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[1] We model ruptures on faults that weaken in response to flash heating of microscopic
asperity contacts (within a rate-and-state framework) and thermal pressurization of pore
fluid. These are arguably the primary weakening mechanisms on mature faults at
coseismic slip rates, at least prior to large slip accumulation. Ruptures on strongly
rate-weakening faults take the form of slip pulses or cracks, depending on the background
stress. Self-sustaining slip pulses exist within a narrow range of stresses: below this range,
artificially nucleated ruptures arrest; above this range, ruptures are crack-like. Natural
earthquakes will occur as slip pulses if faults operate at the minimum stress required for
propagation. Using laboratory-based flash heating parameters, propagation is permitted
when the ratio of shear to effective normal stress on the fault is 0.2–0.3; this is mildly
influenced by reasonable choices of hydrothermal properties. The San Andreas and other
major faults are thought to operate at such stress levels. While the overall stress level is
quite small, the peak stress at the rupture front is consistent with static friction
coefficients of 0.6–0.9. Growing slip pulses have stress drops of �3 MPa; slip and the
length of the slip pulse increase linearly with propagation distance at�0.14 and�30 m/km,
respectively. These values are consistent with seismic and geologic observations. In
contrast, cracks on faults of the same rheology have stress drops exceeding 20 MPa, and
slip at the hypocenter increases with distance at �1 m/km.
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1. Introduction

1.1. State of Stress on Faults

[2] Understanding the stress levels at which faults operate
remains an outstanding issue in earthquake mechanics.
Laboratory friction experiments at slow slip rates, far less
than coseismic rates of �1 m/s, universally reveal friction
coefficients, f, between 0.6 and 0.9 for almost all rock types
(with the exception of clays and other weak layered min-
erals), a result known as Byerlee’s law [Byerlee, 1978].
Assuming that pore pressure, p, is close to hydrostatic
within the seismogenic upper crust, shear stress levels of
�100 MPa are required to bring faults into a critically
stressed state. There are, however, a number of lines of
evidence that indicate that major faults support and are
capable of hosting self-sustaining ruptures when the overall
(i.e., spatially averaged) ratio of shear stress, t, to effective
normal stress, s, is only a fraction of that predicted by
Byerlee’s law. This does not preclude the existence of small
regions of locally high t/s, which are the likely sites of
rupture nucleation.

[3] It was recognized some time ago that frictional sliding
of faults at such stresses should produce a heat signature
that ought to be observable in the form of temperature
anomalies across fault traces. The lack of observed temper-
ature anomalies along the San Andreas Fault (SAF) places
an upper bound on the average shear stress doing work
during large seismic slips of �10 MPa [Brune et al., 1969;
Lachenbruch and Sass, 1980; Lachenbruch et al., 1995;
Williams et al., 2004]. While some have argued that
groundwater flow might destroy the thermal signature of
faulting at the stress levels predicted by Byerlee’s law
[Scholz, 2000], models of topologically driven flow along
the SAF have shown that, at least along certain portions of
the fault, this is unlikely to be the case [Saffer et al., 2003].
[4] Another set of constraints on the stress state on and

around faults comes from in situ stress measurements (e.g.,
hydraulic fracturing and wellbore breakouts). Particular
emphasis has been placed on determining the stresses acting
on the SAF. Stresses adjacent to the SAF near Parkfield are
consistent with a crust that is critically stressed at f � 0.6–
0.9, but the stress field is oriented such that the ratio of shear
stress to effective normal stress, t/s, resolved onto the SAF
is quite low [Zoback et al., 1987]. Measurements at 2 km
depth in the San Andreas Fault Observatory at Depth
(SAFOD) pilot hole, located 1.8 km from the trace of the
SAF, indicate that the maximum horizontal compressive
stress is inclined at 69 ± 14� from the local strike of the SAF
[Hickman and Zoback, 2004]. This is consistent with the
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orientation of the regional stress field in central and south-
ern California, which is reported by Townend and Zoback
[2004] to be 68 ± 7�. The high angle between maximum
compression and the fault implies that t/s resolved on the
SAF is only 0.2–0.4 [Hickman and Zoback, 2004]. Similar
results were found within the Cajon Pass borehole along the
SAF [Zoback and Healy, 1992].
[5] The nearly fault-normal orientation of maximum

horizontal compression explains the existence of folds and
thrust faults that strike parallel to the SAF [Mount and
Suppe, 1987]. Inversions for the orientation of the stress
field from earthquake focal mechanisms are less conclusive,
though the data appear to suggest angles of at least 40–60�,
if not greater [Hardebeck and Hauksson, 2001; Townend
and Zoback, 2001; Provost and Houston, 2001, 2003;
Hardebeck and Michael, 2004]. Scholz [2006] and Townend
[2006] provide recent reviews of the controversy surround-
ing the state of stress on the SAF that explore these issues in
greater detail.
[6] A further difficulty with coseismic slip at f � 0.6–0.9

and hydrostatic p is that the predicted temperature rise on
faults from shear heating will be sufficiently severe as to
induce melting [McKenzie and Brune, 1972]. The tempera-
ture rises would be less extreme if slip were accommodated
across a broad shear zone [Cardwell et al., 1978], and this
could possibly preclude melting. Yet recent fieldwork on
exhumed faults like the Punchbowl fault [Chester and
Chester, 1998; Chester et al., 2004] and the Median
Tectonic Line fault [Wibberley and Shimamoto, 2003]
suggests a high degree of shear localization. Extreme
localization within gouge layers during laboratory friction
experiments has also been observed [Beeler et al., 1996;
Mizoguchi and Shimamoto, 2004]. Analysis of core re-
trieved from a drill hole across the Chelungpu fault, which
hosted the 1999 Mw 7.6 Chi-Chi earthquake, suggests slip
was accommodated within a clay zone only 50–300 mm
thick [Heermance et al., 2003]. Sibson [2003] and Rockwell
and Ben-Zion [2007] discuss further field evidence for
localization. Rice [2006] calculates that if sliding occurs at
constant t (with f = 0.6 and hydrostatic p that remains
unchanged with slip), fault widths must exceed about 35 mm
to prevent the onset of melting at 7 km depth [see also Rempel
and Rice, 2006]. The observational signature of melting is the
presence of pseudotachylytes in the fault zone. While
pseudotachylytes have been observed along natural faults,
they are generally associated with deeper faulting within the
seismogenic zone and are far less common than expected
[Sibson, 1975], so they either do not generally occur (at least
near the surface) or are not preserved.

1.2. Weakening Mechanisms

[7] The scarcity of pseudotachylytes, despite the apparent
thinness of the slip zone, suggests that coseismic slip occurs
at much lower stress levels than those predicted by Byerlee’s
law. The explanation we consider in this study is that fault
strength is dramatically reduced at coseismic slip rates (and
that restrengthening occurs rapidly upon the cessation of
slip). We do not discuss or intend to dismiss other possible
resolutions of the stress level and heat flow issues, by
assuming that fault materials have anomalously low f at
all slip rates, or that f is not low but that p is near-lithostatic
over much of the fault.

[8] Furthermore, our focus is on major faults. The stress
measurements by Townend and Zoback [2000] make it clear
that t/s on optimally oriented planes within the crust
frequently reaches typical static friction levels (0.6–0.9).
It follows that overall stresses on many faults, especially
those that are not major plate boundary faults, do operate at
t/s � 0.6–0.9. Exactly why these faults do not rupture at
lower stress levels like major faults remains unknown, but
one might speculate that some of the assumptions we make
in developing our model of major faults operating at low
stress levels do not apply to less mature faults. For example,
we appeal to a high degree of shear localization in devel-
oping our model of flash heating, which is the essential
ingredient in permitting low stress ruptures. Immature faults
consist of a large number of unconnected segments that
ultimately link together as the fault develops [Segall and
Pollard, 1983]. Likewise, measurements of fault surface
topography by Sagy et al. [2007] suggest that faults become
progressively smoother with increasing slip. The additional
complexity of immature fault zones would likely increase
the stress level necessary for ruptures to propagate and
might help explain differences in stress levels at which
immature and mature faults operate. However, a complete
resolution of this issue is beyond the scope of this work.
[9] Recent high speed friction experiments show that f

decreases roughly as the inverse of the sliding velocity, V,
for V above �0.1 m/s [Tsutsumi and Shimamoto, 1997;
Tullis and Goldsby, 2003a, 2003b; Prakash and Yuan, 2004;
Hirose and Shimamoto, 2005; Beeler et al., 2008]. This is
presumably due to flash heating of microscopic asperity
contacts, as first proposed in the field of dry metal friction
[Bowden and Thomas, 1954; Archard, 1958/1959; Ettles,
1986; Lim and Ashby, 1987; Lim et al., 1989; Molinari et
al., 1999] and recently applied to rock friction at elevated
slip rates [Rice, 1999, 2006; Beeler and Tullis, 2003; Beeler
et al., 2008]. This model appeals to a microscopic view of
friction, in which rough surfaces that are brought together
make actual contact only at a set of microscopic asperities,
the net area of which is a small fraction of the nominal
contact area. These asperities come into existence and slide
only a short distance before being replaced by a new set of
contacts. The stresses supported by these asperities are far
larger than the macroscopic applied stresses; hence, the
local rate of heat production during sliding is quite large. If,
during the lifetime of an asperity contact, the local temper-
ature reaches the melting temperature (or some comparable
temperature at which thermally activated defects become
highly mobile), the contact will weaken. The macroscopic
resistance to sliding is the sum over all currently existing
contacts. The onset of strong weakening seen in experi-
ments at �0.1 m/s is attributed to the slip rate reaching a
critical value at which asperities just begin to weaken before
sliding out of existence. At higher slip rates, the contacts
spend a larger portion of their existence in the weakened
state (such that at some instant, a larger fraction of currently
existing contacts are in the weakened state).
[10] A second weakening mechanism involves fluids in

fault zones. The majority of coseismic slip occurs below the
water table, such that fault zones, to the extent that they are
porous, should be fully saturated with pore fluid. As the
fault slides, it heats both the rock matrix and pore fluid.
Both materials expand, but the thermal expansion coeffi-
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cient of water far exceeds that of rock. The stiffness of the
rock matrix limits the expansion of the fluid, which conse-
quently pressurizes. If the fault zone material is sufficiently
impermeable, then this pressurized fluid is effectively
trapped over the duration of coseismic slip. The increase
in fluid pressure decreases effective stress and hence fault
strength. This process, known as thermal pressurization, has
received considerable theoretical attention [Sibson, 1973;
Lachenbruch, 1980; Mase and Smith, 1985, 1987; Lee
and Delaney, 1987; Andrews, 2002, 2005; Wibberley,
2002; Noda, 2004; Cocco and Bizzarri, 2004; Noda
and Shimamoto, 2005; Sulem et al., 2005; Bizzarri and
Cocco, 2006a, 2006b; Suzuki and Yamashita, 2006; Rice,
2006; Rempel and Rice, 2006].
[11] Even if flash heating and/or thermal pressurization

weaken faults and reduce heat production, a sufficiently
long duration of sliding may result in macroscopic melting
of rock and formation of a molten layer along the sliding
interface; the ultimate fate of a fault zone for large amounts
of slip depends on thermal and hydraulic parameters (e.g.,
permeability of fault gouge), as well as the initial effective
normal stress and sliding rate [Rempel and Rice, 2006]. The
onset of melting and its effect on fault strength, as well as
the characterization of naturally occurring pseudotachylytes,
has been the subject of much work [Sibson, 1975; Spray,
1987, 1992, 1993, 1995; Tsutsumi and Shimamoto, 1997;
Matsuzawa, 2004; Fialko and Khazan, 2004; Hirose and
Shimamoto, 2005; Di Toro et al., 2006; Sirono et al., 2006;
Nielsen et al., 2008].
[12] Several other processes have been suggested to

influence fault strength during earthquakes. These include
elastohydrodynamic lubrication (due to pressure gradients
established by viscous shear of fault zone fluids or a melt
layer trapped between the walls of the fault) [Brodsky and
Kanamori, 2001] and silica gel formation [Goldsby and
Tullis, 2002; Di Toro et al., 2004]. Silica gel formation is
likely restricted to faults in silica-rich host rock (e.g.,
granite), and gel lubrication, like thermal decomposition
weakening [Han et al., 2007] and formation of a macro-
scopic melt layer, would only take place after sufficiently
large slip, if at all. Thus we assume that the most universal
mechanisms, especially during the early stages of rupture
growth, are likely to be thermal pressurization and flash
heating, which are the two processes that we study on in this
work.

