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Abstract. We couple a node-centered finite volume method to a high order finite dif-
ference method to simulate dynamic earthquake ruptures along nonplanar faults in
two dimensions. The finite volume method is implemented on an unstructured mesh,
providing the ability to handle complex geometries. The geometric complexities are
limited to a small portion of the overall domain and elsewhere the high order finite dif-
ference method is used, enhancing efficiency. Both the finite volume and finite differ-
ence methods are in summation-by-parts form. Interface conditions coupling the nu-
merical solution across physical interfaces like faults, and computational ones between
structured and unstructured meshes, are enforced weakly using the simultaneous-
approximation-term technique. The fault interface condition, or friction law, provides
a nonlinear relation between fields on the two sides of the fault, and allows for the par-
ticle velocity field to be discontinuous across it. Stability is proved by deriving energy
estimates; stability, accuracy, and efficiency of the hybrid method are confirmed with
several computational experiments. The capabilities of the method are demonstrated
by simulating an earthquake rupture propagating along the margins of a volcanic plug.
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1 Introduction

Computational modeling of earthquake rupture dynamics presents many challenges.
Like similar radiation problems in electrodynamics and other fields, there is particu-
lar interest in waves in the far field, as most observations are made at distances many
wavelengths away from a compact source region. This argues for the use of high or-
der methods with minimal dispersion errors. However, in dynamic rupture models, the
source process itself is not known a priori, but is determined as part of the solution. To
be more specific, seismic (i.e., elastic) waves are generated by slip across fault surfaces
(i.e., the discontinuity in the tangential component of the displacement field across an
internal interface). Slip on one part of the fault excites waves that transmit stresses to
adjacent parts of the fault, possibly triggering slip there and leading to the progressive
propagation of a rupture. The condition for fault slip is typically expressed as a nonlin-
ear friction law coupling fault slip velocity and tractions acting on the sides of the fault.
Further challenges arise from the geometrical complexity of natural fault geometries, of-
ten involving multiple nonplanar surfaces with kinks and branches. Numerical methods
based on unstructured meshes are well suited to handle this level of complexity in the
near field source region. The challenge, then, is to combine the advantages of numerical
methods based on unstructured meshes (for the near field or source region) with high or-
der numerical methods based on structured grids (for the far field region), in an accurate
and stable manner.

A variety of other numerical approaches have been taken to study earthquake rup-
ture dynamics, each with benefits and shortcomings. Some of the more recent numer-
ical approaches we will describe have been, or are actively being, verified and evalu-
ated using a series of benchmark exercises as part of the Southern California Earthquake
Center/U.S. Geological Survey (SCEC/USGS) Dynamic Earthquake Rupture Code Veri-
fication Project [28]. Traditionally, finite difference methods have been widely used, but
mostly for planar faults (e.g., [3, 16, 42, 44, 69]). In more recent years, nonplanar fault
geometries have also been incorporated in finite difference methods using coordinate
transform techniques (e.g., [14, 15, 36]). In the coordinate transform method developed
in [36], the physical domain is decomposed into multiple curvilinear blocks that con-
form to nonplanar surfaces. Each block is mapped onto a rectangle or square in the
computational domain, and the transformed equations are solved in the computational
domain with finite differences. Severe grid skewness, for instance due to intersecting
faults with small angles, can cause the transform to be poorly conditioned. Thus, it can
be difficult to develop well-conditioned multi-block decompositions of geometries that
arise in realistic fault systems. Boundary element methods have also been developed
(e.g., [4, 22, 32, 64, 70]). Solutions given by these methods are limited to faults in a uni-
form medium and some can develop numerical instabilities. These methods can handle
nonplanar faults, except for the spectral boundary integral equation method [22]. How-
ever, the spectral boundary integral equation method is quite efficient and accurate for
planar fault problems, and has been widely used to investigate realistic fault weakening
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processes.

Many of the challenges involved with using finite difference methods and boundary
integral equation methods in complex geometries can be overcome using unstructured
mesh methods. The use of unstructured meshes offers flexibility to discretize complex
fault geometries, heterogeneous material properties, and topography at the expense of
mesh preprocessing, increased computational work, and implementation complexity (as
compared to structured grid methods). Several unstructured mesh methods have been
developed for earthquake rupture dynamics in complex geometries, using finite element
methods (e.g., [1, 7, 18, 19, 40, 66, 67]), finite volume methods (e.g., [8, 9]), spectral ele-
ment methods (e.g., [20,30,33]) and discontinuous Galerkin methods (e.g., [17,34,55,65]).
While continuous Galerkin finite element methods have been quite effective for model-
ing fault rupture, in practice these methods have been limited to 2nd-order accuracy (a
computational choice for efficient mass matrix inversion). Since 2nd-order accurate meth-
ods are not ideal in resolving far field waves, high order finite element methods have
also been considered, in particular (quad and hex based) spectral element and discon-
tinuous Galerkin methods. Spectral elements have the advantage of having a diagonal
mass matrix, but those used for rupture dynamics currently require a global quadrilat-
eral or hexahedral mesh which can be difficult to generate in practice for realistic fault
geometries [68]. The discontinuous Galerkin method on the other hand has an element
local (globally block diagonal) mass matrix [29]. To achieve this, the solution is allowed
to be discontinuous across the element interface, which requires a doubling of the num-
ber of degrees of freedom along the element edges. More importantly though, there is a
significant time step restriction for high order versions.

In this work, we develop a hybrid finite volume-finite difference method based on
summation-by-parts (SBP) difference operators [12, 38, 39, 54, 59, 63]. This finite volume
method uses unstructured meshes and treats complex geometry with the same flexibility
as finite element methods. Other hybrid methods, combining finite elements and finite
differences, have been developed for earthquake rupture dynamics (e.g., [6, 41, 44]), but
require the use of overlapping grids and have no associated proofs of stability. In con-
trast, by utilizing properties of SBP operators here we develop a provably stable hybrid
method based on coupling at grid interfaces (i.e., the grids are non-overlapping). We do
this by imposing interface (and boundary) conditions weakly using the simultaneous ap-
proximation term (SAT) method [10]. When the penalty terms are properly chosen, the
numerical method is provably stable; the penalty terms in SAT and closely related the
fluxes in discontinuous Galerkin methods [21].

The SBP-SAT formulation, which was originally developed for fluid [50, 53, 60, 62]
and wave propagation problems [2, 43, 51], has been used to develop a stable and ac-
curate finite difference method for earthquake rupture dynamics in complex geometries
using multiblock grids [35, 36]. That said, well-conditioned multiblock decompositions
of realistic fault geometries can be difficult to develop. The hybrid approach we propose
here overcomes many of these difficulties. The node-centered finite-volume method was
shown to be an SBP scheme in [48] and has been coupled to high order finite difference
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methods for both advection [49] and advection-diffusion [23, 52] problems. Here we ex-
tend the coupling to the scalar wave equation (written in first order form for velocities
and stresses). Additionally, we show how nonlinear friction laws can be handled in the
unstructured finite volume method. Extensions of the developed method would permit
modeling of rupture dynamics and wave propagation in 2-D plane strain and even 3-D
geometries, though these extensions are beyond the scope of this initial study.

The organization of this paper is as follows: in Section 2, we present the continuous
formulation of the 2-D linear elastic antiplane shear problem, including interface con-
ditions and boundary conditions as well as the energy balance. The SBP operators are
introduced in Section 3, and the semi-discrete problem is formulated. Finally, in Section
4, we conduct numerical experiments to verify the stability and accuracy of our numeri-
cal implementation.

2 Continuous problem

While the method we develop can be applied to general problems involving geometri-
cally complex fault networks, we focus here on the specific case of earthquake ruptures
along the edges of a crystalline plug within a volcanic conduit. Swarms of repeating
drumbeat earthquakes (so-called because of their regular recurrence interval of a few
minutes) occurred during the 2004-2008 effusive eruption of Mount Saint Helens, Wash-
ington. These events are possibly explained by slip along the walls of a plug that was
extruded from the vent [31,45]. Fig. 1 illustrates a volcanic conduit with a solidified plug.
The plug margin serves as a fault, hosting small earthquakes triggered by the pressur-
ization of magma beneath it. Dynamics of the plug are governed by the forces acting on
it, as well as the elastic response of the plug and surrounding material. More details are
given in Section 5.

