  

o

T  

d  

i  

p

A

W  

t  

t

w

 

t

w  

d

u

w  

u

w

T  

m  

d

4

 

d  

z

d  

t

w

P

a  

s  

q

E

T  

t

‖

w

w

(

 

d  

b  

(

F  

(

v

.2. Numerical scheme 

The velocity v̄ (along with other 2-D fields) is stored in a vector

sing column-major ordering (along the radial direction first): 

¯
 = [ � v 1 

2 
�
 v 3 
2 
. . . � v N z − 1 

2 
] T ∈ R 

(N r N z ) . (4.2) 

he vectors � v j containing the velocity values along the radial

irection at some z j are 

  j = [ v 1 
2 , j v 3 2 , j . . . v N r − 1 

2 , j ] ∈ R 

1 ×N r , (4.3) 

here v i j = v (t, z j , r i ) . The cross-sectionally averaged velocity is

tored on the z − grid and the pressure on the z + grid: 

p = [ p 0 p 1 p 2 . . . p N z −1 ] 
T ∈ R 

N z , 

 = [ u 1 / 2 u 3 / 2 . . . u N z −1 / 2 ] 
T ∈ R 

N z , 

here p j = p(t, z j ) and u j = u (t, z j ) ; neither depends on r . The

rid points at which the fields are stored are shown in Fig. 2 . 

In the z direction, the derivatives of the continuous functions

 ( t, z ) and p ( t, z ) are approximated using standard central differ-

nce operators D z − and D z + on a staggered, periodic grid. The op-

rator D z − acts on quantities stored on the z + grid, with the re-

ulting product stored on the z − grid, while D z + acts on quantities

tored on the z − grid, with the product stored on the z + grid. Due

o periodicity in the z direction, the difference operators D z − and

 z + satisfy the SBP property: 

 z + = −D 

T 
z − . (4.4) 

sing these operators, the z derivative of the continuous function

 ( t, z ) is approximated in terms of the discrete function p (stored

n the z + grid) as 

∂ p 

∂z 
≈ D z − p . 

o apply these one-dimensional difference operators to a two-

imensional field (such as v ), we must apply them at each point

n the radial direction. This is accomplished by using the Kronecker

roduct, defined by 

 � B = 

⎡ 

⎣ 

a 11 B . . . a 1 n B 

. . . 
. . . 

. . . 
a m 1 B . . . a mn B 

⎤ 

⎦ . 

e can then apply the operator D 2 , which acts in the radial direc-

ion only, to the two dimensional velocity field v to approximate

he viscous term in the governing Eq. (2.3) : 

1 

r 

∂ 

∂r 

(
r 
∂v (t, z, r) 

∂r 

)
≈ (I z � D 2 ) ̄v , (4.5) 
here I z ∈ R 

N z ×N z is an identity matrix. 

The semi-discrete form of the governing Eqs. (2.1) and (2.3) can

hus be written as 

dp 

dt 
= −D z + u , (4.6) 

d ̄v 

dt 
= −(D z − p � e −) + ε(I z � D 2 ) ̄v , (4.7) 

here e − = [1 1 . . . 1] T ∈ R 

N r . As in the continuous case, we have

efined the cross-sectionally averaged velocity 

 = (I z � w 

T ) ̄v ≈ 2 

∫ 1 

0 

v (t, z, r) r dr, (4.8) 

here w is the cross-sectional averaging operator, constructed

sing the quadrature rule P − on the staggered radial grid: 

 

T = 2 e T −R̄ −P̄ − ∈ R 

1 ×N r . (4.9) 

he discrete cross-sectionally averaged velocity u (4.8) approxi-

ates the continuous cross-sectionally averaged velocity u ( t, z )

efined in (2.2) . 