1.3. Rupture Modes on Statically Strong, Dynamically
Weak Faults

[13] In light of the above discussion, the task before us is
to reconcile laboratory observations that indicate rock
friction coefficients between 0.6 and 0.9, at slow slip
speeds, with the multiple lines of evidence suggesting that
average stress levels on major faults are much smaller than
those predicted by Byerlee’s law. The hypothesis that we
explore in this work is that faults are strong throughout the
interseismic period, but weaken dramatically (by the mech-
anisms discussed previously) when sliding coseismically, a
process referred to as dynamic weakening. Lapusta and
Rice [2003] have shown, in earthquake cycle simulations
that simultaneously incorporate slow loading in the inter-
seismic period and fully elastodynamic coseismic ruptures,
how faults having a shear strength that weakens dramatically

with slip rate can host ruptures when the average shear
stress on the fault is quite low. The low shear strength
during coseismic slip results in minimal heat production.
[14] Intimately related to the concept of strongly rate-

weakening faults, operating at low overall stress levels, is
that ruptures take the form of self-healing slip pulses. There
is strong observational support that ruptures propagate as
slip pulses; slip inversions of high frequency seismic signals
indicate that risetimes are much shorter than event durations
[Heaton, 1990]. Three mechanisms have been shown to
produce slip pulses: a contrast in material properties across
the fault [Andrews and Ben-Zion, 1997], arrest waves from
fault edges or from heterogeneity along the fault [Day,
1982; Johnson, 1990; Beroza and Mikumo, 1996; Bizzarri
et al., 2001], and velocity weakening constitutive laws on
understressed faults [Cochard and Madariaga, 1994, 1996;
Perrin et al., 1995; Beeler and Tullis, 1996; Zheng and
Rice, 1998].
[15] Zheng and Rice [1998] studied rupture propagation

using rate- and state-dependent friction laws featuring
velocity-weakening steady state fault strengths. They
showed that when fault strength weakens sufficiently rap-
idly with slip velocity, there exists a critical background
shear stress level, tpulse, below which ruptures must take the
form of slip pulses. For background stresses above tpulse,
ruptures can also take the form of expanding cracks (in the
sense that slip near the hypocenter does not cease until
the arrival of arrest waves emitted when the rupture reaches
the fault edges). Self-sustaining slip pulses were found to
exist only when stresses are right around tpulse; at much
lower stress levels, artificially nucleated ruptures quickly
arrest. It follows that quasi-statically loaded faults are
capable of hosting ruptures (in the sense that an initially
small event, nucleated in a region of locally high t/s, can
propagate indefinitely) just as stresses reach the minimum
level necessary for self-sustaining rupture propagation. At
this level, ruptures will take the form of slip pulses.
Earthquake cycle simulations by Lapusta and Rice [2003]
which incorporate a steady state friction coefficient that
weakens dramatically at coseismic slip rates, support this
claim. Lapusta and Rice further demonstrate that nucleation
occurs in small regions where t/s locally exceeds tpulse/s
based on the average s on the fault, and reaches levels
comparable to those predicted using laboratory values of
static friction. In our work, we also focus on faults that
dramatically weaken at coseismic slip rates, but we incor-
porate a far more sophisticated, physics-, field-, and labo-
ratory-based description of the dynamic weakening
processes (in particular, flash heating and thermal pressur-
ization). The combined effect of these weakening mecha-
nisms cannot be written in a form that permits direct
application of the theory by Zheng and Rice [1998] and
extending their theory to encompass a broader set of consti-
tutive laws is an additional focus of our work.

1.4. Overview

[16] In this study, we present a theoretical model that
addresses the issues discussed, and we numerically simulate
spontaneous ruptures on faults that weaken by flash heating
and thermal pressurization. We use a combination of labo-
ratory and field data to constrain the relevant thermal and
hydraulic properties that enter the model, and explore the
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phenomenology of ruptures initiated by an artificial nucle-
ation mechanism (classifying them as arresting slip pulses,
growing slip pulses, and growing cracks). Because we
make no compromises in physical parameters, our numer-
ical simulations require incredibly small grid spacings for
accurate solutions. We consequently limit our simulations to
two-dimensional (mode III) ruptures and focus on the early
stages of rupture growth. The strong velocity-weakening
behavior of flash heating promotes self-healing slip pulses
on faults with sufficiently low values of initial t/s; grow-
ing pulses occur when t/s � 0.2–0.3. These values are
consistent with those inferred to act on the SAF [Hickman
and Zoback, 2004] (and presumably other major faults).
Thermal pressurization can alter the rupture mode; efficient
pressurization (occurring on more impermeable faults)
extends the crack-like rupture regime to lower values of
t/s than those predicted by flash heating alone, though the
background stress level remains the dominant predictor of
rupture mode. We also find that the width of the shear zone
influences the rupture mode, and that there are major
differences (primarily with regard to maximum temper-
atures and pressures achieved at the rupture front) between
models in which shear is distributed over 50–200 mm
and the idealized model of slip on a mathematical plane
discussed by Rice [2006]; that such small but nonzero
thicknesses might be important in limiting maximum

temperatures was also suggested by Rice [2006] and
Rempel and Rice [2006].

2. Model

[17] Since our focus is on rupture propagation with
dynamic weakening mechanisms, we choose to study rup-
tures in a setting for which the elastic response is easily
understood. Furthermore, our direct use of laboratory and
field estimates of relevant parameters requires us to use very
small grid spacings compared to the propagation distances
of interest. Consequently, we study two-dimensional, mode
III ruptures in a uniform linear elastic whole space. The
medium has shear modulus m and shear wave speed cs. The
fault lies along the plane z = 0. Slip is in the y direction,
the rupture expands outward along the x axis, and all fields
are functions only of x and z (and time, t). Initial stress, pore
pressure, and material properties (to be discussed in the
subsequent sections) are chosen to be representative of
conditions at midseismogenic depth (7 km) and, in all cases,
properties are chosen for consistency with laboratory con-
straints. These are given in Table 1 and are defined precisely
in the following sections.
[18] Ruptures propagate in response to changes in shear

strength, t, which is given by

t ¼ f s � pð Þ ¼ f s ð1Þ

where f is the friction coefficient, s is total normal stress,
p is pore pressure, and s is effective normal stress. Both s
and s are positive in compression, and all fields in (1) are
evaluated on z = 0, even when shear is distributed over
a finite region. The friction coefficient depends on slip
velocity, V, as well as on internal state variables, as
described later.

2.1. Flash Heating of Microscopic Asperity Contacts

[19] In this work we use the flash heating model by Rice
[1999, 2006], Beeler and Tullis [2003], Tullis and Goldsby
[2003a, 2003b], and Beeler et al. [2008], which provides a
model for fss(V, T). Suppose all asperities have length D, so
that when sliding at constant V, they disappear at time qmax =
D/V after their birth. With a constant contact shear strength,
tc, which Rice [2006] argues to be about the theoretical
strength of the material, �0.1m = 3 GPa, solving a one-
dimensional heat conduction problem yields the temperature
history of the contact:

Tc ¼ T þ tcV
ffiffiffi
q

p

rc
ffiffiffiffiffiffiffiffiffi
path

p ; ð2Þ

where q is the contact time, Tc is the contact temperature,
and T is the initial temperature, which is assumed to be
equal to the macroscopic, or spatially averaged background,
temperature on the fault. The macroscopic temperature
changes much more slowly than Tc does since the actual
contact area at asperities, Ac, is much smaller than the
macroscopic, or nominal, surface area, A. This makes the
rate of heat production per unit surface area at the contacts,
tcV, locally much higher than the average heating rate per
unit surface area at the macroscopic scale, tV. However,
there is consistency between the microscopic and macro-

Table 1. Physical Properties and Model Parameters

Elastic Properties
Shear modulus m 30 GPa
Shear wave speed cs 3 km/s

Hydrothermal Properties
Specific heata rc 2.7 MJ/m3K
Thermal diffusivitya ath 0.7 mm2/s
Hydraulic diffusivitya ahy 0.86–3.52 mm2/s
Undrained Dp/DTa L 0.34–0.98 MPa/K
Damage indexa r 0–1
Width of shear zone 2w 25–200 mm

Friction (Flash Heating)
Unweakened contact strength tc 3 GPa
Weakening temperature Tw 900�C
Asperity diameter D 5 mm
Fully weakened friction coefficientb fw 0.13

Friction (Rate and State)
Reference slip velocity V0 1 mm/s
Steady state friction coefficient at V0 f0 0.7
State evolution distance L 20 mm
Direct effect parameter a 0.016
Evolution effect parameter b 0.02

Initial Conditions
Normal stress s 196 MPa
Initial pore pressure p0 70 MPa
Initial temperature T0 210�C
Resulting initial Vw Vw0 0.170 m/s
Initial state variable Q0 0.59211
Background shear stress tb 24–35 MPa
Initial t at hypocenter tb + tper 100–150 MPa
Width of perturbation Dper 1–3 cm

aData compiled by Rice [2006, Table 2] for ambient T and p at 7-km
depth.

bFrom curve fit to data up to V = 0.4 m/s from experiments on granite by
Tullis and Goldsby [2003b].
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scopic scales: the rate of thermal energy production at the
scale of the asperities, tcAcV, is identical to that at the
macroscopic scale, tAV.
[20] Assuming that weakening occurs when Tc reaches

the weakening temperature, Tw, asperities are weakened at
the age of

qw ¼ path

V 2

Tw � T

tc=rc

� �2

: ð3Þ

In order for asperities to be weakened during their lifetime,
qw � qmax; it follows that the strict equality, qw = qmax, can
be solved for the weakening velocity, Vw, above which flash
heating is activated [Rice, 1999, 2006]:

Vw Tð Þ ¼ path

D

Tw � T

tc=rc

� �2

: ð4Þ

As we have made explicit in the above expression, Vw is not
constant because the background temperature T evolves
during our dynamic calculations. We use the following
parameter values: D = 5 mm, Tw = 900�C, tc = 3 GPa, ath =
0.70 mm2/s, and rc = 2.7 MPa/K (the choice of ath and rc is
discussed in the following section on thermal pressuriza-
tion). For an initial background temperature of T0 = 210�C,
the initial weakening slip rate, Vw0, is 0.170 m/s (the
subscript 0 denotes an initial value).
[21] Once the contact temperature of an asperity reaches

Tw, we use the simple approximation in which contact shear
strength drops abruptly at the onset of flash heating from tc
to a constant weakened value, tcw. Dividing tc and tcw by
the effective normal stress at the contacts gives the friction
coefficients fLV and fw, respectively (where the subscript LV
denotes low velocity, referring to V < Vw). In the previous
derivation of Vw(T), we assumed for simplicity that tc was
constant. Treating tc as constant implies that fLV is also
constant if there is no change in the real contact area. It is
well known experimentally that fLV is mildly sensitive to V.
Additionally, there are theoretical reasons, related to consid-
eration of sliding as a process involving thermally activated
defect motion at asperity contacts, that suggest a weak
relationship between tc and V [Rice et al., 2001]. We
employ a conventional logarithmic velocity-weakening
model at steady state for fLV:

fLV Vð Þ ¼ f0 þ a� bð Þ ln V=V0ð Þ ð5Þ

with f0 = 0.7, V0 = 1 mm/s, and b � a = 0.004.
[22] The use of a nonzero friction coefficient, fw, at

elevated slip rates in the model of Rice [1999] was intro-
duced by Beeler and Tullis [2003], Tullis and Goldsby
[2003a, 2003b], and Beeler et al. [2008], who found its
inclusion necessary to better match their experimental data.
We use fw = 0.13, which is obtained by fitting to their
granite data.
[23] The friction coefficient in our flash heating model is

then obtained by averaging strength over the existing set of
asperities. This means that when a single contact experi-
ences an instantaneous reduction in strength upon reaching
the weakening temperature, the macroscopic strength is
only infinitesimally altered. In the steady state limit, the

average over the current contact population is equivalent to
averaging over contact lifetime. This procedure yields [Rice,
1999, 2006]:

fss V ; Tð Þ ¼
fLV Vð Þ; if V � Vw

fw þ fLV Vð Þ � fw½ 
 Vw Tð Þ=V½ 
; if V � Vw:

�

Using purely velocity-weakening constitutive models leads
to ill-posedness in problems of frictional sliding between
elastic materials [Rice et al., 2001], so we are compelled not
to ignore known experimental friction behavior, with
regularizing properties, of the direct effect and state
evolution. We add these features to this model before using
it in our simulations. In particular, we use the slip-law
formulation of rate-and-state friction [Dieterich, 1979;
Ruina, 1983] in the form [Rice, 1983]:

df

dt
¼ a

V

dV

dt
� V

L
f � fss V ;Tð Þ½ 
; ð7Þ

or in an integrated form:

f V ;Qð Þ ¼ a ln V=V0ð Þ þQ
dQ
dt

¼ �V

L
f V ;Qð Þ � fss V ; Tð Þ½ 
; ð8Þ

where a is the nondimensional direct effect parameter (the
same a as in the low velocity friction model), L is the state
evolution distance, V0 is an arbitrary reference slip velocity
(we use the same value as appears in the expression for
fLV(V)), and Q is the state variable as defined by Nakatani
[2001]. The advantage of equation (8) over equation (7) is
that equation (8) is slightly easier to deal with numerically
(see appendices for details of the numerical procedure). As
formulated above, these laws diverge at V = 0. If we
understand frictional sliding as arising from a set of
thermally activated processes, with stress-biased activation
energies, at microscopic asperity contacts, then the
logarithmic form of the law that we use here only accounts
for the statistically more likely jumps in the direction of the
applied stress. It is possible to regularize the response at V =
0 by including jumps in the opposite direction, as discussed
by Lapusta et al. [2000]. We ran a few simulations using the
regularized law, but the results were identical (to machine
precision) to results using the unregularized law, as
expected due to the infinitesimally small probabilities
associated with backward jumps at the stress levels
occurring in the simulations.
[24] The fraction of unweakened asperity area decreases

with increasing slip velocity, implying that the contribution
to the direct effect from those unweakened asperities also
decreases. There are currently no experiments to constrain
the transient evolution of the friction coefficient at coseis-
mic slip rates, but Rice et al. [2001] point out that under the
assumption that the direct effect arises from thermally
activated shearing processes at asperity contacts, a should
be linearly proportional to the absolute temperature at the
contacts. In this work we use a = 0.016, which is obtained
by linear extrapolation with absolute temperature from a
typical value of 0.01 at room temperature [Ruina, 1983]. We
also tried simulations in which we permitted a to vary as a
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function of T, but found little difference with simulations
employing a constant a.
[25] We use a state evolution distance, L, comparable to