We begin by considering a horizontal cross-section Ω of a plug within a volcanic con-
duit (Figs. 1 and 2). The plug is located in the center of the domain Ω. For simplicity, both
the plug and the surrounding volcanic conduit are modeled as the same homogeneous,
elastic materials. The contour γ is the interface between the plug and the surrounding
material, referred to as the plug margin. We use the superscript (2) to denote the plug,
and superscript (1) to denote the surrounding material. The rectangular computational
domain, Ω, has outer boundary ∂Ω.

We neglect variations of fields in the vertical direction, thereby reducing the problem
to two-dimensional antiplane shear deformation. The dimensionless governing equa-
tions within the plug and surrounding material are

∂vz

∂t
=

∂σxz

∂x
+

∂σyz

∂y
, (2.1)

∂σxz

∂t
=

∂vz

∂x
,

∂σyz

∂t
=

∂vz

∂y
, (2.2)
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Figure 1: Solidified plug within a volcanic conduit hosting earthquakes along its margins. Upward extrusion of
the plug is driven by pressure from magma beneath it and resisted by its weight and friction along the plug
walls.
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Figure 2: (a) Cross-section of the plug (1) and surrounding rocks (2); both materials have linear elastic
response, with friction acting along their common interface γ. (b) A hybrid mesh. Since the plug makes up
a small fraction of the entire computational domain, only the plug and vicinity are resolved with unstructured
meshes. The rest of the computational domain is resolved with structured grids. The unstructured meshes are
coupled to structured grids along the Cartesian boundaries shown in bold, solid black lines. (c) Across the fault
γ some of the fields can be discontinuous. All interfaces (hybrid interfaces and fault interfaces) have collocated
nodes (illustrated in the upper-right panel).

Eqs. (2.1) and (2.2) have been nondimensionalized in terms of a characteristic length h∗

and corresponding time scale h∗/c, where c is the shear-wave speed c=
√

G/ρ, with G
and ρ being the shear modulus and the density, respectively; both G and ρ are taken to be
constant in this work. The characteristic stress and velocity scales are linked by the shear-
wave impedance ρc. In Eq. (2.1), vz(x,y,t) is the ẑ-component (out of the page or vertical)
of the particle velocity, and the shear stress components σxz(x,y,t) and σyz(x,y,t) are those
exerting tractions in the ẑ-direction on planes with unit normals x̂ and ŷ, respectively.
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With dimensional fields, Eq. (2.1), with the left-hand side multiplied by density ρ, is
conservation of momentum, and Eq. (2.2), with the right-hand side multiplied by shear
modulus G, is the time derivative of Hooke’s law.

We use the energy method to show well-posedness of the continuous problem and
stability of the numerical discretization, and for this analysis it is convenient to write
governing equations (2.1) and (2.2) in matrix form:

∂q

∂t
=Ax

∂q

∂x
+Ay

∂q

∂y
, q=

[

vz, σxz, σyz

]T
,

Ax =





0 1 0
1 0 0
0 0 0



, Ay=





0 0 1
0 0 0
1 0 0



. (2.3)

2.1 Boundary and interface conditions

For hyperbolic equations it is well known that the number of boundary conditions re-
quired is equal to the number of characteristic variables entering the domain [37]. Simi-
larly, for domains that are partitioned into multiple subdomains, the number of interface
conditions needed is equal to the number of characteristic variables entering each subdo-
main from the interface. That is, we can specify conditions on the characteristic variables
resulting from the diagonalization of Aini, where summation over x and y is implied by

repeating indices (Aini = Axnx+Ayny) with n̂ =
[

nx, ny

]T
being the outward unit nor-

mal with respect to the subdomain boundary of interest. The outward unit normal n̂ is

orthogonal to the unit tangent vector m̂=
[

ny, −nx

]T
, satisfying ẑ= n̂×m̂. The diagonal-

ization results in the characteristic variables

w±=σizni∓vz and w0=σizmi. (2.4)

Characteristic variables w± are those propagating in the ±n̂-directions with unit speed
(and speed c in dimension form) and w0 is a characteristic with zero speed. Thus it fol-
lows that along each interface and boundary we must specify one interface or boundary
condition on w−, the characteristic variable entering the subdomain. For exterior bound-
aries, we use the simple boundary condition

w−=Rw+, (2.5)

where R is the reflection coefficient. Choosing R =−1 gives a traction-free boundary
condition (σizni=0), R=1 is a rigid wall boundary condition (vz =0), and R=0 is a non-
reflecting boundary condition. More efficient non-reflective boundary conditions have
been developed, e.g., [5, 27], but since the focus of this work is the interface coupling
between finite volume and finite difference methods, the simple boundary condition (2.5)
is sufficient.
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The interface condition between two subdomains is expressed as a possibly nonlinear
relation of the form

w−(l)=W−(l)
(

w+(1), w+(2)
)

, l=1, 2, (2.6)

where W−(l) can be different on each side l. Hence the characteristic variables propagat-
ing out of the interface are given as a possibly nonlinear combination of those propagat-
ing into the interface from both sides.

A special case of (2.6) is the welded interface condition specifying continuity of par-

ticle velocities v
(1)
z = v

(2)
z and tractions acting on the interface σ

(1)
iz n

(1)
i =−σ

(2)
iz n

(2)
i . This

results in (2.6) taking the form of continuity of the characteristic variables:

w−(1)=−w+(2) and w−(2)=−w+(1), (2.7)

with the negative sign arising due to the sign convention used in defining the charac-
teristic variables. Along the margins of the plug, the interface condition is taken to be a
nonlinear friction law. To express this condition, we first define the slip velocity,

V(x,y,t)=v
(2)
z (x,y,t)−v

(1)
z (x,y,t), (x, y)∈γ, (2.8)

as the jump in particle velocity field across the fault (Fig. 2). Force balance requires that

the shear tractions σ
(l)
iz n

(l)
i exerted on one side (l) by the material on the other side of the

fault, be opposite in sign and equal in magnitude:

σ
(1)
iz (x,y,t)n

(1)
i (x,y)=−σ

(2)
iz (x,y,t)n

(2)
i (x,y), (x, y)∈γ. (2.9)

These shear tractions are balanced by the frictional resistance to sliding, or shear strength
of the fault, τ(l), that is

τ(l)(x,y,t)=σ
(l)
iz (x,y,t)n

(l)
i (x,y), (x, y)∈γ, (2.10)

n
(1)
i =−n

(2)
i , τ=τ(1)=−τ(2). (2.11)

The shear strength τ, which is defined with respect to side (1), is governed by the friction
law

τ=F(V,ψ),
dψ

dt
=G(V,ψ), (2.12)

where F(V,ψ) is the fault shear strength that depends on the local slip velocity V and
an internal state variable ψ that captures the history-dependence of F observed in labo-
ratory experiments. The state variable evolves in time according to a nonlinear ordinary
differential equation known as the state evolution law: dψ/dt = G(V,ψ). The friction
coefficient, and hence the shear strength, takes the sign of V (i.e., resistance always op-
poses the current direction of slip). Explicit forms of F(V,ψ) and G(V,ψ), and further
discussion of the nondimensionalization procedure, are given in Appendix B.
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The existence and uniqueness of the characteristic nonlinear relationship (2.6) satis-
fying continuity (2.9) using purely velocity-dependent friction laws was analyzed in [35]
and extended to a friction law of the form (2.12) in [36]. If ∂F(V,ψ)/∂V ≤ 0 then (2.9)
and (2.12) can be uniquely expressed as a characteristic relationship of the form (2.6).
Additional stability and well-posedness analysis of the antiplane shear problem with a
nonlinear boundary condition (but neglecting state evolution) is considered in [47].

2.2 Energy estimate

A suitable definition of well-posedness for our problem is the following:

Definition 2.1. The governing equations (2.1) and (2.2) with homogeneous boundary
conditions on exterior boundaries ∂Ω are said to be well-posed if there exists a unique
solution that satisfies the energy rate

d‖q‖2

dt
≤0. (2.13)

The energy dissipation rate (2.13) ensures that we get an energy estimate and a bounded
solution q(x,y,t) for all times.