.3. Energy balance 

To compute the discrete energy, we introduce a two-

imensional discrete grid function a − defined on the r̄ − and

 − grids in the same manner as v in (4.2) and (4.3) , as well as a + 
efined on the r + and z + grids. We then define discrete norms for

wo-dimensional fields on both radial grids: 

‖ a −‖ 

2 
�− = a T −P �− a −, ‖ a + ‖ 

2 
�+ = a T + P �+ a + , 

here 

 �− = P z � R̄ −P̄ − and P �+ = P z � R + P + (4.10) 

re quadrature rules approximating the area of �. Since the

olution is periodic in the z direction, P z = 	z I z ∈ R 

N z ×N z . This

uadrature rule is therefore the same for both grids z − and z + . 
Using these norms, the discrete energy is defined as 

 h = 

1 

2 

‖ ̄v ‖ 

2 
�− + 

1 

2 

‖ p � e −‖ 

2 
�− = 

1 

2 

v̄ T (P z � R̄ −P̄ −) ̄v + 

1 

4 

p 

T P z p . 

(4.11) 

he result ‖ p � e −‖ 2 
�− = p 

T P z p / 2 follows from the definition of

he cross-sectionally averaged operator (4.9) : 

 p � e −‖ 

2 
�− = (p 

T 
� e T −)(P z � R̄ −P̄ −)(p � e −) 

= (p 

T P z p � e T −R̄ −P̄ −e −) 

= 

1 

2 

(p 

T P z p � w 

T e −) 

= 

1 

2 

p 

T P z p , 

here we used the fact that 

 

T e − = 2 

∫ r=1 

r=0 

rdr = 1 

see Appendix A ). 

Using the fact that the quadrature rules are symmetric, positive

efinite matrices, we compute the energy rate for the system

y taking the time derivative of (4.11) and inserting (4.6) and

4.7) into the result, which yields 

dE h 
dt 

= −1 

2 

p 

T P z D z + u − v̄ T (P z D z − p � R̄ −P̄ −e −) 

+ εv̄ T (P z � P̄ −D̄ −R + ̄D + ) ̄v . (4.12) 

rom the definition of the cross-sectionally averaged operator

4.9) , we obtain 

¯
 

T (P z D z − p � R̄ −P̄ −e −) = p 

T D 

T 
z − P z (I z � e T −R̄ −P̄ −) ̄v 
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Fig. 3. Radial profiles of the velocity v at the middle of the conduit ( z = π ). Figure (a) shows velocity profiles for ε = 10 −2 after 0, 1, and 2 periods, showing amplitude decay 

due to viscous dissipation. Figure (b) shows velocity profiles (at t = 0 ) for different values of ε. As ε is increased, the viscous boundary layer becomes wider. 
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1 

2 

p 

T D 

T 
z − P z (I z � w 

T ) ̄v 

= 

1 

2 

p 

T D 

T 
z − P z u . 

Then (4.12) becomes 

dE h 
dt 

= − 1 
2 

p 

T (P z D z + + D 

T 
z − P z ) u + εv̄ T (P z � P̄ −D̄ −R + ̄D + ) ̄v . (4.13)

Due to the SBP property of the z operators given in (4.4) , the

first two terms on the right-hand side of (4.13) cancel each other

out. Applying the SBP property for the radial operators (3.5) , we

substitute for D̄ − to simplify (4.13) : 

dE h 
dt 

= −εv̄ T (P z � D̄ 

T 
+ P + R + ̄D + ) ̄v + εv̄ T (P z � B̄ 

T R + ̄D + ) ̄v . 

The truncated boundary matrix B̄ 

T is a zero matrix, so only the

viscous dissipation term is left: 

dE h 
dt 

= −ε‖ (I z � D̄ + ) ̄v ‖ 

2 
�+ . (4.14)

The scheme is stable if the right-hand side is non-positive. Stability

is addressed in the following proposition: 

Proposition 4.1. The discrete energy rate in (4.14) satisfies 

dE h 
dt 

= −ε‖ (I z � D̄ + ) ̄v ‖ 

2 
�+ < 0 , 

for ε > 0 and for all v̄ 	 = 0 . 

