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Abstract Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed
in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal
reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within
them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis,
valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation
of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit,
anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from
fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel.
Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or
fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always
fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from
viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures
likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and
attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic
fracture using both the seismically observed quality factor and characteristic frequency. Finally, we
develop scaling relations between seismic moment and characteristic frequency that might be useful
when interpreting the statistics of hydraulic fracture events.

1. Introduction

Fluids in Earth’s subsurface are of great societal interest. Petroleum, fracturing, and geothermal fluids are
basic components of the energy system; magmatic fluids in volcanoes are associated with natural hazards;
the fossilized remains of ancient volcanic intrusions provide insights into past tectonic environments; and
liquid water in ice plays a critical role in the response of the cryosphere to a changing climate. Such fluids
are commonly contained in fractures. Fractures are pervasive in geologic media, and fluid-filled fractures are
the dominant fluid pathway in media with low intrinsic permeability. In the cryosphere, fluid-filled fractures
occur as glacial crevasses as well as thin sheets of water at the bed of glaciers [Creyts and Schoof, 2009].
In volcanoes, such fractures occur as magma-filled dikes and sills [Rubin, 1995], while in geothermal and
hydrocarbon reservoirs they provide either preexisting or stimulation-induced fracture space [Gale
et al., 2007]. Because of the expense and sometimes impossibility of in situ measurements, the ability to
characterize fluid properties and fracture geometry using the seismic wave field is thus highly desirable.

Seismic waves originating from fluid-filled fractures offer a window into these difficult to observe systems.
Swarms of shallow (<5 km) volcanic long-period (LP; 0.2–2 s) events represent a forecasting tool of the
climactic stage of volcanic eruptions [Chouet et al., 1994; Chouet, 1996; Sparks et al., 2012]. Seismic signals
in ice sheets have been used to infer the timing and propagation of a subglacial outburst flood beneath
the West Antarctic Ice Sheet [Winberry et al., 2009]. Tary et al. [2014] relate seismograms recorded during
reservoir stimulation to the geometry of induced hydraulic fractures in an unconventional hydrocarbon
reservoir. Although these geologic settings are diverse, observed seismic waveforms in each case share
many common features.

The most notable attribute of seismic signals emanating from fluid-filled fractures is the presence of one
or more characteristic frequencies. The Fourier spectra of such signals are therefore strongly peaked or
band limited. The characteristic frequencies sometimes, but not always, have a harmonic relationship.
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Table 1. Seismic Observations and Inferred Geometries

Observation Modela

Study Location f1 (Hz) Q1 L (m) 2w0 (m)

Anandakrishnan and Alley [1997]b Kamb Ice Stream 75 500 2 0.04
Winberry et al. [2009]c MacAyeal Ice Stream 3 3 7 0.002
Métaxian et al. [2003]d Cotopaxi Glacier 1 1 12 0.002
Stuart et al. [2005]e Bakaninbreen 75 30 0.9 0.003
West et al. [2010]f Bering Glacier 6 3 4 0.001
Kumagai and Chouet [1999]g Kusatsu-Shirane Volcano 8 400 30–60 0.1–20
Kumagai and Chouet [1999]g Galeras Volcano 3 1000 80–200 0.4–60
Kumagai and Chouet [1999]g Kilauea Volcano 1.5 40 50–200 0.02–4
Kumagai and Chouet [1999]g Redoubt Volcano 6 40 20–50 0.01–2
Ferrazzini et al. [1990]h Fenton Hill Geothermal Site 112 20 1 0.001
Tary et al. [2014]i Cardium Formation 17 40 7 0.008

aThe range of values presented for volcanic LP events indicates estimates based on a water-filled fracture
(smaller value) and a fracture filled with basaltic magma (larger value). Length and width estimates for
cryospheric systems are calculated for a water-filled fracture in ice and estimates for reservoirs are calculated
for water-filled fractures in rock.

bSeismogram from this study downloaded from iris.edu. A representative event is used from data
recorded at station XF.DN3S on day 335 of 1995 at 03:05:45.9120 local time. The quality factor was
computed from the spectrum of the entire 12 s trigger window.

cData from their Figure 2c. Quality factor reported by Winberry et al. [2009].
dData from their Figure 4. Quality factor reported by Métaxian et al. [2003].
eData from their Figure 5a. Quality factor measured from spectrum.
fData from their Figure 2a, “Low-Frequency” trace. Quality factor measured from seismogram.
gData from their Figure 2.
hData from their Figure 3a, “Event 2.” Quality factor reported by Ferrazzini et al. [1990].
iData from their Figure 9b. Quality factor reported by J. Tary (personal communication, 2014).