In order to obtain an energy estimate we follow [35]. We define the energy using the
weighted norm:

‖q‖2 =
1

2

∫∫

Ω

(

qTq
)

dxdy=
∫∫

Ω

(

v2
z

2
+

σizσiz

2

)

dxdy, (2.14)

which is the dimensionless form of the total mechanical energy in the system per unit
distance in the ẑ-direction. Taking the time derivative of (2.14) and using (2.8)-(2.12)
gives

d

dt
‖q‖2=

1

2

∫∫

Ω
qT ∂q

∂t
dxdy=

1

2

∫∫

Ω
qT(Ax

∂q

∂x
+Ay

∂q

∂y
)dxdy

=
∮

∂Ω
vzσiznids+

∮

γ
v
(1)
z σ

(1)
iz n

(1)
i ds+

∮

γ
v
(2)
z σ

(2)
iz n

(2)
i ds

=
∮

∂Ω
vzσiznids+

∮

γ
v
(1)
z τ(1)ds+

∮

γ
v
(2)
z τ(2)ds

=
∮

∂Ω
vzσiznids−

∮

γ
VF(V,ψ)ds, (2.15)

where ds is the infinitesimal arc length of an element of ∂Ω or γ and the divergence
theorem has been used to convert the area integrals to line integrals. To obtain the last
term we have used (2.8), (2.10), (2.11), and (2.12). The physical interpretation is straight-
forward: the total mechanical energy of the system is changed only by work done by
tractions on the external boundaries and through dissipation of energy along the internal
fault interface during friction sliding.
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We use the linear characteristic boundary condition (2.5) to show that the exterior
boundary terms are nonpositive (i.e., energy can only be lost from the system through
these boundaries):

∮

∂Ω
vzσiznids=−

1

4

∮

∂Ω
(1−R2)

(

w+
)2

ds≤0, if −1≤R≤1, (2.16)

where (2.4) has been used to convert the physical variables to characteristic variables. On
frictional interfaces, energy can only be dissipated. This is guaranteed if

VF(V,ψ)≥0, (2.17)

as universally confirmed by laboratory experiments, which leads to

−
∮

γ
VF(V,ψ)ds≤0. (2.18)

Since both (2.16) and (2.18) are nonpositive it follows that the right hand side of (2.15) is
negative semi-definite and we have a energy estimate according to Definition 2.1.

3 Semi-discrete problem

We start off by giving a brief review of the high order finite difference SBP operators in
one dimension on an equidistant grid and then move on to finite volume SBP operators
in two dimensions on triangular meshes. More details regarding the theory behind SBP
operators can be found in e.g., [12, 38, 39, 54, 59, 63].

3.1 High order finite difference method

Consider the field v(x) discretized using a equidistant grid on the unit interval [0 1] using
N+1 grid points:

vi =v(xi), xi = ih, i=0,1,··· ,N, (3.1)

where h= 1/N is the grid spacing. An SBP finite difference operator, see [12, 38, 39, 59],
satisfies

∂v

∂x
≈Dxv, Dx =P−1Q, (3.2)

where v=[v0 v1 ··· vN ]
T is the grid function (including both interior values and boundary

values). The positive definite matrix P has dimension (N+1)×(N+1) and defines an
inner product that corresponds to the continuous L2 inner product:

(u,v)=
∫ 1

0
u(x)v(x)dx and (u,v)P =uTPv. (3.3)
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The matrix Q has dimension (N+1)×(N+1), it is nearly skew-symmetric and satisfies

Q+QT =diag[−1 0 ··· 0 1]. (3.4)

The nearly skew-symmetric property of Q and discrete inner product property (3.3) have
a summation-by-parts property that is analogous to integration-by-parts. Namely,

(

v,
∂v

∂x

)

=
∫ 1

0
v

∂v

∂x
dx=

1

2

(

v(1)2−v(0)2
)

,

(v,Dxv)P =vTQv=
1

2
vT

(

Q+QT
)

v=
1

2

(

v2
N−v2

0

)

,

showing why the operators are called summation-by-parts operators.

SBP finite difference operators are constructed by using central difference stencils in
the interior and transitioning to one-sided stencils near boundaries. The SBP norm P can
either be diagonal or block diagonal. In this work we consider only the diagonal norm,
where the interior stencils have accuracy q= 2s (s= 1, 2,···), the boundary stencils have
accuracy r=s, and global accuracy p=s+1 [25,61]. For the specific form of the stencils, see
e.g., [12]. When reporting the accuracy of the SBP operators we give the global accuracy.

3.2 Finite volume method

Unstructured SBP operators can be obtained by using a node-centered finite volume
method on an unstructured triangular mesh. The finite volume method used here is
at most 2nd-order accurate. The finite volume discretization is introduced by partitioning
the domain Ω into non-overlapping control volumes Ωi and solving the governing equa-
tions on integral form in each volume. Figs. 3(a)-(b) shows the construction of control
volumes. A complete derivation of the finite volume operators is given in [48]. The finite
volume approximation to the integral form of the momentum balance equation in (2.1) is
written as

P
dvz

dt
=Qxσxz+Qyσyz, (3.5)

vz=[(vz)0 ···(vz)N ]
T

, σxz=[(σxz)0 ···(σxz)N ]
T

, σyz =
[

(σyz)0 ···(σyz)N

]T
,

where each field value (vz)i, (σxz)i and (σyz)i is stored at the points (xi, yi). The remaining
governing equations are discretized in a similar manner. In (3.5), the matrix P stores the
area ∆Vi of each control volume Ωi on the diagonal and defines a discrete inner product
that approximates the continuous inner product:

(u,v)P=uTPv=
N

∑
i=0

∆Viuivi ≈
∫∫

Ω
uvdxdy. (3.6)
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Figure 3: Control volumes (dashed lines) are constructed using midpoints and center of gravities. (a) The
control volume Ωi is constructed around a node i in the interior. The ∆xij and ∆yij are (signed) distances
in the x̂-direction and ŷ-direction, respectively, each obtained by traversing the control volume boundary in
the counterclockwise-direction. (b) On the boundary. (c) Skew-symmetry is preserved in the interior since
∆yij=−∆yji for either i∈Ω or j∈Ω.

The matrices Qx and Qy are nearly skew-symmetric matrices satisfying

(Qx)ij =
∆yij

2
=−(Qx)ji, (Qy)ij =−

∆xij

2
=−(Qy)ji,

(Qx)ii=

{

0 if i /∈∂Ω,
∆yi

2 if i∈∂Ω,
(Qy)ii =

{

0 if i /∈∂Ω,

−∆xi
2 if i∈∂Ω,

(3.7)

where ∆xij and ∆yij are (signed) distances in the x̂- and ŷ-directions, respectively, com-
puted by traversing the control volume boundary in the counterclockwise direction, see
Fig. 3(a). In Fig. 3(c) we see that ∆xij =−∆xji and ∆yij =−∆yji. It then follows that the
matrices

X=Qx+QT
x and Y=Qy+QT

y , (3.8)

are diagonal and the only non-zero contribution resides on the boundary, with values
−∆xi and ∆yi. We see that the finite volume scheme satisfies the summation-by-parts
property:

(

v,
∂v

∂x

)

=
∫∫

Ω
v

∂v

∂x
dxdy=

1

2

∮

∂Ω
v2dy,

(

v,
∂v

∂y

)

=
∫∫

Ω
v

∂v

∂y
dxdy=−

1

2

∮

∂Ω
v2dx,

(v,Dxv)P=
1

2
vTXv=

1

2 ∑
i∈∂Ω

v2
i ∆yi, (v,Dyv)P =

1

2
vTYv=−

1

2 ∑
i∈∂Ω

v2
i ∆xi,

where Green’s theorem has been used to convert area integrals into line integrals.

3.3 Semi-discrete approximations

We partition the computational domain Ω with a nonplanar fault γ in the interior into
multiple subdomains as illustrated in Fig. 2(a). In Fig. 2(a), the two subdomains adjacent
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to the fault are discretized with an unstructured triangular mesh with N+1 nodes. All
other subdomains are discretized with a structured (Nx+1)×(Ny+1) Cartesian grid. In
the x̂-direction the grid points are separated by the grid spacing hx and indexed using
i=0,··· ,Nx and in the y-direction they are separated by the grid spacing hy and indexed
using j=0,··· ,Ny. Without loss of generality we assume that each structured grid has the
same number of grid points. At every interface the nodes or grid points are collocated.