Proof. The proof is given Appendix B for the second order accurate

difference approximation. The proposition is numerically verified

to hold for higher orders as well. �

5. Convergence tests 

We investigate the accuracy of our numerical scheme by con-

structing a smooth analytic solution with a harmonic pressure of

the form 

p(t, z) = Re 
(
e i (z−ωt) 

)
, (5.1)

for complex ω to be determined below; Re( ω) is the angular

frequency of oscillation. We chose the nondimensional domain

length in the axial direction to be exactly one wavelength, so

the wavenumber k is equal to 1. Following [1] , we solve the

momentum balance to find the velocity v ( t, z, r ) satisfying the

no-slip boundary condition v (t, z, r = 1) = 0 as 

v (t, z, r) = Re 

(
1 

ω 

[
1 − J 0 (αr) 

J 0 (α) 

]
e i (z−ωt) 

)
, (5.2)

where α = −
√ 

iω/ε, and J 0 ( x ) is a Bessel function of the first kind.

Fig. 3 a shows radial profiles of the velocity for ε = 10 −2 at a fixed
epth z = π after 0, 1, and 2 periods T = 2 π/ Re (ω) . The velocity

etains the same profile but decreases in amplitude with each

ycle due to viscous dissipation. In Fig. 3 b, profiles at t = 0 are

hown for different values of ε. As ε is increased, the width of the

iscous boundary layer increases. In the limit of large ε the flow

s fully developed (the boundary layers meet at the center of the

onduit to form a parabolic velocity profile), while as ε approaches

 the flow approaches plug flow behavior. 

Applying the width averaging (2.2) to the velocity given in

5.2) , we obtain the cross-sectionally averaged velocity: 

 (t, z) = Re 

(
1 

ω 

[
1 − 2 

α

J 1 (α) 

J 0 (α) 

]
e i (z−ωt) 

)
, (5.3)

pon satisfying the mass balance equation, we obtain the disper-

ion relation 

 

2 = 1 − 2 

α

J 1 (α) 

J 0 (α) 
. (5.4)

n general, solving the dispersion relation for ω yields complex

alues, whose real and imaginary parts correspond to the oscil-

atory and decaying behavior of the wave, respectively. In the

nviscid limit ( ε = 0 ), ω → ±1, and waves propagate without en-

rgy loss. As ε is increased, the solutions to (5.4) acquire negative

maginary components, which correspond to dissipative behavior

n the boundary layer. For large enough ε, the real components of

he solutions approach zero, producing overdamped wave behavior

n which the waves decay without oscillating. 

.1. Optimal discretization 

Given a desired error level, or tolerance, and value of ε, we

etermine the optimal discretization by comparing the error

ontributions due to discretization in the r and z directions. The

orm of the error is computed using 

 e ‖ 

2 
�− = ‖ v − v ∗‖ 

2 
�− + ‖ ( p − p 

∗) � e −‖ 

2 
�− , 

here v ∗ and p 

∗ is the velocity and pressure given by the analytic

olution. The numerical solution is integrated in time using a low-

torage fourth-order Runge–Kutta method [18] and the norm of the

rror is measured after one oscillation period ( t max = 2 π/ Re (ω) ). 

In Fig. 4 , the error contributions from the grid refinement in

he z and r directions are visualized by fixing the grid refinement

evel in one direction and varying it in the other direction. In

ig. 4 a, the value of N z is held fixed while N r is varied, while

he reverse is true in Fig. 4 b. The optimal discretization for a

esired error level is where the error contributions from the r

nd z discretizations are approximately equal, corresponding to

he location where the error curves begin to plateau in the grid

efinement plots. Decreasing ε narrows the boundary layer in

hich viscous effects act. To resolve this narrower boundary layer
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Fig. 4. Error contributions from r (a) and z (b) grid refinement using 2nd order interior operators, with ε = 10 −2 . 