the asperity diameter, D, under the assumption that sliding a
distance D refreshes all contacts. Specifically, we use L =
20 mm for most of our simulations, although this requires an
extremely small grid size to achieve an appropriate level of
numerical accuracy. The high velocity friction experiments
of Prakash and Clifton [1992] and Prakash [1998] show
that, following extremely abrupt normal stress steps, f
evolves toward its steady state value over slip distances
around �3 mm; however, to date, no experiments have
investigated the transient evolution of f following velocity
steps at coseismic speeds. Furthermore, theoretical work by
Noda [2008] implies that the evolution distance for flash
heating may be much smaller than D. Suppose we keep the
background temperature, T, constant by cooling, and impose
steps in V for a fault comprised of single-sized asperities.
Since all the asperities are renewed after slipping by D,
evolution to the new steady state is perfectly achieved at a
slip of D; it follows that L must be a fraction of D. Such
small values of L are very difficult to use in simulations of
rupture propagation. In addition, the flash heating constitu-
tive law has a very high maximum weakening rate, �@fss(V,
T)/@(lnV), at V just above Vw.
[26] In the above discussion, we have implicitly assumed

that flash heating occurs on a mathematically planar fault,
while many lines of evidence suggest that seismic shear is
distributed over a zone of remarkably small but nevertheless
finite width. There have been several attempts to understand
the microscopic picture of a rapidly sheared gouge layer by
means of the distinct element method. Morgan and
Boettcher [1999] observed development of shear planes
where deformation is localized, and da Cruz et al. [2005]
reported that only about 15% of all contacts are slipping at a
given time. These works suggest that intergranular slip
occurs at a small number of the contacts, and the local slip
rate is about the same as the macroscopic slip rate of the
fault. On the other hand, there are observations of thin but
finitely thick shear zones in both exhumed faults [Chester
and Chester, 1998; Chester and Goldsby, 2003; Chester
et al., 2004; Heermance et al., 2003; Mizoguchi and
Shimamoto, 2004] and specimens after frictional experi-
ments at high slip rates [Beeler et al., 1996; Mizoguchi
and Shimamoto, 2004]. These shear zones are recognized
by shape-preferred orientations of platy minerals, which
clearly indicate that the total shear strain is distributed
within it. Many of these studies suggest that shear localizes
to zones of width �100 mm; see Rice [2006] for further
discussion. In this work, our flash heating model is based on
slip on a mathematical plane and we use the value of T at z =
0 when evaluating fss(V, T); however, we distribute the heat
source over a finite width shear zone when calculating T and
p changes in our thermal pressurization calculation. This
approach is appropriate if, at any instant in time, only a
small fraction of the contacts are slipping, and if the location
of such slipping contacts moves around within the shear
zone. In this case, the texture of severe shear deformation is
developed over the distributed shear zone. It is also required
that the timescale over which the localized slip surface
migrates through the shear zone is much smaller than
relevant thermal and hydraulic diffusion times.

2.2. Thermal Pressurization of Pore Fluid

[27] Thermal pressurization of pore fluid suppresses the
temperature rise within and near the shear zone by reducing
the effective normal stress and thus shear strength. This
mechanism has been implemented in rupture propagation
calculations by several authors [Andrews, 2002; Noda,
2004; Cocco and Bizzarri, 2004; Andrews, 2005; Bizzarri
and Cocco, 2006a, 2006b; Suzuki and Yamashita, 2006] but
never in combination with flash heating or other strongly
velocity-weakening friction laws.
[28] The governing equations are those of energy and

fluid mass conservation, along with Fourier’s law and
Darcy’s law [e.g., Rice, 2006; Rempel and Rice, 2006]:

rc
@T

@t
¼ @

@z
K
@T

@z

� �
þ w z; tð Þ ð9Þ

rf b
@p

@t
� L

@T

@t

� �
¼ @

@z

rf k

hf

@p

@z

 !
; ð10Þ

in which rc is the volumetric heat capacity of the gouge, K
is thermal conductivity, rf is fluid mass density, b is a
storage coefficient, L is the pore pressure change per unit
temperature change under undrained conditions, k is
permeability, and hf is fluid viscosity. b and L are more
precisely defined in terms of the compressibilities and
thermal expansivities of the pores and pore fluid, as
discussed in greater detail by Rice [2006]. Shear heating
enters as w(z, t), the volumetric heat generation rate (taken
as w(z, t) = t(t) _g(z, t), where _g(z, t) is the shear strain rate
within the fault). Advective transport is neglected, which
has been shown to be an accurate approximation if
permeability is less than 10�16 m2 [Lachenbruch, 1980;
Mase and Smith, 1987; Lee and Delaney, 1987].
[29] The temperature and pressure dependence of several

properties (e.g., k and rf) makes these equations nonlinear,
but simple estimates suggest that if the properties are
expanded about representative values of T and p, the
resulting nonlinear terms in the governing equations are
almost always small compared to terms that are linear in T
and p. Using numerical simulations that included all terms
in the conservation equations, Vredevoogd et al. [2007] has
demonstrated that nonlinear terms may be safely neglected
for a physically reasonable range of parameters. In this
study, we use the linearized form of the equations:

@T

@t
¼ ath

@2T

@z2
þ w z; tð Þ

rc
ð11Þ

@p

@t
¼ ahy

@2p

@z2
þ L

@T

@t
; ð12Þ

in which ath = K/(rc) is the thermal diffusivity and ahy =
k/(bhf) is the hydraulic diffusivity. Rice [2006] and Rempel
and Rice [2006] provide estimates of the average values of
ahy and L over the substantial temperature and pressure
ranges that are likely to be experienced by fault gouge
during seismic shear, and we use these path-averaged values
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in our simulations. Rempel and Rice [2006] have shown that
the linear formulation using these values gives a reasonable
match to fully nonlinear calculations.
[30] We primarily consider a shear zone of small but finite

thickness, but also investigate the limit of slip on a plane.
For the case of distributed shear, we assume that the shear
strain rate has a Gaussian profile, such that shear heating is
given by

w z; tð Þ ¼ t tð ÞV tð Þ
w
ffiffiffiffiffiffi
2p

p exp � z2

2w2

� �
; ð13Þ

where w is the half-width of the shear zone.
[31] Rice [2006] provides an analytical solution to equa-

tions (11) and (12) assuming that sliding commences at t = 0
and the fault slides forever after at constant V and f, in the
limit that shear is localized on a mathematical plane (w !
0):

T 0; tð Þ ¼T0 þ 1þ
ffiffiffiffiffiffiffi
ahy

ath

r� �

 s0

L
1� exp

Vt

L*

� �
erfc

ffiffiffiffiffiffi
Vt

L*

s !" #
; ð14Þ

p 0; tð Þ ¼ p0 þ s0 1� exp
Vt

L*

� �
erfc

ffiffiffiffiffiffi
Vt

L*

s !" #
; ð15Þ

t tð Þ ¼ f s0 exp
Vt

L*

� �
erfc

ffiffiffiffiffiffi
Vt

L*

s !
; ð16Þ

where the subscript 0 denotes an initial value at t = 0. L* is
identified as the characteristic slip distance for temperature
and pore pressure evolution due to thermal pressurization,
defined by

L* ¼ 4

f 2V

rc
L

� �2 ffiffiffiffiffiffi
ath

p þ ffiffiffiffiffiffiffi
ahy

p �2� �
¼ 4

f 2V
aHT ; ð17Þ

in which we define the term in brackets as aHT, which we
term the hydrothermal diffusivity factor; it has the virtue of
being solely a function of the material properties of the
surrounding rock (unlike L*, which depends also on the
assumed values of f and V). This solution also approximates
the fields away from the fault for the case of a finite shear
zone after the diffusion lengths become much larger than
the width of the shear zone, as discussed by Rempel and Rice
[2006]. The significance of (16) is that, strictly speaking,
the steady state frictional shear stress is zero regardless of
the fixed V, and that the apparent characteristic weakening
displacement is a good fraction of total slip [Rice, 2006,
Figure 3].
[32] Rempel and Rice [2006] and Rice [2006] estimated

hydrothermal properties based on a collection of experimen-
tal and theoretical works [Burnham et al., 1969; Keenan et
al., 1978; Lachenbruch, 1980; Tödheide, 1972; Vosteen and
Schellschmidt, 2003; Wibberley, 2002; Wibberley and
Shimamoto, 2003] for intact and damaged elastic fault walls

composed of ultracataclasite at 7 km depth, 196 MPa normal
stress, an ambient pore pressure of 70 MPa, and an ambient
temperature of 210�C [see Table 2 in Rice, 2006]. These
values are rc = 2.7 MPa/K, L = 0.98 (intact) and 0.32
(damaged) MPa/K, ath = 0.70 mm2/s, ahy = 0.86 (intact)
and 3.52 (damaged) mm2/s, which yield aHT = 23.6 (intact)
and 464.1 (damaged) mm2/s. The hydraulic properties of rock
are from the Median Tectonic Line fault in southwest Japan
[Wibberley, 2002; Wibberley and Shimamoto, 2003]. The
properties are summarized in Table 1.
[33] There is considerable uncertainty in choosing the

appropriate value of permeability.Wibberley and Shimamoto
[2003] measured permeability using nitrogen gas as the
pore fluid, and Faulkner and Rutter [2000, 2003] showed
for that for nonswelling clays the water permeability can
be an order of magnitude smaller than the gas permeabil-
ity. Permeability in and around fault zones can also be
quite anisotropic with respect to the direction of flow
relative to foliation of the gouge. Faulkner and Rutter
[1998] found variations over three orders of magnitude
with direction relative to the fault; the lowest permeability
is typically that perpendicular to the fault, which is the
relevant direction for our models. Additionally, studies of
clayey gouge from the Neodani [Tsutsumi et al., 2004] and
Hanaore [Noda and Shimamoto, 2005] faults in southwest
Japan, and the Chelungpu fault in Taiwan [Tanikawa and
Shimamoto, 2009] yielded much higher permeabilities
(10�19 to 10�16 m2 at around 100 MPa effective pressure)
than those measured by Wibberley and Shimamoto [2003]
with the same methodology. The clayey gouge in these
works typically contains a swelling clay for which the
difference in gas and water permeability can be much greater
than that estimated by Faulkner and Rutter [2000, 2003].
[34] As a consequence of the uncertainly in permeability

measurements and in knowledge of how permeability and
storage coefficients are affected by dynamic fracturing of
the fault walls during rupture, two of the least constrained
model parameters are the hydraulic parameters, ahy and L.
We study a range of these parameters by varying the two
parameters together using a linear interpolation between
intact and damaged values:

ahy ¼ 0:86þ 2:66rð Þmm2=s ð18Þ

L ¼ 0:98� 0:64rð ÞMPa=K; ð19Þ

where r is the nondimensional damage index, 0 � r � 1.
[35] Previous studies [Noda, 2004; Cocco and Bizzarri,

2004; Andrews, 2005; Bizzarri and Cocco, 2006a, 2006b;
Suzuki and Yamashita, 2006] typically used shear zones that
are a few centimeters thick. However, observational studies
of exhumed faults [Chester and Chester, 1998; Chester et
al., 2004; Heermance et al., 2003; Mizoguchi and Shima-
moto, 2004] and specimens after rotary shear experiments
[Beeler et al., 1996; Mizoguchi and Shimamoto, 2004]
suggest that shear deformation is extremely concentrated
in zones that are at most �200 mm in width (and there is no
evidence that rules out the possibility that at any instant,
shear is localized in an even narrower zone). In this study
we use at most 2w = 200 mm. In our numerical simulations,
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we integrated equations (11) and (12) using a conventional
second-order finite difference method (in space) on a one-
dimensional grid perpendicular to the fault plane at every
node on the fault. Time stepping was performed using an
adaptive Runge-Kutta method [Dormand, 1996]. Details of
the numerical method are given in the appendices.
[36] There are experimental studies [Linker and Dieterich,

1992; Prakash and Clifton, 1992; Prakash, 1998; Richardson
and Marone, 1999; Bureau et al., 2000; Boettcher and
Marone, 2004; Hong and Marone, 2005] on the memory
effect in the response of shear strength to variations in normal
stress that might cause one to question the validity of
equation (1). Linker and Dieterich [1992] suggest that on a
sudden jump in normal stress by Ds during sliding, only a
fraction of the expected shear stress change, fDs, occurs
immediately; this instantaneous response is followed by a
gradual evolution toward the new steady state shear stress.
However, while well supported experimentally at speeds less
than �1 mm/s, no instantaneous change in strength was
noted following extremely abrupt steps in normal stress at the
high speeds (�1–10 m/s) that occur coseismically [Prakash
and Clifton, 1992; Prakash, 1998]. We also tested laws
consistent with the Prakash–Clifton experiments by replac-
ing equations (1) and (7) with

dt
dt

¼ as
V

dV

dt
� V

L
t � fss V ; Tð Þs½ 
: ð20Þ

There was little difference from the cases in which t was
instantaneously coupled to s, presumably because the state
evolution time, L/V, was small compared to the timescale,
set by thermal and hydraulic diffusion, over which s varied.