Considering a subdomain, we formulate a semi-discrete, finite volume approximation
to (2.3) (without imposing boundary and interface conditions) as

dqFV

dt
=
[

DFV
x ⊗Ax

]

qFV+
[

DFV
y ⊗Ay

]

qFV , (3.9)

DFV
x =P−1QFV

x , DFV
y =P−1QFV

y , qFV =
[

qFV
0 ··· qFV

N

]T
. (3.10)

We have introduced the superscript FV to distinguish the finite volume approximations
from the finite difference approximations. The SBP finite volume operators P, Qx

FV , and
Qy

FV are defined in (3.6) and (3.7). The Kronecker product of two matrices is defined as

A⊗B=







a00B ··· a0NB
...

. . .
...

aM0B ··· aMNB






. (3.11)

For the stability analysis we will use the following Kronecker product properties:

(A⊗B)T =AT⊗BT and (A⊗B)(C⊗D)=(AC⊗BD). (3.12)

In a similar manner to (3.9), we formulate the semi-discrete, high order finite differ-
ence approximation to (2.3) (without imposing boundary and interface conditions) as

dqFD

dt
=
[

DFD
x ⊗Ax

]

qFD+
[

DFD
y ⊗Ay

]

qFD, (3.13)

DFD
x =P−1

x QFD
x ⊗Iy, DFD

y = Ix⊗P−1
y QFD

y ,

qFD =
[

qFD
0 ··· qFD

Nx

]T
, qFD

i =
[

qFD
i0 ··· qFD

iNy

]T
,

where qFD
ij is the grid function at grid point (xFD

i ,yFD
j ) and Px, Py, QFD

x and QFD
y are the

1-D SBP finite difference operators defined in (3.2), (3.3) and (3.4). The matrices Ix and Iy

are identity matrices of size (Nx+1)×(Nx+1) and (Ny+1)×(Ny+1).

3.4 Boundary conditions and interface conditions

Boundary and interface conditions are imposed weakly using the simultaneous approxi-
mation term (SAT) method. In the SAT method, penalty terms are added to the numerical
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scheme driving the numerical solution towards values satisfying the boundary and in-
terface conditions. Each penalty term corresponds to one boundary. If two (or more)
boundaries meet at the same boundary node, then multiple penalty terms are added at
that node, thus allowing the method to handle incompatible boundary conditions in a
stable manner. Additionally, each penalty term is multiplied with a matrix of penalty
weights Σ that are determined for stability.

We now specify penalty terms to impose the welded characteristic interface condi-
tions (2.7), which will couple the finite volume method to the finite difference method.
In particular, we treat the case when the north boundary of a finite volume subdomain
is coupled to the south boundary of a finite difference domain. We add a penalty term
ITN to the right hand side of (3.9), as well as a penalty term ITS to the right hand side of
(3.13). These penalty terms are written as

ITN =
(

P−1LN⊗I3

)

ΣN

[(

w−
N+w+

S

)

⊗e3

]

, e3 =[1 1 1]T ,

ITS =
(

Ix⊗P−1
y ⊗ΣS

)

[(

w−
S +w+

N

)

⊗eS⊗e3

]

, eS =[1 0 ··· 0]T .

The matrix LN is of dimension (N+1)×(Nx+1) and selects the values from qFV that are
on the north boundary. These boundary values are obtained using qN = (LN⊗I3)qFV ,
where qN is a vector of size 3(Nx+1)×1 and I3 is a 3×3 identity matrix. The vector eS is
of size (Ny+1)×1 and ensures that the penalty term ITS only acts on the south boundary.
These boundary values are obtained using qS =

(

Ix⊗eT
S ⊗I3

)

qFD. The matrices ΣN and
ΣS are unknown penalty matrices of dimension 3(l+1)×3(l+1) and 3×3, respectively,
both needed to be determined for stability. We also introduce vectors (vz)N/S, (σxz)N/S

and (σyz)N/S, each of size 3(Nx+1)×1. These vectors are computed from

(vz)N =(LN⊗diag [1 0 0])qFV , (vz)S =
(

Ix⊗eT
S ⊗diag [1 0 0]

)

qFD,

(σxz)N =(LN⊗diag [0 1 0])qFV , (σxz)S=
(

Ix⊗eT
S ⊗diag [0 1 0]

)

qFD,

(

σyz

)

N
=(LN⊗diag [0 0 1])qFV ,

(

σyz

)

S
=
(

Ix⊗eT
S ⊗diag [0 0 1]

)

qFD, (3.14)

where (2.3) has been used. Vectors in the left hand side of these equations are of size
(Nx+1×1). These vectors are used to compute the characteristics

w±
N =

(

σyz

)

N
∓(vz)N , w±

S =−
(

σyz

)

S
∓(vz)S , (3.15)

where (2.1) has been used.
The remaining penalty terms are treated in an analogous manner. For instance, char-

acteristic interface conditions (2.6) are imposed on the fault in the finite volume subdo-
main by adding

FT(k)=
[

P−1LT
F⊗I3

]

Σ
(k)
F

(

w
−(k)
F −W

(k)
F

)

⊗e3, (3.16)
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to the right hand side of (3.9). We use k= 1, 2 to denote the two sides of the fault. The

vector W
(k)
F is of dimension (l+1)×1, where l is the number of nodes on each side of

the fault. This vector is the nonlinear characteristic relationship (2.6), which is derived
to satisfy the friction law (2.12). In general, it is not possible to obtain a closed form

expression for W
(k)
F due to the nonlinearity of the friction law (2.12). Therefore, we use

a bracketed secant method to solve for W
(k)
F [35]. Additionally, we impose the boundary

conditions (2.5) on all exterior boundaries, but refer to [35] for details.

3.5 Energy estimate

We define a semi-discrete energy that is analogous to the continuous energy (2.14):

‖q(t)‖2
P =

1

2

(

qFV
)T

(P⊗I3)q
FV+

1

2

(

qFD
)T

(Px⊗Py⊗I3)q
FD

=

[

1

2

(

vFV
z

)T
PvFV

z +
1

2

(

σFV
iz

)T
PσFV

iz

]

+

[

1

2

(

vFD
z

)T
(Px⊗Py)v

FD
z +

1

2

(

σFD
iz

)T
(Px⊗Py)σ

FD
iz

]

. (3.17)

Without loss of generality, we have only defined the energy (3.17) with one finite differ-
ence subdomain. In (3.17), the first term is the semi-discrete energy measured in the SBP
finite volume norm (3.6) and the second term is the semi-discrete energy measured in the
SBP finite difference norm (3.3).

We use the following definition of stability:

Definition 3.1. The semi-discrete formulations (3.13) and (3.9) of the governing equations
(2.1) and (2.2) are stable if the energy rate satisfies

d‖q(t)‖2
P

dt
≤0. (3.18)

This definition of stability is consistent with Definition 2.1 of well-posedness. For
more general definitions of stability, see for example [26].

By taking the time derivative of (3.17) we get the energy rate

d

dt
‖q(t)‖2

P =BT+FT+ IT, (3.19)

where we substituted dqFV/dt and dqFD/dt into (3.9), or (3.13), and used the nearly-
skew symmetric properties (3.4) and (3.8) of the SBP operators. The terms BT, FT, and
IT are the semi-discrete energy rate contributions from all exterior boundaries, faults and
interfaces. The penalty matrices Σ in each term BT, FT, and IT will be chosen such that
these terms become negative semi-definite. We will ignore BT, since the treatment of
exterior boundaries can be found in [35].
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3.6 Hybrid interface treatment

We begin by considering the energy rate contribution from the interface term IT in (3.19).
Here we exclusively consider the hybrid interface; treatment of the structured-structured
interface can be found in [35], see also [12, 13, 24]. The hybrid interface treatment in this
section follows the path set in [23, 49, 52]. Since all the hybrid interfaces are handled in
a similar manner, we exclusively consider the interface between the north boundary of a
finite volume subdomain and the south boundary of a finite difference subdomain. The
interface terms are

IT= ITN+ ITS =
1

2
qT

N(YN⊗Ay)qN+qNΣN

[

(w−
N+w+

S )⊗e3

]

+
1

2
qS(Px⊗ES⊗Ay)qS+qS(Px⊗ES⊗ΣS)