Fig. 5. Comparison of error contributions from z grid refinement using 2nd order interior operators with ε = 10 −2 (a) and ε = 10 −3 (b). When ε is reduced, viscous effects 

are confined to a narrower boundary layer, so a higher resolution (larger N r ) is needed to achieve the same accuracy. 
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Fig. 6. Convergence rates for 2nd through 8th order interior operators, with ε = 
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t  

t  
o a desired accuracy, the grid resolution in the radial direction

ust be increased. A grid refinement for ε = 10 −3 is shown in

ig. 5 b. Comparing Fig. 5 a and b, we see that when ε is reduced

y a factor of 10, the number of radial grid points N r needed for

n optimal discretization for a given N z increases. Since the grid

s uniform, the numerical solution in the center of the conduit

ecomes increasingly over resolved as the width of the boundary

ayer decreases. To avoid over resolving the numerical solution,

ne can adopt a coordinate transform in the radial direction that

lusters most of the grid points in the boundary layer. 

.2. Convergence rate 

We compute the accuracy of the simulation for operators of

nd, 4th, 6th, and 8th order interior accuracy, with the results

hown in Fig. 6 . The order of accuracy of the diffusion difference

perator is p at the boundary and 2 p in the interior. The expected

lobal convergence rate is p + 1 [19,20] . By using factor of two

efinements, we estimate the convergence rate using 

ate = log 2 

(‖ e j−1 ‖ �−

‖ e j ‖ �−

)
, (5.5) 

here ‖ e j ‖ �− denotes the error on a mesh j . For our convergence

ests, we choose each successive mesh j to have twice the number

f grid points in both the radial and axial directions as the previ-

us mesh j − 1 . Following the optimal discretization for ε = 10 −2 

hown in Fig. 4 , we choose the same number of grid points in the

adial and axial directions. The errors and convergence rates at

ach grid refinement are shown in Table 1 . The error converges

owards zero at the expected convergence rate ( p + 1 ). 
. Application to acoustic-gravity waves in magmatic conduits 

The problem of axisymmetric wave propagation with viscous

issipation in a conduit arises in a range of different contexts, in-

luding arterial flow [1] , aeroacoustic applications including airflow

n human phonation [21] , and acoustic-gravity waves in magmatic

onduits [3] . Many of these application problems cannot be solved

irectly due to spatially variable material properties, time-varying

oundary conditions, or multiphase fluids in the conduit. 

The problem of wave propagation in magmatic conduits is

f particular interest to us, and we introduce it here as a more

omplex problem on which we can apply the results developed in

he previous sections. In this problem, z is depth (positive up), and

he magma properties are functions of depth. In Karlstrom and



146 B. Prochnow et al. / Computers and Fluids 149 (2017) 138–149 

Table 1 

Error magnitudes and rates for simulations using operators with 2nd through 8th order interior accuracy. √ 

N z N r 2nd order interior accuracy 4th order interior accuracy 

error magnitude error rate error magnitude error rate 

16 4 . 18 × 10 −2 1 . 43 × 10 −2 

32 1 . 11 × 10 −2 1 .91 1 . 40 × 10 −3 3 .32 

64 2 . 80 × 10 −3 1 .98 1 . 14 × 10 −4 3 .65 

128 7 . 09 × 10 −4 1 .99 8 . 26 × 10 −6 3 .79 √ 

N z N r 6th order interior accuracy 8th order interior accuracy 

error magnitude error rate error magnitude error rate 

16 6 . 90 × 10 −3 4 . 10 × 10 −3 

32 2 . 82 × 10 −4 4 .61 8 . 73 × 10 −5 5 .55 

64 8 . 47 × 10 −6 5 .06 1 . 93 × 10 −6 5 .50 

128 2 . 85 × 10 −7 4 .89 4 . 84 × 10 −8 5 .32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Radial profiles of the vertical magma velocity at z = 0 . 8 L (above the exsolu- 