2.3. Predicted Background Stress Levels Separating
Pulses and Cracks (Constant T and p)

[37] As discussed before, friction laws having strong
velocity-weakening behavior (like flash heating) can cause
ruptures to take the form of self-healing slip pulses, pro-
vided that the background shear stress level is below a
critical level termed tpulse by Zheng and Rice [1998]. To
begin, we consider faults with a steady state strength that
depends only on V. In the context of our model, we do this
by holding the background temperature, T, and pore pres-
sure, p, fixed at their initial values, such that the steady state
strength is tss(V) = s0 fss(V, T0). In the following, we recall
the results of Zheng and Rice [1998].
[38] A crack-like rupture is defined as one in which points

on the fault that have started sliding (e.g., the hypocenter)
continue to slide until arrest waves from the edges of the
fault (or strong heterogeneities on the fault) arrive and cause
the fault to lock. This prompts us to ask, under what
conditions does there exist a nonzero slip velocity, V, that
simultaneously satisfies the friction law and the elastody-
namic equation? If no such solution exists, then the fault
must lock and ruptures, if they exist, must take the form of
self-healing slip pulses. For this analysis, it is most conve-
nient to express the elastodynamic equation in the form of a
boundary integral equation. For a planar fault in a homo-
geneous two-dimensional medium, this is

t x; tð Þ ¼ t0 x; tð Þ � m
2cs

V x; tð Þ þ f x; tð Þ; ð21Þ

in which t0(x, t) is the shear stress in the absence of slip and
f(x, t) is the stress transfer functional (i.e., the stress carried
by elastic waves [Perrin et al., 1995; Geubelle and Rice,
1995]). Physically, equation (21) states that the stress at
some point on the fault is equal to the load, t0(x, t), plus
changes in stress due to the radiation-damping effect (the
second term on the right-hand side) and the transfer of stress
from other places on the fault (the third term on the right-
hand side). The radiation-damping effect is both the
instantaneous and the long-wavelength response of a fault
to slip; it expresses the stress change carried by two plane
shear waves emitted, one in each direction, by the fault
when it slides at velocity V. If the entire fault slides at the
same velocity, then f(x, t) = 0 and the stress change is
entirely accounted for by the radiation-damping response.
This picture provides an extremely crude estimate of the
conditions near the center of an expanding rupture, once the
crack tips are far away. However, spatially inhomogeneous
slip at other locations on the fault causes f(x, t) to be
nonzero.
[39] Zheng and Rice [1998] have shown that for a mode

III crack-like rupture in an essentially unbounded body, slip
transfers stress outside the rupture in such a way that the net
force (minus any applied loads) acting on the locked portion
of the fault can only be increased; that is,

Z
S�Srupt tð Þ

t x; tð Þ � t0 x; tð Þ½ 
dx � 0; ð22Þ

in which S is the total fault area and Srupt(t) is the slipping
area of the fault within the crack-like rupture. They also
showed that no matter how the contribution to stress
represented by f(x, t) may be redistributed by waves, the net
force associated with f(x, t) acting on S always vanishes:

Z
S

f x; tð Þdx ¼ 0: ð23Þ

Combining equations (21), (22), and (23) yields

Z
Srupt tð Þ

t x; tð Þ � t0 x; tð Þ þ m
2cs

V x; tð Þ
� �

dx � 0: ð24Þ

In our work, we consider faults on which t0(x, t) is equal to
a uniform background stress, tb, except within a small
nucleation region. It follows that if Srupt(t) is much larger
than the nucleation zone, then we can replace t0(x, t) in
equation (24) with tb.
[40] Next, we need an approximation to the friction law.

At locations within the rupture far removed from the crack
tips, it is reasonable to assume, for many types of friction
laws, that sufficient slip has occurred that the friction coef-
ficient has effectively evolved to steady state conditions:

t x; tð Þ � tss V x; tð Þ½ 
; ð25Þ

The steady state conditions described by equation (25) are
achieved if the timescale characterizing the evolution of slip
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rate, V/ _V , is much longer than the one for state evolution, L/
V [Rice and Tse, 1986]:

L _V

V 2

����
����� 1: ð26Þ

The validity of this approximation is discussed further in
Appendix A. Combining equations (24) and (25) and
replacing t0(x, t) with the constant tb yields an integral
inequality condition for the existence of crack-like ruptures.
It follows that a sufficient condition for the nonexistence of
crack-like ruptures is

tb � m
2cs

V < tss Vð Þfor all V > 0: ð27Þ

[41] For a given material, friction law, and effective
normal stress level, the only free parameter is the back-
ground stress level, tb. The maximum value of tb for which
(27) holds is defined as tpulse [Zheng and Rice, 1998]. At
stresses below tpulse, ruptures, if they exist, must assume the
form of slip pulses. Laboratory experiments have confirmed
that ruptures on understressed faults do take the form of slip
pulses [Lykotrafitis et al., 2006].
[42] Figure 1 shows the steady state friction coefficient

for our flash heating model as a function of V using the
initial values of T and p (and hence s), as well as the
radiation-damping line that defines tpulse. Note that tpulse/s0
depends on initial effective normal stress, s0. For s0 =
126 MPa, tpulse/s0 is very small (0.2475) due to the extreme
velocity weakening behavior at elevated slip rates. Note also
that tpulse/s0 increases with decreasing s0 since the slope of
a radiation-damping line increases when normalized by s0.
It is interesting that Hickman and Zoback [2004] have noted
a decrease in the value of t/s resolved onto planes parallel
to the SAF with increasing depth in the SAFOD pilot hole.

[43] For extremely low values of s0 (around a few MPa),
there exists a radiation-damping line which fits tangentially
to fss(V, T0) in the low velocity (V < Vw) regime and has an
intercept at V = 0 at a value of t/s0 comparable to typical
static friction coefficients. We do not explore the importance
of this in the present study. Rather, instead of assuming that
the value of pore pressure is sufficiently high to decrease the
effective normal stress to these extremely low values, we
consider faults that are stressed at levels far below the levels
associated with steady sliding at slow slip rates.
[44] A difficulty arises when we attempt to directly apply

the theory developed by Zheng and Rice [1998] to our
models that include thermal pressurization. In fact, their
theory breaks down whenever there is a set of state
variables, q, (in our case, temperature and pore pressure)
which do not have a steady state that is a function of Vonly,
or whose characteristic displacements necessary to achieve
steady state conditions are not small compared to the typical
slip in an event. In such cases, the concept of a steady state
is valid only for state variables other than q, and steady state
strength must be written as

tss ¼ tss V ; qð Þ ð28Þ

Then, the generalization of equation (27), which is the
condition for the nonexistence of crack-like solutions, is

tss V ; qð Þ � tb � m
2cs

V

� �
> 0 for all V > 0: ð29Þ

Let us define tpulse using the initial value of q, q0, and assume
that the evolution of q from its initial state weakens the fault,
as will be the case for increases in p and/or T. This yields

tss V ; qð Þ � tb � m
2cs

V

� �
¼ tss V ;qð Þ � tss V ;q0ð Þ½ 


þ tss V ;q0ð Þ � tb � m
2cs

V

� �� �
> 0 for all V > 0: ð30Þ

While the second bracketed term is positive for all V� 0 if tb

< tpulse, the first bracketed term is always negative. Hence we
need to evaluate the characteristic value of q to predict the
threshold value of tb in this context. This is discussed later.
Our numerical simulations do reveal that, following an
artificial nucleation, ruptures can assume the form of cracks,
growing slip pulses, and arresting slip pulses, as shown in
Figure 2, and that there is an abrupt transition between the
rupture modes as certain parameters (e.g., tb, 2w, or aHT) are
varied.
[45] To assess whether or not crack-like solutions can

exist, we must determine appropriate values of q to use in
equation (30). For our model, the variables that comprise q
are T and p on the fault. The transition to a slip pulse rupture
mode occurs first in the hypocentral region, so it is
necessary to estimate characteristic values of T and p there.
To do so, we must first discuss our nucleation procedure.

2.4. Nucleation Procedure

[46] The extreme velocity weakening associated with
flash heating makes tpulse very low (see Figure 1), and we

Figure 1. Steady state frictional shear stress tss normal-
ized by initial effective normal stress s0 as a function of slip
velocity V. tpulse is defined for the initial ambient conditions
at 7-km depth (T = 210�C, s = 196 MPa, p = 70 MPa) by
the radiation-damping line, which fits tangentially to tss(V)
at V = Vpulse (=1.487 m/s). The weakening slip rate is Vw =
0.170 m/s. Due to extreme velocity weakening at elevated
slip rates, tpulse is very small (0.2475 s0).
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focus on faults with background shear stresses, tb, near
tpulse. To nucleate ruptures on faults with overall (i.e.,
average) stress levels that are much smaller than those
associated with static friction coefficients of 0.6–0.8, either
the frictional constitutive parameters or the initial stress
level must be quite different on some portion of the fault.
Under such circumstances, ruptures that are nucleated in
one of these regions can propagate into low-stressed regions
[Perrin et al., 1995; Zheng and Rice, 1998; Bizzarri et al.,
2001]. Another possibility is that rupture could nucleate on
a fault having a different orientation than the main fault
(e.g., a branch on which the ratio of t/s is close to the static
friction level) and subsequently jump onto the main fault
plane on which t is close to tpulse. In the laboratory setting,
ruptures can be nucleated on understressed faults by an

explosion on the simulated fault; this lowers s locally to
initiate slip [Lykotrafitis et al., 2006].
[47] In this work, we employ a similar, artificial nucle-

ation procedure by applying a sudden perturbation in shear
stress at the center of the fault. We caution that this is not
likely to be a realistic description of the nucleation of
earthquakes on natural faults. At t = 0�, we set t0(x, 0

�) =
tb.We also setQ(x, 0) = 0.59211, which is determined so that
the friction coefficient at the rupture front is comparable to a
typical static friction coefficient of 0.85. Our estimate of the
peak friction coefficient at the rupture front is obtained by
assuming that state evolution is negligible and that t
responds only by the direct effect.
[48] At t = 0, we apply a Gaussian-shaped stress pertur-

bation, the amplitude and standard deviation of which are
tper and Dper, respectively. We use Dper = 2.5 cm and a value
of tper that satisfies t0(0, 0

+) = tb + tper = 107.458 MPa
unless otherwise noted (see Table 1). This amplitude is
chosen so that V(0, 0+) is 1 m/s. Weakening due to flash
heating occurs immediately in the nucleation zone since V >
Vw there, which drives the rupture out at a speed near the
shear wave speed. We would like to concentrate on the
mathematical criterion between crack-like and self-healing
pulse solutions, and implementing a more realistic nucle-
ation process is beyond the scope of this work. Because of
limitations in numerical resources and calculation time, it is
difficult to simulate faults that are even tens of meters long,
so we typically simulate ruptures propagating just over 2 m
in each direction (though we do extend a few select cases
out to 16 m in each direction). While these short distances
are insufficient for fully examining the thermal pressuriza-
tion process, the rupture mode (crack or pulse) is established
over these distances with the parameters selected above.

2.5. Predicted Background Stress Levels Separating
Pulses and Cracks (Variable T and p)

[49] Now that we have described our nucleation proce-
dure, we can return to our task of estimating characteristic
values of T and p, which we need to evaluate equation (30).
T and p change in response to thermal pressurization driven
by shear heating. Our approach is to estimate V and t (and
hence the shear heating rate) within the nucleation zone and
then calculate DT and Dp, the changes in T and p that result
from this amount of shear heating over the duration of the
nucleation process. A precise description of how we esti-
mate these changes is given in Appendix B.
[50] For each set of simulation parameters, we calculate

DT and Dp and use these values to shift the steady state
strength curve as shown in Figure 3. We define tdyna

pulse as the
value of tpulse for these dynamic conditions; since DT and
Dp are functions of such parameters as the shear zone
width, background shear stress, and hydrothermal proper-
ties, then tdyna

pulse also depends on these parameters. There are
no crack-like solutions for tb < tdyna

pulse, so the equality tb =
tdyna
pulse delimits the actual boundary between crack-like and

pulse-like solutions.
[51] In order for a crack-like solution to exist, it is

necessary for equation (24) to be satisfied. At the beginning
of rupture propagation, all calculations show crack-like
behavior in the sense that the center of the ruptured area is
slipping, which is consistent with the locally high t0 within

Figure 2. Slip distributions for (a) a growing crack, (b) a
growing slip pulse, and (c) an arresting slip pulse.
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the nucleation region. However, at later times when the
rupture has propagated further, the average value of t0
becomes closer to tb and, if tb is too small to satisfy
equation (27) or equation (30), the rupture can no longer be
crack-like.

3. Rupture Mode Phase Diagrams

3.1. Neglecting Changes of T and p

[52] Before proceeding to more complicated cases, we
first consider ruptures on faults where T and p are con-
strained to their initial values, so that strength is solely a
function of V and the analysis of Zheng and Rice [1998]
applies directly. Note that T is the macroscopic temperature
on the fault, not that at the asperity contacts; hence,
neglecting changes in T does not mean that we are neglecting
flash heating. The upper inset of Figure 4a shows the
rupture mode as a function of background stress, indicating
that, as expected, there are no crack-like solutions at stresses
below tpulse = 0.2475 s0. Ruptures take the form of growing
slip pulses in a rather narrow region of tb around tpulse. For
the cases with tb � 0.2778 s0, the transition to a slip pulse
rupture mode does not occur during the duration of the
calculation. A detailed analysis of the transition to a slip
pulse rupture mode is presented in Appendix C.