[

(w−
S +w+

N)⊗e3

]

= (vz)
T
N YN

(

σyz

)

N
−(vz)

T
S Px

(

σyz

)

S

+
(

ΣN1(vz)N+ΣN2(σxz)N+ΣN3

(

σyz

)

N

)T
(w−

N+w+
S )

+
(

ΣS1(vz)S+ΣS2(σxz)S+ΣS3

(

σyz

)

S

)T
Px(w

−
S +w+

N). (3.20)

In (3.20), we have used (2.3) to replace qN/S with (vz)N/S, (σxz)N/S, and (σyz)N/S. The
matrix YN is a (Nx+1)×(Nx+1) diagonal matrix containing the values of Y belonging to
the north boundary and it can be computed using YN=LNYLT

N, where LN is of dimension
(Nx+1)×(N+1) (see Section 3.4). We have also introduced ES =diag[eS]. The penalty
matrices are defined as ΣN =diag [1 0 0]⊗ΣN1+diag [0 1 0]⊗ΣN2+diag [0 0 1]⊗ΣN3 and
ΣS =diag [ΣS1 ΣS1 ΣS3]. Choosing ΣN1=ΣN3=−YN/2, ΣN2=0, ΣS1=−ΣS3=−1/2 and
ΣS2=0, leads to

ITN+ ITS =(vz)
T
N YN

(

σyz

)

N
−(vz)

T
S Px

(

σyz

)

S

−
1

2

((

σyz

)

N
+(vz)N

)T
YN

(

w−
N+w+

S

)

−
1

2

(

−
(

σyz

)

S
+(vz)S

)T
Px

(

w−
S +w+

N

)

=−
1

4

(

(

w+
N+w+

S

)T
YN

(

w+
N−w+

S

)

+
(

w+
S +w+

N

)T
Px

(

w+
S −w+

N

)

+
(

w−
N+w+

S

)T
YN

(

w−
N+w+

S

)

+
(

w−
S +w+

N

)T
Px

(

w−
S +w+

N

)

)

. (3.21)

In (3.21), we have used (3.15) to replace (vz)N/S, (σxz)N/S, and (σyz)N/S with w±
N/S.

The SBP operator Px is positive definite and YN =−diag [∆xi] for ∆xi belonging to the
north boundary. Recall that ∆xi is a signed distance quantity obtained by traversing
the north boundary in the counter-clockwise direction. Traversal of this boundary is
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(a) (b)

-

Figure 4: Hybrid interface treatment. (a) The second-order SBP finite difference operator Px matches the
SBP finite volume operator YN =−diag[∆xi]. (b) The fourth-order SBP finite difference method has Px =
hxdiag[17/48 59/48 43/48 49/48 1 ··· 1 49/48 43/48 59/48 17/48] which is incompatible with the standard
formulation of YN. To ensure Px =YN, the finite volume operators Qx and Qy are modified by repositioning
some of the nodes in the dual mesh located on the hybrid interfaces. In the example shown, the nodes at p0
and p1 are moved to p∗0 and p∗1 , respectively.

in the negative x̂-direction and therefore ∆xi <0 (see Fig. 4(a)). From this it follows that

−
(

w+
S

)T
YNw+

S and −
(

w+
N

)T
Pxw+

N in (3.21) are non-positive. Therefore, stability follows
if YN =Px [49, 52]. With this assumption, Eq. (3.21) becomes

ITN+ ITS=−
1

4

(

(

w−
N+w+

S

)T
Px

(

w−
N+w+

S

)

+
(

w−
S +w+

N

)T
Px

(

w−
S +w+

N

)

)

≤0. (3.22)

The estimate (3.22) proves stability of the hybrid interface treatment. There is no energy
dissipation in the volume of the continuous problem, thus this energy dissipation at the
hybrid interface is a numerical result. That said, the rate of energy dissipation decreases
with mesh refinement as w−

N converges to w+
S .

For the 2nd-order SBP finite difference method, Px is equivalent to YN . This follows
from the fact that the grid spacing on the interface is equidistant and the points on the
interface are collocated as shown in Fig. 4(a). For all higher order SBP finite difference
methods Px and YN do not match. To satisfy Px = YN for the higher order methods
the control volumes along the hybrid interface must be slightly modified; see Fig. 4(b)
and [23, 49, 52] for more details.

3.7 Fault interface treatment

Without loss of generality we only consider a single, smooth fault γ. The same procedure
as for the hybrid interface treatment leads to

FT=
2

∑
k=1

[

1

2

(

q
(k)
F

)T
(

XF⊗Ax+YF⊗Ay

)

q
(k)
F +

(

q
(k)
F

)T
Σ
(k)
F

((

w
−(k)
F −W

−(k)
F

)

⊗e3

)

]
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=
2

∑
k=1

[

(

v
(k)
z

)T

F
X
(k)
F

(

σ
(k)
xz

)

F
+
(

v
(k)
z

)T

F
Y
(k)
F

(

σ
(k)
yz

)

F

+
(

Σ
(k)
F1

(

v
(k)
z

)

F
+Σ

(k)
F2

(

σ
(k)
xz

)

F
+Σ

(k)
F3

(

σ
(k)
yz

)

F

)T(

w
−(k)
F −W

(k)
F

)

]

,

where q
(k)
F contains the values of qFV on side (k) of the fault. Furthermore, we have

defined X
(k)
F =(LF

(k))TXL
(k)
F and Y

(k)
F =(LF

(k))TYL
(k)
F , where L

(k)
F is of dimension l×(N+1)

with l number of nodes on each side of the fault (see Section 3.4). Choosing the penalty

terms Σ
(k)
F1 =−SF/2, Σ

(k)
F2 =−X

(k)
F /2 and Σ

(k)
F3 =−Y

(k)
F /2 leads to

FT=−
(

V̂
)T

SFF(V̂,ψ)−
1

4

2

∑
k=1

(

w
−(k)
F −W

−(k)
F

)T
SF

(

w
−(k)
F −W

−(k)
F

)

, (3.23)

where V̂ and SF are defined in Appendix B, including additional derivation steps. Since
F(V̂,ψ) is the same as in the continuous problem and SF is positive definite, it follows

from (2.17) that
(

V̂
)T

SFF(V̂,ψ) ≥ 0 and energy is dissipated at the fault. The others
terms are also non-positive and, consequently FT≤0, which proves stability for the fault
interface treatment.

4 Stability, convergence and efficiency

In this section, we consider the stability and accuracy of the hybrid method using nu-
merical experiments. Since this paper deals with the practical use of a well-defined and
provably stable method, we refer the reader to previous work for more theoretical de-
tails [23, 48–50, 52]. To investigate the efficiency of the hybrid method we also compare
with the use of the finite volume method for the entire domain.

Because there are no known closed form solutions to the governing equations (2.3)
and friction law (2.12) for complex fault geometries, we use the method of manufactured
solutions [57]. With this approach, the original problem is modified by adding source
terms to the governing equations, interface conditions, and boundary conditions such
that the modified problem satisfies a solution known a priori. The manufactured solution
we have used is presented in Appendix C.

The error is measured using ‖e‖P =‖q−q∗‖P, where the norm is the nondimension-

alized energy (3.17), q=
[

vz, σxz, σyz

]T
is the numerical solution, and q∗ is the manufac-

tured solution. The manufactured solution q∗ is computed using (C.5).

The computational domain Ω is a square of nondimensional size Lx×Ly = 7.2×7.2,
containing a circular fault of radius R= 0.6 centered at the origin. We perform compu-
tations using hybrid meshes (see Fig. 5) with increasing refinement. Each hybrid mesh
is denoted by j = 1, 2,··· , where j = 1 corresponds to the coarsest mesh (no refinement
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Figure 5: (a) Circular plug geometry meshed with a hybrid mesh consisting of 2 unstructured meshes and 8
structured grids. Far field error is measured in the shaded region. (b) Circular plug geometry meshed with 2
unstructured meshes.

applied). For each refinement the mesh resolution is increased nearly uniformly every-
where. The number of triangular elements in the unstructured meshes increases approx-
imately by a factor of 4 for each refinement. In each of the structured grids, identical grid
spacing is used in both directions (hx = hy), and this grid spacing is decreased by half
for each refinement. On the hybrid interfaces all nodes are inserted equidistantly with
2j+4+1 points on each boundary. Furthermore, on each side of the fault boundary 30×2j

nodes are inserted equidistantly. The circular fault is approximated using piecewise lin-
ear segments. As the mesh is refined, new boundary nodes are added to conform to the
shape of the fault with equidistant grid spacing.