tion depth) for magma viscosity μ = 10 Pa s. As in the model problem, the viscous 

effects manif est in boundary layers near the conduit wall. 
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Dunham [3] , a model is presented for acoustic-gravity waves in a

cylindrical conduit filled with viscous, compressible magma in the

presence of a gravitational field. Magma is a mixture of liquid melt

and gas bubbles or volatiles that can be fully or partially dissolved

in the melt according to pressure-dependent solubility laws. The

model is motivated by observations at Kileaua Volcano, Hawaii,

where an open lava lake sits atop a magma column extending

down at least a few kilometers. Huge rockfalls into the lava lake

trigger oscillations that are interpreted as acoustic-gravity wave

eigenmodes of the system. 

The governing equations are derived by considering small

perturbations about a rest state of thermodynamic and mechan-

ical equilibrium (the magmastatic base state); the liquid and

gas phases are assumed to move with the same velocity. The

exchange of mass between liquid and gas phases is described in

terms of non-equilibrium bubble growth and resorption (BGR) of

volatiles, parametrized as a relaxation process over a characteristic

timescale τ . The governing equations are obtained by linearizing

the equations for mass and momentum balance in the magma, the

BGR evolution equation involving the volatile solubility law, and

the magma equation of state: 

ρ
∂v 
∂t 

+ 

∂ p 

∂z 
+ 

ρg 

K 

p − ρgan − μ

r 

∂ 

∂r 

(
r 
∂v 
∂r 

)
= 0 , (6.1)

1 

K 

∂ p 

∂t 
+ 

∂u 

∂z 
− ρg 

K 

u + 

a (n + bp) 

τ
= 0 , (6.2)

∂n 

∂t 
+ ρgbu + 

n + bp 

τ
= 0 , (6.3)

u = 

2 

R 

2 

∫ R 

0 

v r dr, (6.4)

where p ( t, z ), v ( t, z, r ), and u ( t, z ) are, as before, perturbations

in pressure, velocity, and cross-sectionally averaged velocity; and

n ( t, z ) is the perturbation in the mass fraction of exsolved gas.

In addition, ρ( z ) is the density in the magmastatic state, K ( z ) is

the bulk modulus, g is acceleration due to gravity, μ is viscosity,

R is the conduit radius, and a ( z ) ≥ 0 and b ( z ) ≥ 0 are coefficients

quantifying processes related to the influence of volatiles on the

magma density and the pressure-dependence of volatile solubility.

Note that these equations, unlike those in the model problem, are

dimensional. 

As in the model problem, we enforce a no-slip boundary

condition: 

v (t, z, r = R ) = 0 . (6.5)

The top and bottom boundary conditions for the conduit require

more careful treatment than in the model problem. At the bottom

of the conduit ( z = 0 ), choices of boundary condition include but

are not limited to a no flow boundary ( v (t, z = 0 , r) = 0 ) or a zero
ressure perturbation boundary ( p(t, z = 0) = 0 ); we focus on the

atter here. At the top of the conduit, the magma is in contact with

he atmosphere, so pressure is set equal to atmospheric pressure

plus some perturbation p force ( t ) associated with the impulsive

orcing from the rockfalls) on that moving surface located at

 + h (t) , where L is the nominal conduit length and h ( t ) is the

hange in height. Linearization of this condition results in the top

oundary condition 

p(t, z = L ) − ρ(L ) gh (t) = p f orce (t) , (6.6)

here the height evolves according to 

dh 

dt 
= u (t, z = L ) . (6.7)

Eqs. (6.2) and (6.3) are discretized using SBP operators on

 regular grid with boundary conditions weakly enforced using

imultaneous approximation terms (SAT) [14] . This discretization

s possible to perform because there is no r dependence in the

ariables ( p, n, u ). The SAT technique is implemented using the

ethod and choice of SAT parameters described in [3] , where the

arget boundary values are determined by preserving the char-

cteristic variables carrying information out of the domain. The

adial diffusion term in (6.1) is discretized using the same operator

 2 as in the model problem, i.e., by (4.5) . The integral in (6.4) is

iscretized using the P̄ − operator, see (4.8) and (4.9) . We note

hat viscosity was neglected in the original study [3] ; accounting

or viscous dissipation appears to be essential to properly match

bservations, thus motivating this study. 