The presence of harmonic spectral peaks suggests resonance phenomena [Aki et al., 1977]. Observations
typically have the lowest characteristic frequency f1 in the range of 1 to 1000 Hz (Table 1). When interpreted
as a fundamental resonant frequency, f1 is expected to be related to a wave speed c and fracture length L
by f1 ∼ c∕L. This relationship suggests a method for estimating the subsurface crack length L using the
seismically observable frequency f1. The crux of such an analysis is the choice of the proper wave speed.
Fluid-filled fractures act as dispersive waveguides, where waves experience dispersion due to the elasticity
of the hydraulic fracture walls [Krauklis, 1962; Paillet and White, 1982; Chouet, 1986; Ferrazzini and Aki, 1987].
The frequency dependence of the wave speed must therefore be taken into account in order to correctly
interpret observed resonant frequencies.

The speed of wave propagation is determined by the restoring forces acting along the fracture. There are
two important end-member restoring force regimes (Figure 1a). In the limit that the fracture walls are rigid
compared to a highly compressible fluid, disturbances are accommodated as sound waves with sound wave
speed c0 ≡ √

Kf∕𝜌0 for fluid bulk modulus Kf and nominal fluid density 𝜌0. In the opposite limit, the crack
walls are highly deformable and the fluid is nearly incompressible. Waves in this setting will propagate as
crack (or Krauklis) waves with the dispersive crack wave speed [Krauklis, 1962],

cw ≡
(

G∗

𝜌0
w0𝜔

)1∕3

. (1)

Here G∗ = G∕(1−𝜈s) for solid shear modulus G and Poisson ratio 𝜈s, w0 is the unperturbed conduit half width,
and 𝜔 is the angular frequency. Note that (1) provides sensitivity of f1 to the aperture. However, even when
fluid and solid material properties are known, observation of f1 alone is insufficient to uniquely constrain
both L and w0.

Seismic events due to fluid-filled fractures may have either an impulsive or a continuous nature. In vol-
cano seismology, impulsive, monochromatic seismograms are termed long period or LP events; continuous,
monochromatic seismograms are termed volcanic tremor. The latter may have a duration from minutes to
days and sometimes months or longer [Chouet and Matoza, 2013]. Similar long-duration, monochromatic
seismic signals have been observed in Antarctic ice streams [Winberry et al., 2009] and during hydraulic
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Figure 1. (a) Two limits of the compressibility ratio Ω for an inviscid fluid. In the sound wave limit (Ω ≫ 1), the walls
are effectively rigid and a convergent velocity field compresses the fluid and increases its density. In the crack wave limit
(Ω ≪ 1), the fluid is effectively incompressible and a convergent velocity field pushes the conduit walls apart. Shading
indicates the fluid density. (b) Velocity profiles in the fluid are drawn for a rigid-walled conduit. The left figure shows plug
flow with boundary layers. The right plot shows the fully developed, parabolic flow profile.

fracturing of geothermal [Bame and Fehler, 1986; Ferrazzini et al., 1990] and tight gas reservoirs [Tary et al.,
2014]. Events with an impulsive nature often show a gradual amplitude decay in the latter part of their wave
train or coda.

Amplitude decay is described by a quality factor Q. The quality factor describes the damping of a resonating
fracture and corresponds to the number of oscillations that an impulsive signal undergoes before decay
to e−𝜋 ≈ 4% of its original amplitude. Alternatively, sustained excitation in the source region may result
in sustained oscillations. Such oscillations may not have a discernible decay time, and for such signals the
quality factor may be measured from the width of a spectral peak. Observations generally constrain Q in the
range of 1 to 1000 (Table 1). The physical origin of amplitude decay lies in two mechanisms of attenuation:
fluid viscosity and emitted seismic radiation [Aki, 1984; Chouet, 1992].