We use the 2nd-order finite volume method on the unstructured mesh and the 2nd-,
3rd-, and 4th-order finite difference method on the structured grids. Recall that the 4th-
order finite difference method achieves 4th-order global accuracy when it is not coupled
to the finite volume method. The final time is taken to be T = 640, which corresponds
to 400 oscillations of the solution. Time integration is carried out using the 4th-order
low storage Runge-Kutta scheme by Carpenter and Kennedy [11]. The time step is
∆t = 0.35hmin, where the parameter hmin is the minimum length of an edge in the hy-
brid mesh. We study the error in time for meshes j= 1, 2,3. The results obtained using
3rd- and 4th-order SBP finite difference operators are reported in Figs. 6(a) and 6(b), re-
spectively. Both Fig. 6(a) and Fig. 6(b) show that the error measured in the energy norm
remains bounded, thus confirming stability and an error bound, see [46]. There is no
significant difference in accuracy between the 3rd- and 4th-order SBP finite difference op-
erators. Although not shown here, stability was also confirmed using the 2nd-order SBP
finite difference operators.
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Figure 6: Error in the energy norm on the first three hybrid meshes listed in Table 1. No error growth in time.
(a) Hybrid method using 3rd-order SBP finite difference operators. (b) Hybrid method using 4th-order SBP
finite difference operators.

The accuracy of the hybrid method is compared to the accuracy of the pure finite
volume method. In order to perform this comparison, we mesh the entire computational
domain with an unstructured mesh. The mesh quality and element size of this mesh is
constructed similarly to the smaller, unstructured mesh used by the hybrid method. For
both methods, the convergence rate is estimated using

log10

(

‖ej‖P/‖ej+1‖P

)

log10(
√

Nj/
√

Nj+1)
, (4.1)

where ‖ej‖P is the error measured on mesh j, using Nj number of nodes. For the hybrid
meshes, the number of nodes is the sum of all nodes in the unstructured meshes and
structured grids. Fig. 7 shows convergence for both the pure finite volume method and
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Figure 7: Convergence of the hybrid method and finite volume method applied everywhere. There is no gain in
accuracy from using the hybrid method with more than 3rd- and 4th-order SBP finite difference operators.
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Table 1: Error and convergence rates using the hybrid method with 2nd-, 3rd-, and 4th-order SBP finite difference
operators.

Hybrid 2nd-order Hybrid 3rd-order Hybrid 4th-order

Nodes Error Rate Error Rate Error Rate

1.72×104 4.15×100 9.90×10−1 9.63×10−1

6.71×104 1.03×100 2.04×100 2.26×10−1 2.17×100 2.25×10−1 2.13×100

2.65×105 2.58×10−1 2.02×100 5.38×10−2 2.09×100 5.39×10−2 2.08×100

1.05×106 6.44×10−2 2.01×100 1.33×10−2 2.02×100 1.34×10−2 2.02×100

4.21×106 1.61×10−2 2.00×100 3.32×10−3 2.01×100 3.34×10−3 2.01×100

1.68×107 4.03×10−3 2.00×100 8.34×10−4 2.00×100 8.41×10−4 1.99×100

Table 2: Error and convergence rates using the finite volume method (FVM) applied in the entire computational
domain.

FVM (everywhere)

Nodes Error Rate

1.67×104 7.35×100

6.61×104 1.78×100 2.05×100

2.63×105 4.36×10−1 2.04×100

1.05×106 1.09×10−1 2.01×100

4.20×106 2.72×10−2 2.00×100

1.68×107 6.84×10−3 1.99×100

the hybrid method at T= 3.2. The error for the hybrid method calculations are listed in
Table 1 and the pure finite volume method in Table 2. The hybrid method is at most 2nd-
order accurate. This order of accuracy is expected because the global order of accuracy
of the coupled SBP methods cannot exceed the order of accuracy of the method with the
lowest order of accuracy [61]. Additionally, in this test, there is no benefit in terms of the
overall global error from using the 4th-order SBP finite difference operators, though there
is an order of magnitude accuracy gain from using the 3rd-order instead of the 2nd-order
SBP finite difference operators.

We next investigate the error in the far field. Consider the region [−2.3 −0.7]×[2.0 3.6]
in the north-west quadrant of the computational domain (shaded region in Fig. 5). Fig. 8(a)
shows the error in this region using the hybrid method with 2nd-, 3rd-, and 4th-order SBP
finite difference operators on the finest mesh (j = 6). The initial accuracy of the hybrid
method with 3rd- and 4th-order SBP finite difference operators is eventually lost. Loss in
accuracy occurs when the truncation error generated in the near field has propagated and
polluted the solution in the far field. We compute the convergence rates in the far field
at time t0 = 0.8, which is before the error generated in the near field has reached the far
field. Fig. 8(b) and Table 3 show the convergence rates at this time. These convergence



O. O’Reilly et al. / Commun. Comput. Phys., 17 (2015), pp. 337-370 357

0 0.5 1 1.5 2 2.5 3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

t0

t

‖e‖P

(a)

Hybrid 2
nd-order

Hybrid 3
rd-order

Hybrid 4
th-order

10
4

10
5

10
6

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of grid points

‖e‖P

(b)

Hybrid 2
nd-order

Hybrid 3
rd-order

Hybrid 4
th-order

Figure 8: Error measured in the far field on one structured grid (shaded in region in Fig. 5). (a) Error
originating from the near field propagates into the far field and pollutes the solution, limiting convergence rate.
(b) Convergence in the far field at t0=0.8 (before the error from the near field has reached the far field). Table

3 lists convergence rates. The 2nd-, 3rd-, and 4th-order SBP finite difference operators are used in the hybrid
method.

Table 3: Error and convergence rates in the far field on one structured grid (shaded region in Fig. 5) at time
t0 =0.8. Convergence rates are in agreement with theoretical convergence rates for pure SBP high order finite
difference schemes.

Hybrid 2nd-order Hybrid 3rd-order Hybrid 4th-order

Grid points Error Rate Error Rate Error Rate

2.40·103 6.53·10−1 6.02·10−2 1.97·10−2

9.80·103 1.68·10−1 1.93 7.61·10−3 2.94 8.78·10−4 4.42

3.96·104 4.26·10−2 1.97 9.58·10−4 2.97 3.75·10−5 4.52

1.59·105 1.07·10−2 1.98 1.20·10−4 2.98 1.72·10−6 4.43

6.38·105 2.69·10−3 1.99 1.50·10−5 2.99 8.57·10−8 4.31

2.56·106 6.73·10−4 2.00 1.88·10−6 3.00 4.64·10−9 4.20

rates are in agreement with the theoretical convergence rates of the SBP finite difference
operators.

The efficiency of the hybrid methods is improved by coarsening the structured grids
without exceeding the pure finite volume method errors. Since the grid points on the
hybrid interfaces must be collocated, only grid points along lines that are normal to the
hybrid interfaces are removed. This increases the grid spacing from h0 to hn. Table 4
shows the maximum grid stretching hn/h0 that gave errors matching the pure finite vol-
ume method errors shown in Table 2, for the meshes j = 1,··· ,4. On mesh j = 4, the
maximum grid stretching with the hybrid method using the 4th-order SBP finite differ-
ence operators is a factor of ∼1.4 larger than the hybrid method using the 3rd-order SBP
finite difference operators, thus showing the advantage of using the 4th-order SBP finite
difference operators.
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Table 4: Hybrid methods with coarsened grids. The maximum grid stretching h0/hn is determined by coarsening
the grids until the error nearly matches the pure finite volume method error (cf. errors on meshes j=1,··· ,4, in
Table 2).