The simulation results for a conduit of length L = 2 km and

adius R = 15 m containing magma with a viscosity of μ = 10 Pa s

re shown in Figs. 7 –9 . In these figures, the system is forced by a
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Fig. 8. Space-time plot of pressure perturbation in response to rockfall onto the surface of the magma column. 

Fig. 9. Space-time plot of vertical velocity along the vertical cross-section at r = R/ 2 in response to rockfall onto the surface of the magma column. 
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aussian pressure pulse p force ( t ) at the surface ( z = L ) with an am-

litude of 50 kPa and 1 s duration. The increasing pressure with

epth in the magmastatic base state, together with the pressure-

ependence of volatile solubility, leads to segmentation of the

onduit into two distinct sections. At depths below z = L/ 2 (the

xsolution depth), all volatiles are dissolved (making the magma

ess compressible and more dense); above the exsolution depth,

as bubbles are present, making the magma more compressible

nd less dense. As in the model problem (see Fig. 3 a), the viscous

ffects manif est in narrow boundary layers near the wall of the

onduit and the amplitude of the oscillations decays with each

ycle, as seen in Fig. 7 . The response of the magma column to the

aussian pressure impulse (i.e., rockfall) is seen in Figs. 8 and 9 ,

hich show the time evolution of the pressure and fluid velocity

t r = R/ 2 , respectively. The disturbance at the surface creates a

ave that travels down into the conduit at a relatively constant

peed until it reaches the exsolution depth, where it excites

inging behavior in the deeper conduit section. These oscillations

re damped out by the fluid viscosity and non-equilibrium bubble

rowth and resorption over the course of several minutes. With

he addition of viscosity, many features observed in the Kilauea

ata are reproduced in the model. 

. Conclusion 

We have developed a numerical model for the propagation of

aves in a fluid-filled tube or conduit with dissipation due to

uid viscosity. To model viscous dissipation, we have developed
 method for constructing a provably stable method introducing

 summation-by-parts operator D 2 for approximating the radial

omponent of the Laplacian in cylindrical coordinates. This op-

rator is constructed by defining a staggered grid in the radial

irection, on which we define first derivative SBP difference

perators. This operator does not include the grid points at the

ndpoints r = 0 and r = 1 and exactly enforces the no-slip bound-

ry condition at r = 1 . To prove stability, we derived an energy

stimate for the semi-discrete approximation. 

As an example of an application problem which is not analyt-

cally solvable, we applied the numerical method to the governing

quations for acoustic-gravity waves propagating in a magmatic

onduit. This problem introduces complexities not seen in the

odel problem, including a multiphase fluid and depth-dependent

aterial properties, which make it solvable only by numerical

echniques. Related application problems arise in other contexts,

ncluding arterial flow [1] and human phonation [21] , and could

onstitute a basis for further work. 