The purpose of this work is to study the role of viscous damping of hydraulic fracture guided waves. Two
end-member fluid flow states are delimited by the timescale of viscous momentum diffusion across the
width of the crack:

𝛼−1 ≡ w2
0∕𝜈, (2)

where 𝜈 is the kinematic viscosity. At timescales shorter than 𝛼−1, the fluid velocity is nearly constant across
the conduit and the effects of viscosity are confined to narrow boundary layers along the fracture walls. In
the opposite limit, at timescales greater than 𝛼−1, the fluid velocity field has a parabolic, or fully developed,
profile. As examples, basaltic magma in a 1 m wide fracture has 𝛼−1 ≈ 10 s and water in a 1 mm wide fracture
has 𝛼−1 ≈ 1 s. Because seismic frequencies of interest for hydraulic fracturing events are commonly in the
range of 1–1000 Hz, a proper description of the hydraulic fracture seismic source must account for boundary
layer formation. We restrict attention to low Reynolds number, laminar flows, and we assume that the
background flow speed in the conduit is negligibly small; all fluid flow in our analysis arises from
perturbations to the conduit.

The effects of viscosity have received varying degrees of analysis in previous studies. Many studies have
taken the fluid to be inviscid [Aki et al., 1977; Ferrazzini and Aki, 1987; Kumagai and Chouet, 1999, 2000,
2001; Kumagai et al., 2002; Yamamoto and Kawakatsu, 2008]. Chouet [1986, 1988, 1992], and Dunham and
Ogden [2012] study the motion of a viscous fluid but assume fully developed flow. Deviations from full flow
development have been explored in several recent analytical [Korneev, 2008, 2010; Nakagawa and Korneev,
2014] and numerical [Frehner and Schmalholz, 2010; Frehner, 2014] studies. Several studies have also
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considered turbulent [Hellweg, 2000; Dunham and Ogden, 2012; Tary et al., 2014] and even multiphase flows
[Kumagai and Chouet, 2000; Morrissey and Chouet, 2001; Jousset et al., 2004].

Our analysis is most similar to that of Korneev [2008, 2010], but he derives a more general dispersion relation
from the linearized Navier-Stokes equation for the fluid and elastic wave equation for the solid. Furthermore,
Nakagawa and Korneev [2014], extending the work of Nakagawa and Schoenberg [2007], consider fractures
filled with a poroelastic material. That material provides additional stiffness and increases crack wave
speeds, particularly at low frequencies. Their framework for analysis also permits consideration of more
general relations between pressure gradients along the fracture and the resulting fluid flow. From these
various formulations, Korneev [2008, 2010] and Nakagawa and Korneev [2014] take certain limits to examine
interesting parts of parameter space, such as when wavelengths are much larger than the crack width. In
contrast, we employ various approximations from the outset to arrive at a simplified, approximate set of
governing equations. We anticipate that this formulation will be useful for efficient numerical simulation
of wave interactions with hydraulic fractures. Solutions to the dispersion relation resulting from our
approximate equations reproduce known asymptotic results derived by various authors in relevant limits.

In many cases, we expect that viscous dissipation will control the overall damping of resonant modes. In
this limit, we show that observation of the quality factor Q1 at the frequency f1 provides a second constraint
on fracture length and aperture. This constraint complements the relation provided by observations of
fundamental resonant frequency f1. Together, these two observables provide a means to uniquely constrain
fracture geometry when the fluid and solid mechanical properties are known. Using closed-form
expressions for f1 and Q1 in the boundary layer crack wave limit, we can write expressions for fracture
length L and width 2w0 in terms of these seismically observable quantities:

L = 1
2

[
𝜋𝜈

(
G∗

𝜌0

)2 Q2
1

f 5
1

]1∕6

, (3)

2w0 = Q1

√
𝜈

𝜋f1
. (4)

These relations arise from the condition that at resonance for the fundamental mode, wavelengths will be
twice the crack length, as discussed in section 7. In addition, Figures 6–8 present a graphical method for
estimating L and w0 using f1 and Q1, based on numerical solution of the dispersion relation. This graphical
method provides a more complete solution than (3) and (4) that includes the fully developed and boundary
layer flow regimes as well as the rigid and deformable wall limits.