3.2. Sensitivity to Width of Shear Zone

[53] Figure 4a shows a phase diagram of the rupture
propagation mode in a (tb, 2w) plane for r = 0.8. It should
be emphasized that we obtain crack-like solutions for stress
levels below tpulse, which is the theoretical threshold below
which crack-like solutions are impossible in the absence of
temperature and pore pressure changes [Zheng and Rice,
1998]. As the background shear stress decreases, ruptures
change from expanding cracks (Figure 2a) to growing
pulses (Figure 2b). For even smaller values of tb, ruptures
are arrested (Figure 2c). There are clear boundaries between

these solution types. It is also notable that the range of
background shear stress levels admitting crack-like solu-
tions is wider for smaller 2w, implying that thermal pres-
surization of pore fluid (which is more effective for
narrower shear zones) extends the crack-like solution re-
gime. As 2w increases, the boundary between crack-like and
pulse-like solutions becomes less dependent on 2w, but the
effect of T and p changes are still remarkable in an absolute
sense, compared with the case in which they are neglected.

3.3. Sensitivity to Hydraulic Properties

[54] Figure 4b shows a phase diagram of the rupture
mode as a function of tb and the damage index r (or,
equivalently, aHT) with 2w = 100 mm. We again obtain
crack-like solutions below tpulse, and the phase diagram
shows that changes in T and p make crack-like solutions
more likely; the range of background shear stress levels
permitting crack-like solutions is wider for smaller r or aHT.
The effect of varying hydraulic properties (within what we
feel to be a realistic range) is almost as large as the effect of
varying the width of the shear zone.
[55] Note that the cases in which T and p changes are

neglected cannot be plotted on this section of parameter
space. When the change in p is neglected with L = 0, T
increases very rapidly and easily reaches Tw. Our constitu-
tive model is not appropriate at such high temperatures.

3.4. Sensitivity to Nucleation

[56] The criterion for determining the rupture mode when
T and p changes are permitted (i.e., our estimation of tdyna

pulse)
depends on the nucleation parameters. Here we investigate
the two nucleation parameters separately. All calculations
are performed with r = 0.8 and 2w = 100 mm. Figures 5a
and 5b show phase diagrams in the (tb, Dper) plane with
fixed tb + tper = 107.4579 MPa, and in the (tb, tb + tper)
plane with fixed Dper = 2.5 cm, respectively. The rupture
mode indeed depends on the size of perturbation, with
large perturbations (either in length and/or amplitude)
favoring crack-like ruptures. Note that while our estima-
tion of tdyna

pulse gives the right trend in the crack-pulse phase
boundary, it does not precisely trace the boundary. This is
presumably due to several overly simplifying approxima-
tions used to estimate the changes in p and T during the
nucleation process; these are discussed in more detail in
Appendix B.

4. Observational Constraints

[57] In the previous sections, we have established that
ruptures on faults governed by flash heating and thermal
pressurization can take the form of either slip pulses or
cracks, and we have determined the conditions that give rise
to each particular rupture mode. Since the crack-to-pulse
transition occurs rapidly in our simulations, it was only
necessary to propagate ruptures out to a few meters.
However, much longer propagation distances are required
to ascertain certain rupture characteristics that can be
compared to observations. In particular, we are interested
in addressing issues raised at the start of this manuscript
regarding heat flow and the stress state around major faults.
Additionally, our model makes predictions regarding

Figure 3. tdyna
pulse was defined in a similar way to Zheng

and Rice [1998] after taking into account changes in T and p
due to thermal pressurization during the nucleation process.
Steady state strength is decreased due to an increase in T,
which decreases Vw(T) and hence fss(V, T), and an increase
in p, which decreases s.
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observables like stress drop and the scaling of slip with
rupture length. To probe these questions, we have con-
ducted two long simulations, one for a crack-like rupture
and the other for a growing slip pulse, in which propagation
is permitted out to 16 m in each direction; the parameters
are marked in Figure 4 by ‘‘Figures 6, 7, 9’’. The 16 m
distance is the limit of our current computational resources,
and our ruptures correspond to magnitude �1 earthquakes
(to the extent that propagation distance in our two-dimen-
sional models can be mapped onto radius for a rupture in
three dimensions). Source properties for earthquakes of this
size have been studied using borehole seismograms [e.g.,
Abercrombie, 1995], and Yamada et al. [2005] have per-
formed finite fault slip inversions of several mining-induced
earthquakes with magnitudes between 0.8 and 1.4.

4.1. Weakening Process and Implied Slip-Weakening
Relationship

[58] Our model incorporates several weakening mecha-
nisms, and we wish to discuss here how these mechanisms
act in concert during the rupture process to alter fault
strength. Figure 6 shows the reduction of fault strength as
a function of slip at x = 8 m for our two long simulations,
and Figure 7 shows the history of t, V, T, and p at this same
location.
[59] The rapid rise of stress from tb to a peak stress of t �

100 MPa (t/s � 0.85) is associated with the direct effect of
rate-and-state friction; during this time, state evolution is
negligible. As state begins to evolve, f plummets toward fw
since V is already well above Vw. By d � 0.1 mm, this
evolution process is complete and f has essentially reached

Figure 4. Phase diagrams for (a) various 2w with fixed r and (b) various r and fixed 2w for mode III
rupture propagation with L = 20 mm, Dper = 2.5 cm, tb + tper = 107.458 MPa, Q0 = 0.59211. Red circles,
black squares, and blue triangles indicate crack-like, growing pulse-like, and arresting pulse-like ruptures,
respectively. There are crack-like ruptures below tpulse, as defined with the initial values of T and p.
When tb � tdyna

pulse ruptures can only take the form of slip pulses. A one-dimensional phase diagram for
the case in which T and p changes are neglected is also indicated in Figure 4a.
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its steady state value. Thermal pressurization is responsible
for subsequent weakening. Initially the response is effec-
tively that of undrained, adiabatic deformation; diffusion
only becomes significant when the hydraulic or thermal
diffusion lengths exceed the width of the shear zone (i.e.,ffiffiffiffiffiffiffi
4at

p
> w). This occurs after about 0.2 ms (for a = 3 mm2/s

and w = 50 mm); the corresponding value of slip at this time
for the ruptures shown in Figure 7 is about 1 mm. The total
duration of slip for the slip pulse is about 0.15 ms at this
point, so diffusion is only just becoming significant when
the trailing edge of the slip pulse passes this point. This is
illustrated in panels (c) and (d) of Figure 7, which show
both the actual histories of DT and Dp in the simulations
and the histories that would have resulted in the absence of
thermal and hydraulic diffusion for the same shear heating
histories (the latter are shown as dashed lines marked
‘‘undrained, adiabatic’’).
[60] The peak slip velocity is very high (�300 m/s) at the

rupture tip, but values of V above 100 m/s only persist for
about 1 ms. These high slip velocities imply fault-parallel
strains of order 0.1 (estimated as (V/2)/vr by assuming
steady state propagation at a rupture speed vr close to cs).
Such high strains are incompatible with the assumption of a
linear elastic rheology; inelastic deformation would presum-
ably result and limit slip velocities to more reasonable
values. The large stresses at the rupture front would also
damage the fault walls, enhancing the ability of high
pressure fluids to escape the shear zone. We approximate
this by using, in some of our simulations, hydraulic prop-
erties consistent with damage-induced increases in perme-
ability and matrix compressibility.
[61] While the strength drop associated with these rup-

tures is large (�90 MPa), the static stress drop (i.e., the
difference between tb and the final stress after the event) for
the slip pulse is about 3 MPa at this point. This is due to the
combination of a low background stress level and the
increase of stress that occurs when the fault ceases to slide.
The latter is caused by an immediate return of f to its
unweakened value in the absence of flash heating and a
more gradual decrease of p as high pressure fluids diffuse
away from the shear zone. A stress drop of 3 MPa is
quite consistent with seismic data. Typical values are around
1–10 MPa (with much variation [e.g., Kanamori and
Anderson, 1975]). Abercrombie [1995] and Ide and Beroza
[1997] have shown that there is no systematic variation of

Figure 5. Phase diagrams with varying (a) length and
(b) amplitude of the perturbation added to nucleate rupture.

Figure 6. Implied slip-weakening curves at x = 8 m for a crack and a growing slip pulse shown on (a) a
linear scale (with inset showing early weakening) and (b) a log-log scale. The circles correspond to the
first few time steps during the weakening process. The initial weakening, during which f drops to nearly
fw = 0.13, is complete by �0.1 mm. Subsequent weakening is due to thermal pressurization; initially, the
response is effectively undrained and adiabatic, although diffusion of heat and pore fluid becomes
significant midway through the duration of slip for the slip pulse (see Figure 7).
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average static stress drop over ten orders of magnitude in
seismic moment.
[62] The fracture energy associated with the ruptures

shown in Figure 6 is about 0.2 kJ/m2. This value is quite
comparable to seismic inferences of fracture energy for
earthquakes with slip of �1 mm [Abercrombie and Rice,
2005, Figure 8] although the form of the stress versus slip
curve (rising at the end for the slip pulse) violates some of
the approximations used in that study (e.g., that t during
sliding was approximately equal to the final stress after the
event).
[63] The fact that stress returns nearly to tb after the

passage of a slip pulse suggests that only a small amount of
additional loading is necessary for the fault to host another
rupture (as opposed to what would happen if stress drop
were complete). Paleoseismic investigations by Weldon et
al. [2004] along the SAF at Wrightwood reveal that periods
of high accumulated strain are followed by either a single
large earthquake or a series of relatively large (with meters
of surface displacement) and frequent events separated by
intervals of about 60 years. These observations suggest that
after a modest static stress drop caused by a rupture, the
fault is still relatively close to having the ability to rupture
again.

[64] The spatial pattern of static stress drop is also
interesting. Close to the nucleation region, there is little
drop in stress; in fact, stress increases in the immediate
vicinity of the hypocenter. This increase is characteristic of
self-similar slip pulses (which have a logarithmic singularity
in stress at the hypocenter), as discussed by Nielsen and
Madariaga [2003]; and suggests that, in the absence of
other sources of heterogeneity, the hypocentral region
would be the most likely spot for subsequent events to
nucleate.

4.2. Statically Strong, Dynamically Weak Faults

[65] As discussed in the introduction, dynamic weakening
mechanisms provide one possible explanation for the ab-
sence of measurable heat flow and the low stress levels
inferred to be acting on major faults. The strong rate
dependence of friction predicts that the background stress
level on faults should be around tpulse, far lower than the
prediction of Byerlee’s law. Nonetheless, the peak stress at
the rupture tip exceeds 100 MPa and values of t/s there are
�0.85, within the range of laboratory measurements of
static friction (the latter being determined by our choice
of the initial state Q0). Once nucleated, ruptures are driven
by the stress concentration at their tips.

Figure 7. Time history of slip velocity and shear stress for a growing (a) slip pulse and (b) crack at x =
8 m and history of temperature and pressure on the fault for the (c) slip pulse and (d) crack. The dashed
lines in Figures 7c and 7d marked ‘‘undrained, adiabatic’’ are the T and p histories on the fault that would
have resulted in the absence of thermal and hydraulic diffusion, for the same shear heating history
experienced by the actual ruptures. For the first several mm of slip, the actual T and p response follows
these curves closely.
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[66] The average stress doing work (i.e., producing heat)
during slip at some point on the fault is

theat xð Þ ¼
R1
0

t x; tð ÞV x; tð ÞdtR1
0

V x; tð Þdt
: ð31Þ

theat drops monotonically from about 22 MPa at x = 1 m to
slightly less than 15 MPa by x = 15 m; the decrease with
propagation distance is a consequence of the fact that
weakening due to thermal pressurization becomes more
effective as slip accumulates. Our simulations, which are
limited in terms of propagation distance (and thus the
magnitude of pressure changes from thermal pressuriza-
tion), strongly suggest that theat for large events will be
well below the upper bound of �10 MPa that heat flow
measurements place on theat [Brune et al., 1969;
Lachenbruch and Sass, 1980; Lachenbruch et al., 1995;
Williams et al., 2004].
[67] We can also interpret the stress state around major

faults like the SAF in light of our model. Townend and
Zoback [2004] report that the regional direction of maxi-
mum horizontal compression, SHmax, in central and southern
California is 68 ± 7� as measured from the local strike of the
SAF. Assuming that t/s within the crust is bounded by
typical static friction levels (0.6–0.9), as is observed at
many locations [Townend and Zoback, 2000], we can
constrain the maximum value of t/s on planes parallel to
the SAF (Figure 8). For an angle of 68� between the fault
and SHmax and a static friction coefficient of 0.8, t/s < 0.30
on the SAF. Direct measurement of stresses in the SAFOD
pilot hall [Hickman and Zoback, 2004] reveal that t/s on
the SAF decreases with depth from 0.6 at about 1.2 km
depth to 0.24 at the bottom of the pilot hole at 2.1 km depth.
Furthermore, a number of geodynamic studies find values
for the long-term average stress supported by major faults
in the range of t/s � 0.2–0.3 [Bird and Kong, 1994;
Humphreys and Coblentz, 2007]. These low values of t/s

are exactly what our model predicts, without any alteration
of hydrothermal and frictional properties from their labora-
tory-measured values.