A potential future development is to reduce the stencil width

f the difference approximation. Since the approximation of the

adial component of the Laplacian operator was constructed by

pplying the first derivative twice, this results in a stencil width

f 4 p 2 − 1 , where 2 p is the interior accuracy. The optimal stencil

idth is 2 p + 1 . For p = 1 (second order interior accuracy), the

tencil width is optimal. For higher orders of accuracy, it might be

ossible to construct a difference approximation of the Laplacian

ith optimal stencil width using the approaches taken in [22–25] . 
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While the analysis presented in this work is restricted to

cylindrical coordinates, it is likely that the staggered grid oper-

ators could be used to handle similar coordinate singularities in

spherical coordinates. Furthermore, our method of handling the

1/ r coordinate singularity does not make use of the symmetry

condition at r = 0 that is specific to axisymmetric problems, which

indicates that this method could be applied to non-axisymmetric

problems in both cylindrical and spherical coordinates. Extending

this method to fully three dimensional non-axisymmetric prob-

lems would require the definition of derivative operators in the

azimuthal direction, and careful treatment of the truncation step. 
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Appendix A. Accuracy of quadrature rules 

Lemma A.1. Let the SBP operators D + and D − be pth-order-accurate

on the boundary. Then the order of the quadrature rules P + and P −
is at least max (2 , (2 p − 2)) for p ≥ 1 . 

Proof. Let r j = a + jh, h = (b − a ) /N, and r + = [ r 0 , r 1 , . . . , r N ] 
T be

the vector of grid point locations for the regular grid. The

corresponding location vector for the staggered grid is r − =
[ r 0 , r 1 / 2 , . . . , r N−1 / 2 , r N ] 

T . Denote a grid function on the regular

grid by u + = [ u 0 , u 1 , . . . , u N ] 
T and on the staggered grid by u − =

[ u 0 , u 1 / 2 , . . . , u N−1 / 2 , u N ] 
T . Recall the summation-by-parts property

(3.5) for first derivatives. By applying this property to the sec-

ond derivatives D −D + and D + D −, and taking the scalar products

(3.2) and (3.3) it follows that 

(u + , D + D −v + ) + = −(D −u + , D −v + ) − + u N (D −v + ) N − u 0 (D −v + ) 0 , 

(A.1)

(u −, D −D + v −) − = −(D + u + , D + v −) + + u N (D + v −) N − u 0 (D −v −) 0 . 

(A.2)

The SBP operators exactly satisfy ⎧ ⎪ ⎨ 

⎪ ⎩ 

D + r s − = s r s −1 
+ , 

D −r s + = s r s −1 
− , 

D −D + r s − = s (s − 1) r s −2 
− , 

D + D −r s + = s (s − 1) r s −2 
+ , 

s ∈ [1 , p] , (A.3)

where r s + = [ r s 
0 
, r s 

1 
, . . . , r s 

N 
] T and r s − = [ r s 

0 
, r s 

1 / 2 
, . . . , r s 

N−1 / 2 
, r s 

N 
] T . 

Case I : p = 1 . In this case, P + is the trapezoidal rule in (3.7) and

P − is the midpoint rule in (3.7) , which are second-order-accurate.

Case II : Even degree polynomials. Taking u + = r s + , v + = r s + ,
u − = r s −, and v − = r s − in (A.1) and (A.2) , and using (A.3) yields 

(s − 1)(e + , r 2 s −2 
+ ) + = −s (e −, r 2 s −2 

− ) − + r 2 s −1 
N 

− r 2 s −1 
0 

, s ∈ [2 , p] , 

(A.4)

(s − 1)(e −, r 2 s −2 
− ) − = −s (e + , r 2 s −2 

+ ) + + r 2 s −1 
N − r 2 s −1 

0 , s ∈ [2 , p] , 

(A.5)

where e + = [1 , 1 , . . . , 1] T ∈ R 

N+1 and e − = [1 , 1 , . . . , 1] T ∈ R 

N+2 . By

forming the difference between (A.5) and (A.4) 

(e + , r 2 s −2 
+ ) + = (e −, r 2 s −2 

− ) −. (A.6)
nserting (A.6) into (A.4) and (A.5) leads to 

(e + , r 2 s −2 
+ ) + = (e −, r 2 s −2 

− ) − = 

1 

2 s − 1 

(
b 2 s −1 − a 2 s −1 

)
, s ∈ [2 , p] . 