2. Governing Equations

We consider an infinitely long, fluid-filled fracture or conduit that is bounded by two elastic half-spaces
(Figure 1). The conduit and all perturbations are taken to be symmetric about the midplane y = 0. The walls
of the conduit are located at y = −w(x, t) and y = w(x, t). The conduit walls are initially planar and parallel,
with w(x, 0) =w0. Symmetry allows us to restrict attention to y ≥ 0; we consider the two-dimensional
problem with invariance in the z direction.

Direct observations indicate that hydraulic fractures in geologic media are thin in the sense that their lateral
extent is often 2 to 4 orders of magnitude greater than their cross-sectional opening. This thinness is
apparent in aerial images of glacial crevasse fields [Cuffey and Patterson, 2000], outcrops of ancient volcanic
dikes [Gudmundsson, 1983; Walker, 1987; Kavanagh and Sparks, 2011], observations of modern dike
extension [Segall et al., 2001; Calais et al., 2008; Biggs et al., 2009], and images and cores containing fractures
taken from within boreholes [Barton et al., 1995; Gale et al., 2007]. We therefore take the conduit half-width
w0 to be very narrow in comparison to the fracture-parallel length scale 𝜆 (the crack length or wavelength
of guided waves) so that 𝜖 ≡w0∕𝜆≪ 1. We refer to this condition as the thin fracture approximation.
The condition that 𝜖 ≪ 1 places an upper wave number bound on the domain of validity of our analysis.
One consequence of this approximation is that in the short-wavelength limit, phase velocities of waves
in our model approach the sound speed rather than the slightly slower Scholte wave speed describing
propagation along a fluid-solid interface [Stoneley, 1924; Scholte, 1942, 1947].
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2.1. Fluid Flow
We examine small amplitude, symmetric perturbations to a compressible, linear viscous (i.e., Newtonian)
fluid that is initially at rest. The fluid has background or unperturbed density 𝜌0 and pressure p0 that are both
spatially uniform. Neglecting background velocity precludes flow stability analysis as described in several
previous studies [Julian, 1994; Balmforth et al., 2005; Rust et al., 2008; Dunham and Ogden, 2012; Sakuraba
and Yamauchi, 2014].

The fluid is governed by the linearized equations of mass and momentum balance. As shown in Appendix A,
neglecting small terms of O(𝜖) results in the equations

1
𝜌0

𝜕𝜌

𝜕t
+

𝜕vx

𝜕x
+

𝜕vy

𝜕y
= 0, (5)

𝜌0
𝜕vx

𝜕t
− 𝜇

𝜕2vx

𝜕y2
= −

𝜕p
𝜕x

, (6)

𝜕p
𝜕y

= 0. (7)

These governing equations introduce the dynamic viscosity 𝜇 and the fluid velocity components vx and vy ,
as well as the density 𝜌 and pressure p. The vertical momentum balance (7) shows that the fluid pressure is
constant across the conduit.

An equation of state completes the system of governing equations for the fluid. The linearized fluid equation
of state is

1
𝜌0

𝜕𝜌

𝜕t
= 1

Kf

𝜕p
𝜕t

, (8)

where Kf is the fluid bulk modulus. No advective terms arise because the background state has no gradients
in fluid density or pressure. As a result of (7) and (8), we conclude that density 𝜌 is also uniform across the
width of the conduit.

2.2. Fluid-Solid Interface Conditions
Fluid-solid coupling is achieved through interface conditions on the moving wall, y =w(x, t). In this
linearized analysis of disturbances about a fluid at rest, however, it suffices to enforce approximate interface
conditions at the location of the unperturbed conduit wall, y = w0.

Force balance at the fluid-solid interface requires that the traction exerted by the elastic solid on the viscous
fluid is equal and opposite to that exerted by the fluid on the solid:

p = −𝜎yy on y = w0 (9)

and

𝜏 ≡ −𝜇
𝜕vx

𝜕y

||||w0

= −𝜎xy on y = w0, (10)

where 𝜏 is the fluid shear stress on the wall, 𝜎ij are the components of the stress tensor in the solid, and
O(𝜖) terms are neglected within the linearization. This definition of the wall shear stress 𝜏 is consistent with
positive 𝜏 acting to decelerate a flow in the positive x direction.