Hybrid 2nd-order Hybrid 3rd-order Hybrid 4th-order

Nodes hn/h0 Error Nodes hn/h0 Error Nodes hn/h0 Error

1.67×104 1.36×100 6.56×100 4.78×103 3.76×100 7.26×100 5.35×103 3.37×100 4.79×100

6.08×104 1.44×100 1.77×100 1.49×104 4.74×100 1.53×100 1.39×104 5.12×100 1.50×100

2.47×105 1.41×100 4.28×10−1 4.64×104 6.24×100 3.98×10−1 4.13×104 7.31×100 3.50×10−1

9.91×105 1.41×100 1.06×10−1 1.52×105 8.13×100 1.04×10−1 1.27×105 1.09×101 9.12×10−2

5 Abrupt sliding plug in volcanic conduit

Having verified stability and accuracy of our hybrid method, we now apply it to the
problem of volcanic earthquakes. Throughout this section all variables and parameters
are dimensional.

Regularly repeating earthquakes were observed during the 2004-2008 eruption of
Mount Saint Helens, Washington, and were attributed to unstable frictional sliding along
the margins of a crystalline plug being extruded from the top of the volcano [31, 45]. The
plug is pushed upward by pressure acting on its base and pulled down by its weight and
frictional forces along the interface between the plug and surrounding conduit walls. In
the model proposed in [31], pressure at the base of the plug increases due to a steady
influx of compressible magma beneath it. When the frictional resistance and gravity can
no longer accommodate the increasing pressure, abrupt sliding commences. Rapid slip
excites seismic waves that are radiated outward into the surrounding host rock. Upward
movement of the plug decompresses the magma column beneath it and ultimately stops
sliding. The simplified model in [31] successfully explained the size and periodicity of
the drumbeat earthquakes, but made no predictions of seismic waveforms.

We demonstrate how the model can be expanded upon by using our hybrid method
to simulate the dynamics of a single drumbeat earthquake event. We focus on the initial
waves associated with the onset of unstable slip, allowing us to neglect the decompres-
sion of the magma that ultimately bounds slip. With this approximation, events in our
model, once nucleated, never stop.

Initially, the plug and surrounding material are assumed to be at rest. A uniform
shear stress τ0 acts on the margins of the plug. The initial conditions, material properties,
and other parameters are given and explained in Table 5. The frictional parameters a and
b are chosen such that the fault is velocity-weakening in steady state (i.e., b−a>0). Prior
to sliding when accelerations are negligible, all forces acting on the plug must balance.
For a plug with constant radius R the force balance is

πR2p−2πRHτ0−πR2Hρg=0, (5.1)

assuming a constant vertical extent H of the plug. In addition, p is the pressure exerted
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Table 5: Material properties and physical parameters.

Parameter Symbol Value

Material

Properties

Shear wavespeed c 3.3 km/s

Shear modulus G 30 GPa

Friction-Law

Parameters

Direct effect parameter a 0.01

Evolution effect parameter b 0.014

Reference slip velocity V0 1 µm/s

Reference friction coefficient f0 0.6

State-evolution distance L 0.3 mm

Pressure Perturbation

Parameters

Amplitude A 5 MPa

Width W 2 m

Relaxation time t0 0.1 ms−1

X-coordinate x0 0 m

Y-coordinate y0 42.5 m

Initial Conditions

Normal stress on the plug margin σ0 27 MPa

Shear stress on the plug margin τ0 15.5 MPa

Initial state variable ψ0 0.54

on the base of the plug and g is the gravitational acceleration. Solving (5.1) for τ0 yields

τ0=
R

2

( p

H
−ρg

)

. (5.2)

For our purposes we take p to be constant. In a more realistic model, upward motion of
the plug would decompress the magma beneath it, thereby reducing p.

To illustrate the capabilities of our method, we consider the non-cylindrical plug
shape shown in Fig. 1. Specifically, we allow the radius R to vary with angle θ according
to

R(θ)=45 m+12 m×sin(θ)+2.25 m×sin(θ−π/4)+0.75 m×sin(6θ+π)

−1.8 m×cos(12θ+π/3)+10.5 m×cos(1.2θ). (5.3)

The geometry is meshed with a hybrid mesh similar to the MMS problem in Section 4
(see Fig. 5).
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Figure 9: Seismic wave field excited by the propagating rupture. Trapping and wave focusing occurs in the
plug.

To initiate the event, we artificially increase the initial shear stress in a small, localized
patch along the margins of the plug over the rise time t0. If the width W and amplitude
A of the perturbation is sufficiently large, then the unstable slip commences and triggers
progressive failure of neighboring parts of the fault. Rupture nucleation takes place at the
most northern position on the plug margin. The nucleation depth is approximately 1 km
below the surface, where we estimate the normal stress to be approximately σ0=27 MPa.

We run the simulation for T= 120 ms using the 4th-order SBP finite difference oper-
ators. Initially the plug is motionless. Sliding commences abruptly over a small section
along the plug margin. Wave-mediated stress transfer to adjacent parts of the fault initi-
ate sliding there and the rupture spreads outward, at a speed determined by the elastic
waves, in both directions. Initial particle velocities are nearly identical in magnitude in-
side and outside the plug. Geometrical complexities in the plug margin profile cause the
rupture to accelerate and decelerate, exciting bursts of waves that appear in the wavefield
snapshots shown in Fig. 9. The evolution and nonlinearity of the frictional interface con-
ditions can also be seen in that figure: waves incident upon the sections of the fault prior
to rupture are transmitted (Fig. 9(a) or Fig. 9(b)). Upon rupture the slipping fault assumes
a more reflective nature, and incident waves crossing the plug are reflected and focused
inward (Fig. 9(e) and Fig. 9(f)). This trapping of waves within the plug is unique to this
fault geometry and ultimately causes particle velocities in the plug to be nearly an order
of magnitude larger than those in the surrounding material. This challenging application
problem, involving nonlinear evolution of interface conditions driven by wave focusing,
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Figure 10: Cumulative slip and slip velocity as a function of the azimuthal angle θ along the plug margin. (a)
The drumbeat earthquake is nucleated at θ=−π/2, which is at the most northern position. Rupture tips meet
at θ=π/2. Each contour of cumulative slip is shown about every 5 ms. (b) Slip velocity V slightly before the
entire plug margin has ruptured.

clearly illustrates the benefits of a provably stable method that can handle complex fault
geometries.

To assess the accuracy of the solution we perform both high and low resolution simu-
lations. The low resolution simulation uses ∼6×106 grid points with 1.7×103 grid points
placed on the plug margin. We use a time step of ∆t = 1.75×10−2 ms. The minimum
length of an edge is hmin=2 cm and the maximum grid spacing is hmax=30 cm. The high
resolution simulation has twice the resolution, with ∼25×106 grid points and a time step
of ∆t= 8.8×10−3 ms. In these simulations we study the accuracy of slip velocity V and

cumulative slip
∫ t

0
V(·,t)dt at different times during the rupture process. Fig. 10(a) shows

cumulative slip every ≈5 ms for the first 90 ms of both simulations. The position along
the plug margin is parameterized using the azimuthal angle θ. Drumbeat earthquake
nucleation is initiated at θ =−π/2 (in the north) and rupture tips eventually meet at
the endpoint θ =π/2 (in the south). At 80 ms the maximum difference in average slip
between the two simulations is only 0.13%.

Maximum errors occur at the rupture tip, where fields vary most rapidly and spatial
gradients are largest. Fig. 10(b) shows slip velocity at time 63 ms, which is right before
wave focusing occurs at the end point θ =π/2. In the simulations the maximum differ-
ence in peak amplitude of the rupture tips is 1.7%. During the entire rupture process
(0−65 ms) the maximum difference in peak amplitude is 4% on average.

6 Conclusions

We have developed a hybrid method for coupling the SBP high order finite difference
method to the unstructured finite volume method for earthquake rupture dynamics and
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seismic wave propagation problems. The theoretical analysis and computational results
were presented for antiplane problems, and can be extended to plane strain problems.

The unstructured finite volume method was used to handle complex geometry and
the high order finite difference method was used everywhere else in the domain. Prov-
ably stable fault interface conditions were derived for the finite volume method by using
characteristic variables and considering smooth faults. Provably stable hybrid interface
conditions were derived by modifying the control volumes of the finite volume method
along the hybrid interfaces. Modifying the control volumes ensures that the two corre-
sponding SBP norms evaluated along the hybrid interface are identical.

Numerical experiments showed that the hybrid method converged with 2nd-order ac-
curacy as expected. However, the hybrid method was shown to obtain the same global
accuracy as the finite volume method with much fewer nodes by coarsening the struc-
tured grids in the hybrid mesh.