he right-hand side is exactly equal to the result obtained by the

ntegration 

 b 

a 

r 2 s −2 dr = 

1 

2 s − 1 

(
b 2 s −1 − a 2 s −1 

)
, 

hich means that the quadrature rules are exact for all even

egree polynomials up to degree 2 p − 2 . Case III : Odd degree

olynomials. Now taking u + = r s + and v + = r s −1 
+ and u − = r s − and

 − = r s −1 
− in (A.1) and (A.2) , and using (A.3) leads to 

(s − 2)(e + , r 2 s −3 
+ ) + = −s (e −, r 2 s −3 

− ) − + r 2 s −2 
N − r 2 s −2 

0 , s ∈ [2 , p] , 

(A.7)

(s − 2)(e −, r 2 s −3 
− ) − = −s (e + , r 2 s −3 

+ ) + + r 2 s −2 
N − r 2 s −2 

0 , s ∈ [2 , p] . 

(A.8)

y forming the difference between (A.8) and (A.7) 

(e + , r 2 s −3 
+ ) + = (e −, r 2 s −3 

− ) −. (A.9)

nserting (A.9) into (A.7) and (A.8) leads to 

(e + , r 2 s −3 
+ ) + = (e −, r 2 s −3 

− ) − = 

1 

2 s − 2 

(
b 2 s −2 − a 2 s −2 

)
, s ∈ [2 , p] , 

hich means that the quadrature rules are exact for all odd degree

olynomials up to degree 2 p − 3 . 

�

emark 3. For p > 1, there is numerical evidence that the quadra-

ure rules are of order 2 p − 1 . 

ppendix B. Proof of Proposition 4.1 (second order case) 

We need to show that the following holds: 

¯
 

T A ̄v = ‖ (I z � D̄ + ) ̄v ‖ 

2 
�+ > 0 , for all v̄ 	 = 0 , 

.e. A > 0. From the definition of the norm ‖ · ‖ 2 
�+ in (4.10) , we

et 

 = P z � ( ̄D 

T 
+ P + R + ̄D + ) . 

ince P z = 	zI z > 0 , we only need to consider Ā = D̄ 

T + P + R + ̄D + ∈
 

N×N . If Ā > 0 then the null space nul l ( ̄A ) = { x ∈ R 

N 	 = 0 | Ax = 0 }
s empty. Since R + is zero on the diagonal in the first row and

oth P + and R + are diagonal and positive everywhere else, it is

ufficient to show that there exists no vector x̄ = ( ̄x 0 x̄ 1 . . . ̄x N−1 ) 
T ∈

 

N 	 = 0 such that D̄ + ̄x = y , where y = (α, 0 , 0 , . . . , 0) T ∈ R 

(N+1) for

	 = 0. In the second order case, the matrix D̄ + is given by 

¯
 + = 

1 

	r 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 

−1 1 

−1 1 

−1 1 

. . . 
. . . 

−1 1 

−2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

∈ R 

(N+1) ×N . 

onsider the equation system D̄ + ̄x = 0 . We use a proof by con-

radiction and assume that there exists x 	 = 0. From the last

quation we obtain x̄ N−1 = 0 . Inserting this result into the second

ast equation yields x̄ N−2 = 0 . Repeating the procedure until the

econd equation yields x̄ 0 = 0 , which implies that x̄ = 0 is the

nly solution. We have arrived at a contradiction and therefore

onclude that Ā > 0 , which completes the proof. 

http://dx.doi.org/10.13039/100006227
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Fig. B10. The minimum modulus eigenvalue of Ā / 	r as a function of the number 

of grid points. 
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For higher order of accuracy, we numerically compute the

inimum modulus eigenvalue 

min ≡ min 

λi ∈ λ( ̄A / 	r) 
| λi | . 

e use 16 to 400 grid points. Fig. B.10 shows that λmin is nonzero.
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