4.3. Scaling of Slip and Slip Pulse Length
With Propagation Distance

[68] Over the modeled propagation distance of 16 m, our
ruptures appear to be growing in an approximately self-
similar manner. In particular, the total slip locked in by the
slip pulse increases nearly linearly with propagation dis-
tance, as shown in Figure 9a. Figure 9b shows the slip
history of the crack-like rupture, with that of the slip pulse
overlaid for comparison. Slip at the center of the crack-like
rupture increases at about 1 mm/m rupture length. When a
crack-like rupture terminates, stopping phases propagate
inward to lock the fault; during this time, additional slip
occurs, such that the final displacement at the center could
be nearly twice as large as the instantaneous value shown
here. Then the average final slip in the area ruptured in a
crack-like event will be on the order of 1 mm/m rupture
length. On the other hand, for a growing slip pulse, the final
slip grows with distance from the center at about 0.14 mm/
m (Figure 9a). Assuming this M-shaped linear slip profile
persists as the rupture grows, the average slip per rupture
length is 0.07 mm/m, which is in good agreement with
measurements of 0.01–0.1 mm/m for large earthquakes
[Scholz, 1982; Scholz et al., 1986; Manighetti et al., 2005].
[69] Another indication of self-similar growth is that, after

an initial transient related to the nucleation process and the
transition to a slip pulse rupture mode, the length of the slip
pulse increases linearly with time. By assuming a rupture
speed of cs (as is seen in our simulations), we can convert
time into propagation distance; see Figure 10, which shows
the length of the slip pulse in Figure 9a as a function of
propagation distance. We used the condition V > Vth for
threshold velocities ranging from Vth = 0.001–0.1 m/s to
define the extent of the actively slipping region. Regardless
of the value of Vth, the length of the slip pulse grows at a
rate of about 30 m/km, which is in acceptable agreement
with, though about three times smaller than, lengths based
on risetimes inferred from slip inversions of large events
compiled by Heaton [1990], though those measurements are
limited in their resolution by the finite bandwidth of seismic
data. Multiple time window slip inversions of magnitude
�1 mining-induced earthquakes, which have source dimen-
sions of 10–20 m, suggest risetimes around 3–4 ms (much
larger than risetimes in our simulations; see Figure 7a),
though these values are likely upper bounds since the width
of the time windows used was 1.5 ms [Yamada et al., 2005].
[70] The rate at which the slip pulse length increases

with propagation distance can be related to the relative
speed of the rupture front, vr, and the healing front, vh.
The rate of 30 m/km = 0.03 is equal to, at least for large
times, (vr t � vh t)/(vr t) = 1 � vh/vr, implying that vh =
0.97 vr. The self-similar slip pulse solutions of Nielsen and
Madariaga [2003] and Broberg [1999, p. 418] have the
following property: Given a value of G, the energy supplied
to the crack tip per unit area advance of the crack, relative to
G0, the value of G for a quasi-statically expanding crack of
the same length, there is a unique relationship between vr and
vh. The very low values of G in our simulations (a conse-
quence of small L) require that vr be close to the limit speed cs.

Figure 8. Stress state near the San Andreas fault (SAF)
based on Townend and Zoback [2004], who reported the
angle between SHmax and the strike of SAF as 68 ± 7�. The
minimum Shmin allowed is determined by the strength of a
fracture in the optimal orientation. The estimate of the
maximum t/s is 0.30, close to both the directly measured
value of 0.24 at the bottom of the SAFOD pilot hole at
2.1-km depth [Hickman and Zoback, 2004] and what
our simulations show is the minimum stress necessary to
propagate ruptures.
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However, in this limit, small variations in vr at fixedG/G0 are
associated with large variations in vh, making it difficult to
constrain expected values of vh. Exactly what determines the
precise value of vr (and hence vh) in our simulations remains
unclear. In particular, we caution that the measured rate of
increase of slip and pulse length with propagation distance
may be sensitive to the artificial nucleation process we
employ. This issue requires further study.

5. Summary

[71] The thermal weakening mechanisms of flash heating
of microscopic asperities and thermal pressurization of pore
fluid have been implemented into a spectral boundary
integral equation code for elastodynamic rupture propaga-
tion. Flash heating is encapsulated in a framework of rate-
and-state friction that includes the direct effect and evolu-
tion toward steady state conditions over a slip distance L.
We use values of L comparable to asperity dimensions
(�20 mm), as suggested by laboratory experiments, and a
range of hydrothermal properties consistent with laboratory
measurements of fault gouge and reasonable assumptions
about the degree of damage induced by the passage of
high stress concentrations near rupture fronts.

[72] For faults with a purely velocity-weakening steady
state strength, Zheng and Rice [1998] have shown the
existence of a critical stress level, tpulse, below which
crack-like ruptures cannot exist. The value of tpulse/s
predicted by the observed velocity dependence of flash
heating is about 0.2–0.3. We have generalized the theory
of Zheng and Rice [1998] to accommodate weakening
mechanisms that involve a set of variables (like T and p
in our model) that do not achieve velocity-dependent steady
states over the duration of a rupture. When temperature and
pore pressure are permitted to evolve in response to shear
heating, theoretical considerations and a series of calcula-
tions reveal that additional weakening due to thermal
pressurization enables ruptures to propagate in the crack-
like rupture mode at background stresses slightly below
tpulse. However, while thermal pressurization mildly
increases the range of crack-like solutions in parameter
space, it does not prevent the occurrence of self-healing
slip pulses. While there is only minor sensitivity of the
crack-pulse phase boundary to the thermal pressurization
parameters, the efficiency of thermal pressurization is likely
to be important in determining the average stress doing
work within ruptures at larger amounts of slip than those we
have been able to model in this work. Furthermore, we have
found that temperature and pressure conditions within the
shear zone are quite sensitive to its width, even for widths
below 100 mm.
[73] Our models suggest that faults will host ruptures at

the minimum stress level required for a rupture, once
nucleated, to propagate in a self-sustaining manner. This
critical level is around tpulse/s � 0.2–0.3, which is consis-
tent with the stress state inferred to be acting on major faults
like the SAF. At this critical stress level, ruptures take the

Figure 9. Snapshots of slip on the fault for a growing (a)
slip pulse and (b) crack. While the background stress level
for the two ruptures differs by only 1 MPa, the crack
exhibits over an order of magnitude more slip than the slip
pulse. The linear increase of slip with distance (at a rate of
�0.14 mm/m = 0.14 m/km) for the slip pulse is consistent
with geological measurements.

Figure 10. Slip pulse length (or half of the extent of the
actively slipping region, prior to slip arrest at the
hypocenter) as a function of propagation distance for
the rupture shown in Figure 9a. The slip pulse is defined by
the condition V > Vth (for various threshold velocities Vth)
and propagation distance is taken to be the product of
rupture speed (assumed to be cs) and time since nucleation.
The initial transient is related to nucleation and the
transition to a slip pulse rupture mode. While the length
of the slip pulse depends on the chosen value of Vth, the rate
at which pulse length increases with propagation distance,
after the initial transient, is about 30 m/km for all Vth.
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form of slip pulses. Such slip pulses have reasonable static
stress drops of �3 MPa and expand in a nearly self-similar
manner, such that slip increases with propagation distance at
a rate of �0.14 mm/m. The average stress doing work
during slip, theat, is below 15 MPa, and this quantity is
expected to decrease with increasing propagation distance
since thermal pressurization will have more time to reduce
fault strength.
[74] We have chosen to use parameter values taken

directly from laboratory experiments, which constrains us
to model two-dimensional ruptures out to only 16 m in each
direction from the hypocenter, extrapolating our results to
larger source dimensions. An outstanding question we have
not addressed is how different the ground motion generated
by our ruptures might be from those using more common
parameter values. For example, most rupture models (like
those in the Southern California Earthquake Center code
validation tests [Harris and Archuleta, 2004; Harris et al.,
2009]) feature strength drops that are only �10 MPa larger
than static stress drops; in our simulations, the strength drop
is around �90 MPa.

Appendix A: Justification of Steady State
Strength Assumption

[75] In deriving the condition for the nonexistence of
crack-like ruptures, Zheng and Rice [1998] made the
assumption that the fault strength had evolved to its steady
state value, i.e., t(x, t) � tss[V(x, t)]. We can justify this
assumption further by considering the slip history of a self-
similarly expanding singular crack with constant stress drop
Dt:

d x; tð Þ ¼ F
vr

cs

� �
Dt
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtð Þ2�x2

q
; ðA1Þ

where d is slip on the fault, vr is rupture velocity, and F(vr/cs)
is close to unity [Kostrov, 1964; Nielsen and Madariaga,
2003]. The associated slip velocity history is

V x; tð Þ ¼ F
vr

cs

� �
Dt
m

vrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x=vrtð Þ2

q : ðA2Þ

The assumption of a constant stress drop may be valid if the
friction coefficient at elevated slip rates is only modestly
dependent on V, as in our flash heating model for V � Vw.
[76] For this singular crack model, the condition given by

equation (26), i.e., that the timescale characterizing the
evolution of slip rate is much longer than the one for state
evolution, becomes

L _V

V 2

����
���� ¼ 1

F vr=csð Þ
m
Dt

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtð Þ2�x2

q x

vrt

� �2

� 1: ðA3Þ

Because 1/F(vr/cs) and x/(vr t) are of order unity or smaller,
this becomes

m
Dt

L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vrtð Þ2�x2

q
ðA4Þ

Near the crack tip, where x = vrt � R for R � vrt, x
2�

(vrt)
2 � 2 vrtR and equation (A3) becomes

R � L2

2vrt

m
Dt

� �2
: ðA5Þ

This predicts that the region where the approximation t �
tss (V) does not hold vanishes as t!1. For L = 10 mm,Dt
= 3 MPa, and vr t = 5 m, this gives R � 1 mm.

Appendix B: Characteristic Changes in T
and p During Nucleation

[77] In this appendix, we estimate characteristic changes
in T and p during the nucleation process. We seek only an
estimate here and will consequently employ several approx-
imations. Our approach is to estimate V and t (and hence the
shear heating rate) within the nucleation zone and then
calculate the changes in T and p that result from this amount
of shear heating over the duration of the nucleation process.
[78] Using the Gaussian shape for our stress perturbation

leads to a complicated evolution of V and t within the
nucleation zone. To simplify things, we consider instead an
equivalent boxcar-shaped perturbation of amplitude tp and
half-width Dp. These parameters are related to tper and Dper

by setting Dp = 3 Dper (so that 99.7% of the Gaussian-shaped
perturbation lies within the boxcar-shaped perturbation)
and preserving the net force imparted by the perturbation.
It follows that tp = 0.42 tper. The characteristic duration
of the nucleation process is taken to be the time it takes a
shear wave to cross the boxcar perturbation, i.e., 2 Dp/cs =
6 Dper/cs. For D

per = 2.5 cm, this is 50 ms.
[79] We further assume that when the perturbation is

applied at t = 0, f drops instantaneously to fw. This is
justified if the resulting V far exceeds Vw and the state
evolution time is small compared to the duration of the
nucleation process. Assuming small changes in p, the fault
strength is then t = fw s0. For a spatially uniform stress
field, the elastodynamic response is the radiation-damping
response; for an applied load of tb + tp within the boxcar
perturbation, that suggests t � tb + tp � (mV)/(2cs). Setting
stress equal to strength and eliminating tp in favor of tper,
we find V � 2 cs (t

b + 0.42 tper � fw s0)/m. Typical values
of V are �10 m/s, so V � Vw. At this V, slipping a distance
of L = 20 mm takes only �2 ms, which is far less than the
characteristic duration of nucleation.
[80] Now that we have estimated characteristic values of

t and V during the nucleation process, we can estimate
changes in T and p. As discussed by Andrews [2002] and
Rice [2006], the solution to equations (11) and (12) for an
arbitrary shear heating history w(z, t) can be written as

T z; tð Þ ¼ T0 þ
1

rc

Z t

0

Z 1

�1
w z0; t0ð Þg z� z0; t � t0;athð Þdz0dt0

ðB1Þ

p z; tð Þ ¼ p0 þ
L
rc

Z t

0

Z 1

�1
w z0; t0ð Þ


ahyg z� z0; t � t0;ahy

 �
� athg z� z0; t � t0;athð Þ

ahy � ath

dz0dt0;

ðB2Þ
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in which the Green’s function for the diffusion equation is

g z; t;að Þ ¼ 1

2
ffiffiffiffiffiffiffiffi
pat

p exp � z2

4at

� �
H tð Þ ðB3Þ

and H(t) is the unit step function. Andrews [2002] has
evaluated the spatial convolutions in equations (B1) and
(B2) for a Gaussian shear zone, for which w(z, t) is given by
equation (13).
[81] The expressions further simplify if we consider a

heat source that turns on abruptly at t = 0 and remains
constant thereafter. Both t and V (and hence the shear
heating rate) will be approximately constant within the
boxcar-shaped perturbation over the duration of the nucle-
ation process. In this case, the solution to equations (B1)
and (B2) on the fault (i.e., at z = 0) for t � 0 is

DT tð Þ ¼ T 0; tð Þ � T0

¼ tVffiffiffiffiffiffi
2p

p
rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4atht þ w2

p
� w

ath

ðB4Þ

Dp tð Þ ¼ p 0; tð Þ � p0

¼ L
tVffiffiffiffiffiffi
2p

p
rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ahyt þ w2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4atht þ w2

p
ahy � ath

: ðB5Þ

Thus using the above expressions we can estimate
characteristic changes in T and p from their initial values
for each set of simulation parameters. This method works
well for estimating the sensitivity of the crack-pulse phase
boundary to hydraulic properties and the width of the shear
zone, as evidenced by Figure 4. The approximation of a
Gaussian-shaped perturbation by a boxcar-shaped one
means that we neglect stress transfer between adjacent
points within the nucleation zone, and this is not always
well justified over the entire range of perturbation
amplitudes and widths explored in Figure 5. As a
consequence, our formula for tdyna

pulse should be considered
an estimate rather than a precise result; an improved
treatment of the elastodynamic response would presumably
improve this.