Finally, we applied the developed method to model drumbeat earthquakes occur-
ring during extrusion of a crystalline plug from a volcanic conduit. Rupture propagation
along the margins of the plug involves focusing and trapping of waves within the con-
duit, making this a particularly challenging application problem. The problem illustrates
the need for geometric flexibility in the near-field source region, where waves transfer
stress along the curved plug margins to drive the propagating rupture, and high ac-
curacy far from the fault where seismic instruments are typically located. The hybrid
method provides both of these by employing an unstructured mesh immediately around
the plug together with a more accurate and efficient structured mesh method outside this
region.

A Fault interface treatment

The nondimensional energy dissipation rate on the fault γ is
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.

Since the fault is smooth (i.e., without kinks) the normal is uniquely defined everywhere
on either side of the fault. Thus, we can define the discrete outward unit normal on the
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fault with respect to side (k) at a fault boundary node j as
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where ∆x
(k)
j and ∆y

(k)
j are given by the diagonal entries of X

(k)
F and Y

(k)
F . Since the nodes

on the fault are collocated, ∆s
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The matrix formulation of the unit normal in (A.2) allows us to write
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Choosing the penalty terms Σ
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By changing physical variables to characteristic variables (2.4), Eq. (A.4) becomes
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Since W
−(k)
F is derived to satisfy continuity (2.9) and the discrete outward unit normals

satisfy N
(1)
i =−N

(2)
i , it follows that

τ̂(1)=−τ̂(2)= F̂(V̂,ψ). (A.6)
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The vector F(V̂,ψ) contains the friction coefficients evaluated at each entry of V̂. Using
(A.5) and (A.6) leads to
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B Rate and state friction and nondimensionalization

We first present and explain the friction law using dimensional variables and parameters.
We then proceed with nondimensionalizing the friction law.

The regularized slip law form of rate-and-state friction [56] is

f (V,ψ)= aarcsinh

(

V

2V0
exp

(

ψ

a

))

, (B.1)

dψ

dt
=G(V,ψ)=−

V

L
( f (V,ψ)− fss(V)), (B.2)

where the parameter V0 is a reference slip velocity and the constitutive parameter a> 0
quantifies the so-called direct effect. To understand the response of a sliding interface
governed by rate-and-state friction, assume that the interface is sliding steadily at a ve-
locity V and state variable ψ that satisfies G(V,ψ)=0. As illustrated in Fig. 11, if V is sud-
denly increased from V to V+∆V, then f abruptly increases with ψ remaining the same.
As sliding continues, the state variable ψ gradually evolves, over time scale L/(V+∆V),
toward a new steady state fss(V+∆V). As described earlier, the conditions ∂ f /∂V > 0
(which is guaranteed by a> 0) and V f (V,ψ)≥ 0 for all V are required for both the con-
tinuous and discrete energy estimates. The steady state friction coefficient is commonly

Direct

effect

Slip

Figure 11: Demonstration of rate-and-state friction with velocity-weakening friction. Initially steady sliding at
slip velocity V is followed by an instantaneous increase in slip velocity by ∆V>0, causing the friction coefficient
to increase instantaneously (the direct effect). After slip of order L (the state evolution distance), the friction
coefficient relaxes toward a new steady state fss(V+∆V), where fss(V+∆V)< fss(V).
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taken to be

fss(V)= f0−(b−a)ln

(

V

V0

)

, (B.3)

where f0 is the reference friction coefficient. If b−a > 0 then the steady state friction
coefficient decreases with increasing velocity and the frictional response is called velocity
weakening. That is a necessary condition for unstable sliding and earthquake occurrence.

Linear stability analysis has been used to study conditions for unstable sliding along
planar faults with rate-and-state friction [56, 58]. For steady state velocity-weakening
faults, slow steady sliding is unstable to Fourier mode perturbations having wavelengths
greater than

h∗≈
GL

(b−a)σ0
. (B.4)

This length scale must be resolved by at least several grid points in numerical simula-
tions; otherwise short-wavelength numerical oscillations will grow in an unstable man-
ner. Since the length scale h∗ emerges from analysis of the linearized equations, while
actual rupture problems involve extreme nonlinearity, it is necessary in practice to use a
grid spacing h≪h∗. In (B.4), σ0 is the normal stress (positive in compression) and (b−a)σ0

is the characteristic stress change, which provides the stress scale for nondimensionaliza-
tion. Characteristic particle and slip velocities are thus (b−a)σ0/ρc.

We next nondimensionalize (B.2). Since V0 is an arbitrary reference velocity (which
then determines the associated reference friction coefficient f0 from laboratory data), we
use V0=(b−a)σ0/ρc. After nondimensionalizing in this manner, the dimensionless fric-
tion law is

f (V,ψ)= aarcsinh

(

V

2
exp

(

ψ

a

))

,
dψ

dt
=−V ( f (V,ψ)− fss(V)),

fss(V)= f0−(b−a)ln(V). (B.5)

Here, V is now the non-dimensional slip velocity.

C Method of manufactured solutions

Throughout this section all variables and parameters are dimensionless. In order to con-
struct our manufactured solution, we consider steady sliding of a plug of constant radius
R through the surrounding material (Fig. 2) and then we add perturbations satisfying the
wave equation exactly without adding any source terms. The solution we will develop
is continuous and infinitely differentiable everywhere except at the margins of the plug
(fault). Additionally, the solution will be constructed such that the tractions exerted on
the walls of the plug and surrounding material satisfy force balance (2.9).
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We solve this problem using polar coordinates and rewriting the first-order hyper-

bolic problem as the scalar wave equation: ∂2u
(k)
z /∂t2 =∇2u

(k)
z , where the full-space

and plug solutions u
(k)
z are the displacement fields in the ẑ direction. In addition, ∇2 =

∂2/∂2
x+∂2/∂2

y). We look for axisymmetric solutions u
(k)
z (r,t) to the wave equation without

source terms that depend only the radial distance r=
√

x2+y2 from the center of the plug
and with purely oscillatory time-dependence exp(iωt), where ω is the angular frequency
of oscillations. The solution is

u
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1

2
Vbgt, if r≥R, (C.1)

u
(2)
z (r,t)=∆u

(2
z (r,t)+τbgr−

1

2
Vbgt, if r≤R, (C.2)

∆u
(1)
z (r,t)=

∆V0 J1(ωR)(Y0(ωr)sin(ωt)+ J0(ωr)cos(ωt))

ω(J1(ωR)Y0(ωR)− J0(ωR)Y1(ωR))
,

∆u
(2)
z (r,t)=

∆V0 J0(ωr)(Y1(ωR)sin(ωt)+ J1(ωR)cos(ωt))

ω(J1(ωR)Y0(ωR)− J0(ωR)Y1(ωR))
.

This solution describes steady sliding perturbed by axisymmetric, cylindrical standing
waves. The functions Jν and Yν (for ν= 0, 1) are Bessel functions of the first and second
kind, respectively. The role of the constants ∆V0, τbg and Vbg is explained below.

Solutions (C.1) and (C.1) do not satisfy the friction law, so it is necessary to add source
terms to the state evolution law (B.5):

dψ

dt
=−V ( f (V,ψ)− fss(V))+s, (C.3)

s=V∗ ( f (V∗,ψ∗)− fss(V
∗))+
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All fields in s marked with a superscript ∗ are computed from known solutions (C.1) and
(C.2) using
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By choosing background fields τbg and Vbg to be

τbg=max
t∈T

|∆τ∗|+ǫ1, Vbg=∆V0+ǫ2, ǫl >0, T=

[

0,
2π

ω

]

, (C.7)

Eq. (2.17) is satisfied by the manufactured solution since τ∗V∗ ≥ 0 for all times. At the
outer boundaries the time-dependent characteristic boundary condition is used:

w−=σ∗
izni+v∗z . (C.8)
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In all experiments involving the manufactured solution we use ∆V0 = 42, ǫ1 = 46, ǫ2 =
8×10−3, and ω = 1.25π. This makes V∗ range from 8×10−3 to 42+8×10−3. Values for
frictional parameters are listed in Table 5.
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[61] M. Svärd, J. Nordström, On the order of accuracy for difference approximations of initial
boundary value problems, J. Comput. Phys. 218 (2006) 333–352.
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