Appendix C: Details of the Crack-Pulse
Transition

C1. Transition Behavior Neglecting T and p Changes

[82] As explained previously, Zheng and Rice [1998]
derived a critical background shear stress below which
crack-like ruptures are impossible, and they also provided
a criterion that helps determine the solution type at higher
stress levels (where both crack-like and pulse-like ruptures
are possible). If (and only if) tb � tpulse, there exists a value
of velocity, V*, defined as the maximum value of V for
which tb � (mV)/(2 cs) = tss (V), which we can use to define
a nondimensional parameter,

TZR ¼ � @tss=@V
m= 2csð Þ

���
V¼V�

: ðC1Þ

If TZR is near unity, then the solution is pulse like. Our
calculations show, however, that even a case with TZR =
0.1758 (tb/s0 = 0.2706) yields a slip pulse solution.
[83] Figure C1a shows the evolution of (V, f) at x = 0.1 m

for the pulse-like rupture indicated in Figure 4a as ‘‘Figure
C1a.’’ Figure C1b presents a magnified view of the transi-
tion to the slip pulse rupture mode. fss(V, T0) and a radiation-
damping line which fits tangentially to fss(V, T0) are also
plotted. [1] to [4] in these figures mark the following
sequence of events. As the rupture front approaches, the
fault is loaded with almost no state evolution because V is
very small [1]. At the rupture front, f achieves its maximum
value. Behind the rupture front, state evolution and unload-
ing (corresponding to a decrease in f) lower f slightly below
fss(V, T0) [2]. As the fault decelerates, f follows a path nearly
parallel to fss(V, T0) [3]. When V reaches Vpulse, defined as
the slip rate where fss(V, T0) and a radiation-damping line
intersect tangentially (Figure 1), f departs from a path
parallel to fss(V, T0) and moves onto a trajectory that
approximately follows the radiation-damping line that is
just tangent to fss(V, T0) [4]. This transition is similar to one
reported by Cochard and Madariaga [1994] although V
dropped to zero abruptly in their case due to the use of a
purely rate-dependent friction law.
[84] Figure C1c shows slip rate histories at x = 0.1 m for

different values of tb/s0. The horizontal line represents
Vpulse, where the transition to a pulse-like solution occurs.
With increasing tb/s0, the transition time increases mono-
tonically. Note that in the case with tb/s0 = 0.2778, the
transition does not occur during the duration of the calcu-
lation but V keeps decreasing. Here the question arises, is
this solution incorrectly identified as crack-like simply
because the calculation is too short? Figure C1d is a plot
of the inverse of the crack-pulse transition time as a function
of tb/s0, which reveals that the transition time appears to
diverge at a finite value of tb/s0 around 0.28. Therefore we
conclude that there are indeed crack-like solutions that will
never become pulses, no matter how far they propagate.

C2. Transition Behavior Accounting for T
and p Changes

[85] When T and p are permitted to change, certain prop-
erties of the crack-like solutions also change. Figure C2a
shows the evolution of slip rate for the crack-like rupture
shown in Figure 2a (r = 0.8, 2w = 25 mm, tb/s0 = 0.2143).
Deceleration of fault motion takes place behind the rupture
front followed later by acceleration. We take this acceleration
as an indication of the transition to a crack-like solution. The
calculations with T and p changes were carried out at least
until we recognized the transition to a crack-like solution or
growing/arresting slip pulse solution. Figure C2b shows a
plot of friction coefficient versus slip rate at x = 0.1 m. The
trajectory traces in the direction of decreasing V just below
fss(V, T) behind the rupture tip although fss(V, T) depends on
T. However, at a certain point, the trajectory reverses and
moves in the direction of higher velocities and lower
friction coefficients. In this case, V, T, and p keep increasing
(Figure C2c), and it is likely that this point will eventually
achieve either a complete stress drop or the onset of melting;
its fate depends on hydraulic properties and the width of
the shear zone [Rempel and Rice, 2006]. Figure C2d shows
the history of f and fss(V, T) at x = 0.1 m, indicating that
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fss(V, T) becomes larger than f at the transition to a crack-
like solution and, after that, f traces just above fss(V, T).
[86] Figure C3a shows details of the growing pulse

solution in Figure 4b (r = 0.8, 2w = 50 mm, tb/s0 =
0.2143). This case is very similar to the case without T
and p changes; behind the rupture front, f traces just below
fss(V, T) before changing its track to a radiation-damping
line (Figure C3b). Figure C3c shows the history of V, T, and
p at x = 0.1 m, showing how diffusion of heat and fluid
away from the shear zone reduce T and p after fault motion
ceases; this is accompanied by an increase in fault strength.
In pulse-like solutions, f is always below fss(V, T) after the
rupture front passes, and the transition to a pulse-like
solution takes place before one to a crack-like solution
(Figure C3d). Following the discussion in the previous
sections, we discuss this in terms of Vpulse.

C3. Improved Condition for Nonexistence of
Crack-like Ruptures

[87] We can also use the singular crack model discussed
in Appendix A to obtain an improved estimate of the
critical stress level below which crack-like ruptures cannot
exist. Our strategy is to estimate the elastodynamic rela-
tion between t and V from the singular crack solution,
and ask whether or not there is a simultaneous solution to
this equation and the steady state strength expression
(equation 25).

[88] At x = 0, the slip rate in the singular crack solution is

V1 ¼ F
vr

cs

� �
Dt
m

vr; ðC2Þ

and, at x 6¼ 0, slip rate decreases from infinity at the rupture
front to V1 as t ! 1. If V1 > Vpulse, then rupture likely
continues in a crack-like mode. On the other hand, if V1 <
Vpulse, then rupture will transition to pulse-like mode.
Therefore a condition for a pulse-like rupture can be written as

F
vr

cs

� �
Dt
m

vr

Vpulse
< 1: ðC3Þ

With the current selection of the parameters,Vpulse = 1.487m/s,
at which fss(V

pulse, T0) = 0.1885. Approximating (vr/cs)F(vr/cs)
� 1, equation (C3) yields Dt < 14.87 MPa, or Dt/s0 <
0.1180. The friction coefficient at high slip rates is between
fss(V

pulse, T0) and fw, the average of which is fd = 0.1593. Then
the condition on tb for a pulse-like rupture is

tb

s0

¼ fd þ
Dt
s0

< 0:2773; ðC4Þ

which agrees well with the background stress level at which
the transition time diverges, although there is uncertainty in
estimating Dt and vr.

Figure C1. (a) A trajectory of (V, f) for a pulse-like solution, neglecting changes in T and p, at x = 0.1 m.
Parameters are indicated in Figure 2. The transition to a pulse-like solution is recognized by the deviation
from tss(V) = s0fss(V, T0) at V = Vpulse. (b) The trajectory around the transition to pulses plotted in a linear
velocity scale. [1] to [4] correspond to the stages of the fault motion explained in the text. (c) Slip rate
histories for various tb. The transition time to a pulse-like solution increases with tb, and for the case
with tb/s0 = 0.2778, the transition does not occur during the calculation. (d) Inverse of the transition time
plotted against tb, showing that the transition time diverges at a finite tb.
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Appendix D: Numerical Implementation

[89] In this appendix, we describe the implementation of
thermal pressurization and flash heating (in the framework
of rate-and-state friction) in our spectral boundary integral
equation code. We first discretize the fault using a uniform
grid spacing Dx (in the boundary integral equation method,
only the fault is discretized). Diffusion of heat and pore
fluid is calculated using a finite difference method by
setting, at each point along the fault, a one-dimensional
grid perpendicular to the fault with uniform spacing Dz.
This is illustrated in Figure D1a.
[90] At each point on the fault, the system of equations

that we solve, specifically equations (1), (8), (11), (12), and
(21), can be written in the form

@d
@t

¼ V x; tð Þ ðD1Þ

@qi
@t

¼ Gi V x; tð Þ; qj x; tð Þ
� �� �

i; j ¼ 1; 2; . . .ð Þ; ðD2Þ

with V(x, t) given by the functional equation obtained by
equating the elastic shear stress to the interfacial shear
strength (i.e., by combining equations (1) and (21)):

t0 x; tð Þ � m
2cs

V x; tð Þ þ f x; tð Þ ¼ sf V x; tð Þ; qi x; tð Þf g½ 
: ðD3Þ

Here {qi(x, t)} contains both the state variable Q and the set
of values of T and p after spatial discretization of the
diffusion equations in the z direction. Gi denotes a known
function describing the temporal evolution of qi(x, t) (i.e.,
the state evolution equation and the spatially discretized
thermal pressurization equations). The functional term f(x,
t) is a convolution of the slip history with a known
elastodynamic kernel K(x, t):

f x; tð Þ ¼
Z t

0

Z 1

�1
K x� x0; t � t0ð Þd x0; t0ð Þdx0dt0: ðD4Þ

The convolution is performed by representing d(x, t), and
hence f(x, t), as a function which is periodic in x with repeat
length l that is chosen large enough so that waves from
neighboring replicates do not influence rupture develop-
ment over the time of calculation. Hence d(x, t) and f(x, t)
can be written as Fourier series in x, which we truncate to
the finite series

d x; tð Þ ¼
XN=2

n¼�N=2

Dn tð Þ exp 2pinx=lð Þ

f x; tð Þ ¼
XN=2

n¼�N=2

Fn tð Þ exp 2pinx=lð Þ; ðD5Þ

where N is a large even number and, because the functions d
and f are real, D�n and F�n are the respective complex

Figure C2. A crack-like solution accounting for changes in T and p due to shear heating. (a) Evolution
of V. Slip acceleration occurs in the central region of the rupture. The white lines show contours for V =
1.0, 1.2, and 1.5 m/s. Contours at the rupture tip are not plotted. (b) A trajectory of (V, f) at x = 0.1 m
reverses in the high-V and low-f direction (indicating the transition to a crack-like solution). (c) Time
history of V, T, and p at x = 0.1 m. T and p keep increasing after the transition to a crack-like solution.
(d) Time history of f and fss(V, T). At the transition to a crack-like solution, f becomes larger than fss(V, T).
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conjugates of Dn and Fn (and D0 and F0 are real). The
convolution is then equivalent to

Fn tð Þ ¼
Z t

0

K̂ 2pn=l; t � t0ð ÞDn t0ð Þdt0

K̂ k; tð Þ ¼
Z 1

�1
K x; tð Þ exp �ikxð Þdx: ðD6Þ

For mode III ruptures K̂ (k, t) = �(mjkj/2) J1 (jkjcst)/t, where
J1 is a Bessel function [Perrin et al., 1995].
[91] In keeping with FFT methodology, we represent the

coefficients Dn, Fn in terms of the values of d, f at N equally
spaced spatial sample points xk = k l/N, with k = 0, 1, 2, . . .,
N � 1 (in the actual calculation, we shift xk by �l/2 to place
the center of our rupture at x = 0). The imaginary parts of
DN/2, FN/2 correspond to coefficients of the term sin(p N x/
l) in the Fourier series, which vanishes at all the sample
points. Those coefficients, like all the neglected ones of
higher frequency (jnj > N/2) sine and cosine terms in a
complete series, cannot be determined by the N sample
point values, and are set to zero (i.e., we require that DN/2,
FN/2 be real). Then, for example, in the case of d and Dn,
with notation dk (t) = d(xk, t),

dk tð Þ ¼
XN=2

n¼�N=2

Dn tð Þ exp 2pink=Nð Þ ðD7Þ

and multiplication by exp(�2p imk/N) and summing on k
from 0 to N � 1 shows the inverse expression

Dm tð Þ ¼ 1

N

XN�1

k¼0

dk tð Þ exp �2pimk=Nð Þ;

m ¼ 0; 1; 2; ;
N

2
� 1

DN=2 tð Þ ¼ 1

2N

XN�1

k¼0

dk tð Þ exp �2pi N=2ð Þk=N½ 
: ðD8Þ

Note that D0 and DN/2 are thus given as real expressions (the
exp terms are then ±1) so there is the expected number, 2 +
2 � (N/2 � 1) = N, of parameters in this representation. For
further discussion of this representation, see Trefethen
[2000, pp. 17–19]. Standard FFT routines can be used to
go back and forth, as we must do in each time step, from the
spatial (dk) to spectral (Dn) representations.
[92] The initial conditions d(x, 0) and {qi(x, 0)} are given.

Note that neither t(x, 0) nor V(x, 0) can be specified
independently of the given initial conditions; instead, they
are calculated by solving the constraint equation (D3).
Combining equations (D1)–(D4) yields a set of coupled
functional differential equations for d(x, t) and {qi(x, t)}.
[93] An extensive literature exists on the numerical solu-

tion of functional differential equations [e.g., Baker, 1996,
2000; Brunner, 2004]. Solution methods are similar to those
for ordinary differential equations (ODE), with the addi-
tional necessity of choosing an appropriate quadrature rule

Figure C3. A growing slip pulse solution accounting for changes in T and p due to shear heating.
(a) Evolution of V. Healing of the fault is initiated at the central region and propagates at slightly less than
cs. (b) A trajectory of (V, f) at x = 0.1 m changes its track from fss(V, T) to a radiation-damping line at the
transition to a pulse-like solution. (c) Time history of V, T, and p at x = 0.1 m. T and p decrease because of
diffusion after the fault is locked. (d) Time history of f and fss(V, T) at x = 0.1 m. The transition to a slip
pulse solution occurs (f diverges from fss(V, T)) before the transition to a crack-like solution occurs.
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to evaluate the functional term Fn(t). With the exception of
certain low order quadrature methods, this requires a
continuous approximation of Dn(t) for any past time t.
The main classes of ODE solvers, such as one-step (e.g.,
Runge-Kutta [Enright et al., 1994]) and multistep methods,
can be brought to bear on functional differential equations
[Tavernini, 1971; Cryer and Tavernini, 1972]. The particu-
lar approach we use in this study is a second-order method
similar to Heun’s method [Cryer and Tavernini, 1972] and
the method proposed by Lapusta et al. [2000] within the
context of the spectral boundary integral equation elastody-
namic framework. The method can be thought of as a
second-order predictor-corrector method, for which
higher-order generalizations in the form of multistep meth-
ods have been studied by Jackeiwicz [1986]. The method
falls within the class of continuous Runge-Kutta methods
[Baker, 1996; Bellen and Zennaro, 2003] which permit
evaluation of Dn(t

0) (and {qi(x, t0)}, though this is not
necessary) for any t0 in [0, t] (which permits the use of
high-order quadrature rules to evaluate the functional term).
The second-order method we use provides second-order
accurate values of Dn(t

0) via a quadratic interpolation
polynomial, as discussed by Bellen and Zennaro [2003,
p. 122] and Maset et al. [2005]. For those wishing to
develop higher order one-step methods, Maset et al.
[2005] has introduced a family of explicit continuous
Runge-Kutta methods up to fourth order. For neutral func-
tional differential equations (i.e., ones in which the time
derivative of the field appears within the functional term),
an approximation to the rates at past times is also needed
and an iterative solution for the rates at the current time step

is required [Enright and Hu, 1997]. This case arises for our
equations if the functional in (D4) is integrated by parts to
extract the static elastic response. The remaining convolu-
tion integral involves the spatial Fourier transform of V(x,t)
at the current and previous times [Perrin et al., 1995;
Geubelle and Rice, 1995]. Jackeiwicz [1986] cautions that
the approximation of the rates must be at least one order
greater than the approximation of the fields; otherwise, the
method suffers from order reduction.
[94] The method we describe below explicitly integrates

our system of equations with second-order accuracy in time,
provided that the solution and its derivatives are sufficiently
continuous. Heat and fluid mass transport, equations (11)
and (12), are calculated using an explicit finite difference
method by setting a uniformly spaced one-dimensional grid
perpendicular to the fault plane (Figure D1). We assume a
symmetric response of the two sides of the fault, which
permits us to restrict our attention to one side only, using the
boundary conditions

@T

@z

���
z¼0

¼ 0 ðD9Þ

@p

@z

���
z¼0

¼ 0 ðD10Þ

Since the integration method is explicit, the time step must
be sufficiently small for stability. Insight into the time step
stability constraints can be obtained by a matrix analysis of
the discrete system (e.g., as done in the work of Lapusta et
al. [2000]). We have performed this analysis by studying the
stability properties of steady sliding (for which a linear
temperature profile exists normal to the fault). While this
analysis provided insight into the necessary time step
restrictions, we ultimately adopted an adaptive time
integration procedure that automatically selects the step
size in order to bound error below a specified tolerance.
However, it is useful to briefly comment on several easily
recognized time step constraints. There are at least three
timescales of interest in our equations. First, the elastody-
namic timescale is the transit time of a shear wave between
neighboring grid points along the fault, Dx/cs. Second, the
state variable evolves over L/V. Third, we have the diffusion
timescale between neighboring grid points normal to the
fault, Dz2/amax, where amax = max {ath, ahy}. The first two
timescales are linked by the choice of Dx, and selection of a
proper Dx guarantees that the elastodynamic time step is
sufficient for integration of the state evolution equation as
well [e.g., Lapusta et al., 2000]. The diffusion timescale is
somewhat independent of the first two, and for the
parameters and resolutions of interest to us, it is always
shorter than the other timescales. Increasing the spatial
resolution of the diffusion grids while holding everything
else fixed increases the difference between the diffusion and
elastodynamic timescales. For the typical resolutions of
interest in this work, there are typically tens of diffusion
time steps within a single elastodynamic time step, making
our system moderately stiff. One option would be to
integrate the entire system of equations at the smallest time
step; however, this requires storage of the slip history at all
of these smaller time steps, which increases memory

Figure D1. Schematic diagrams showing discretization
(a) in space and (b) in time. (a) Heat and fluid flow are
solved on a one-dimensional finite difference grid perpen-
dicular to the fault, and (b) multiple substeps are taken
adaptively within a single elastodynamic time step.
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requirements by an order of magnitude. Furthermore,
evaluation of the temporal convolution is computationally
expensive, so we wish to avoid this if possible. Therefore
we have adopted a substepping procedure (Figure D1b), in
which we integrate our system of equations over smaller
time steps within a single elastodynamic time step. To do
this, we store the slip history (as Dn(t)) and also compute
f(x, t) only at the elastodynamic time steps, but interpolate
f(x, t) when integrating within the elastodynamic time step.
[95] The specific method to advance from the current

time t to t + Dt follows. Assume that the values of d(x, t)
and {qi(x, t)} are known from the previous time step, as well
as the functional term f(x, t) and the slip history d(x, t0) for t0

in [0, t].
[96] 1. Set the slip rate at the beginning of the time step

by setting stress equal to strength and solving, for V(x, t),
the nonlinear equation (D3).
[97] 2. Explicitly integrate slip:

d x; t þDtð Þ ¼ d x; tð Þ þDtV x; tð Þ: ðD11Þ

[98] 3. Evaluate the stress transfer functional f(x, t + Dt)
using the procedure discussed below.
[99] 4. Return to the start of the elastodynamic time step

and adaptively integrate from t to t + Dt. In particular, the
problem at each point on the fault is posed as a set of
coupled ODEs. While the system of equations to be solved
is identical to that given before in equations (D1), (D2), and
(D3), instead of evaluating the computationally expensive
convolution in (D4) at each substep, the functional term is
now approximated by a quadratic interpolant through f(x, t
� Dt), f(x, t), and f(x, t + Dt):

f x; t0ð Þ ¼ f x; tð Þ þ t0 � t

2Dt
f x; t þDtð Þ � f x; t �Dtð Þ½ 


þ t0 � tð Þ2

2Dt2
f x; t þDtð Þ � 2f x; tð Þ þ f x; t �Dtð Þ½ 
:

ðD12Þ

Note that this requires knowing f(x, t �Dt), which we store
in memory. For the first time step, we simply use a linear
interpolant. Using this continuous function f(x, t0), it is
possible to integrate the set of ODEs with any conventional
ODE integration package. In this work, we use an
embedded 3(2) Runge–Kutta procedure that bounds rela-
tive error at each substep below a given tolerance (taken
to be 10�3 here). The particular scheme we use is given by
Dormand [1996, p. 79], and provides both a second- and
third-order estimate of the solution (the difference of which
provides an estimate of the error associated with the second-
order solution). We run the scheme in local extrapolation
mode by updating with the higher-order estimate, despite
the fact that an error estimate exists only for the lower order
estimate. The adaptive time steps are determined by a PID
(proportional-integral-derivative) feedback error controller
that utilizes error estimates from previous time steps within
a control-theoretic framework to provide smooth variations
in time step lengths [Gustafsson, 1991; Söderlind, 2002;
Hairer and Wanner, 2004]. At the end of this step, we have
values of d(x, t + Dt) and {qi(x, t + Dt)}.

[100] 5. Iterate by repeating steps 3 and 4 as many times
as desired to obtain increasingly more accurate values of
d(x, t + Dt), {qi (x, t + Dt)}, and f(x, t + Dt). A single
iteration, as taken in Heun’s method, is used in this work.
[101] Heun’s method is an example of a continuous

Runge–Kutta method for which a second-order accurate
estimate of d(x, t0) for t0 in [t, t + Dt] is given by the
quadratic interpolation formula (obtained by integration of a
linear interpolant for V(x, t0) between t and t + Dt):

d x; t0ð Þ ¼ d x; tð Þ þ V x; tð Þ t0 � tð Þ

þ 1

2
�V x; tð Þ þ V x; t þDtð Þ½ 
 t0 � tð Þ2

Dt
: ðD13Þ

A similar formula provides qi(x, t
0). Note, in particular, that

d x; t þDtð Þ ¼ d x; tð Þ þ 1

2
V x; tð Þ þ V x; t þDtð Þ½ 
Dt; ðD14Þ

as is used in the second integration step. The estimate of d at
the midpoint of the time step, which might be used in a
midpoint quadrature method for evaluating f(x, t + Dt) is

d x; t þDt=2ð Þ ¼ d x; tð Þ þ 3

8
V x; tð Þ þ 1

8
V x; t þDtð Þ

� �
Dt

ðD15Þ

rather than the average of the values at t and t + Dt:

d x; t þDt=2ð Þ 6¼ 1

2
d x; tð Þ þ d x; t þDtð Þ½ 


¼ d x; tð Þ þ 1

4
V x; tð Þ þ V x; t þDtð Þ½ 
Dt: ðD16Þ

To compute the transform of the functional, Fn(t + Dt), we
must define an appropriate quadrature rule for the temporal
convolution. It has been shown that the order of the
quadrature rule must be greater than or equal to the order of
the step-advancement scheme to preserve the overall order
of accuracy [Cryer and Tavernini, 1972]. In our method,
we know (and have stored) the values of Dn(t) at a set of
uniformly spaced elastodynamic time steps {tn} = {n Dt},
n = 0, 1, . . .. We then integrate using the trapezoid rule,
which provides a second-order accurate formula:

Fn t þDtð Þ ¼Dt

2
K̂ k; t þDtð ÞDn 0ð Þ

þDt
XN
n¼1

K̂ k; t þDt � tnð ÞDn tnð Þ

þDt

2
K̂ k; 0ð ÞDn t þDtð Þ: ðD17Þ

The midpoint rule could alternatively be used, using the
value given by the continuous interpolant (D15).

Appendix E: Convergence Analyses

[102] Because of extremely short state evolution distances
(L � 20 mm), and high rates of velocity weakening, it is
challenging to simulate even several meters of rupture
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propagation. Neglecting thermal pressurization, the critical
grid spacing required for a stable numerical solution with
rate-and-state friction is [Lapusta et al., 2000]

h* ¼ p
4

mL
max �@fss=@ lnVð Þf gs0

; ðE1Þ

where max is taken over all V, is very small. The
constitutive law, equation (6), and the physical properties
used in this work (Table 1) yield h* = 7.003 mm, with the
maximum value of �@fss/@(lnV) occurring at V = Vw.
[103] h* is obtained from a linear stability analysis about

states of steady sliding. Under the highly nonlinear con-
ditions at a rupture front, the length scale that must be
resolved for an accurate solution is that characterizing the
strength drop, from approximately f0 s0 to fw s0. This length
scale is �m L/(f0 � fw) s0 times a monotonically decreasing
function of vr. Contraction of the process zone with increas-
ing vr makes this problem even more numerically demand-
ing than implied by equation (E1).
[104] We first conducted a set of convergence tests in

which we refined either Dx or Dz while holding the other
grid spacing fixed. With these tests we were able to
determine the relative contribution to the total error coming
from the spatial discretization of the elastodynamic equation
and from the diffusion equations. To maximize computa-
tional efficiency, it is desirable that the relative error
contributions be approximately equal. In other words,
nothing is gained by using an incredibly fine grid spacing
for the diffusion equations without simultaneously using a
fine grid spacing to discretize the fault. We found that the
error contributions from the two spatial discretizations were
approximately equal for Dx/Dz = 100.
[105] We then performed a convergence test in which we

refined bothDx andDz simultaneously, with a fixed ratio of
Dx/Dz = 100, for the case with 2w = 100 mm, r = 0.8, and
tb/s0 = 0.2381. Figure E1a shows the L1 errors (the
maximum, over the entire fault, of the absolute value of
the error) in d, V, t, T, and p at t = 84 ms, with respect to the
case with Dx = 3.125 � 10�2 mm and Dz = 3.125 � 10�4

mm, showing second-order convergence. Note that the L1
errors are almost always determined by a single grid point at

the rupture front. The magnitude of the numerical error is
not negligibly small at the rupture front; for Dx = 0.5 and
1 mm, the L1 error in V is on the order of 1 m/s and the
peak value of V is around 15.6 m/s (making a 6% relative
error). However, the main target of this work is to determine
the rupture mode (crack or pulse), and the distinguishing
features of these rupture modes are first seen in the central
region of the rupture (Figures C2a and C3a). Figure E1b
shows the error in the fields at the central pair of grid points,
showing that the numerical error in V at the center of the
rupture is very small, and the solution converges with
second-order accuracy; with Dx = 1 mm, the error in V is
below 1 mm/s. In the calculations presented in the main part
of this paper, we use Dx = 0.5 mm and Dz = 5 mm in the
cases with 2w = 100 mm, such that the expected numerical
errors are on the order of 0.01 mm in d, 0.1 mm/s in V,
0.1 kPa in t, 10�3 K in T, and 1 kPa in p at the center
of the rupture. In simulations with different values of 2w,
we change Dz to maintain a fixed number of grid points
within the shear zone by setting Dz = 0.1w.
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