The continuity or no-slip condition states that a particle of fluid that is in contact with the wall remains in
contact with the same particle of solid wall material:

vx =
𝜕ux

𝜕t
on y = w0, (11)

and

vy =
𝜕uy

𝜕t
on y = w0, (12)
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where ui are the components of displacement in the solid. The wall-normal velocity condition (12) forbids
interpenetration or separation and holds for both viscous and inviscid fluids. Equations (11) and (12) are
correct to first order, and there is no need to account for deformation-induced rotation of the interface in
this linearized analysis.

Finally, the linearized kinematic interface condition relates the motion of the interface to the velocity at the
interface:

𝜕w
𝜕t

= vy on y = w0. (13)

2.3. Width-Averaged Description
The thin fracture approximation motivates a width-averaged treatment of the fluid. The width-averaged
mass balance equation is found by integrating the mass balance (5) between y = 0 and y =w0 and
substituting the kinematic wall condition (13). The result is

1
𝜌0

𝜕𝜌

𝜕t
+ 𝜕u

𝜕x
= − 1

w0

𝜕w
𝜕t

, (14)

where the width-averaged velocity is

u(x, t) = 1
w0 ∫

w0

0
vx(x, y, t)dy. (15)

We have used the linearized width-averaging operator w−1
0 ∫ w0

0 dy. Symmetry permits integrating over the
conduit half width. Nakagawa and Korneev [2014] motivate a similar averaging operation by examining
jump conditions across the fracture walls.

The linearized and width-averaged mass balance (14) describes two ways in which the fluid-filled crack
accommodates a mass increase −𝜕u∕𝜕x. The fluid can either be compressed, as reflected in the (𝜕𝜌∕𝜕t)∕𝜌0

term, or the conduit walls can deform, as reflected in the (𝜕w∕𝜕t)∕w0 term. The relative importance of these
effects, which are illustrated in Figure 1, requires consideration of the fluid equation of state and elasticity of
the wall material; we return to this subsequently.

The linearized and width-averaged momentum balance is

𝜌0
𝜕u
𝜕t

= −
𝜕p
𝜕x

− 𝜏

w0
. (16)

The flow is accelerated by negative pressure gradients and decelerated by positive shear stresses.

2.4. Wall Elasticity
We consider linear elastic deformation of the conduit walls and limit attention to perturbations having
phase velocities much less than the elastic wave speeds. Dunham and Ogden [2012] showed that this phase
velocity regime covers most geologic systems of interest. As a result the elastic response is essentially
quasi-static. We introduce the double Fourier transform of an arbitrary function F(x, t) as

F̂(k, 𝜔) = ∫
∞

−∞ ∫
∞

−∞
F(x, t)e−i(kx−𝜔t)dtdx. (17)

In the transform domain, the relationship between the stresses and displacements on the upper wall of the
crack is (

ûx

ûy

)
=

(
− 1−𝜈s

G|k| 1−2𝜈s

2iGk

− 1−2𝜈s

2iGk
− 1−𝜈s

G|k|
)(

�̂�xy

�̂�yy

)
on y = w0. (18)

The solid shear modulus is G and 𝜈s is Poisson’s ratio. When k is complex, |k| should be interpreted as
sign(Re k)k. We have derived this relationship by taking the quasi-static limit of equation (17) of Ranjith and
Rice [2001]. The general inverse dependence on wave number indicates that the conduit is more deformable
at longer wavelengths. The use of quasi-static elasticity limits us to the regime where the fluid sound speed
c0 is less than the wall elastic wave speed. More exact theories, such as those developed by Krauklis [1962],
Paillet and White [1982], Ferrazzini and Aki [1987], Korneev [2008], and Korneev [2010], account for inertia of
the solid and make no assumptions about wavelengths being larger than the crack width, at the expense of
a more complex dispersion relation. While those analyses capture the short-wavelength behavior more
precisely, our approximate treatment is in complete agreement at the longer wavelengths that are the focus
of this work.
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3. Viscous Compressible Flow in a Deformable Conduit

In this section we describe the motion of the fluid. There are two limiting behaviors. At low frequencies the
fluid velocity profile is parabolic and the flow is fastest in the center of the conduit; the flow is said to be
fully developed. At higher frequencies the velocity profile is uniform across most of the conduit, except in
narrow boundary layers immediately adjacent to the walls. To describe these phenomena, we first solve
for the velocity profile in the cross conduit or y direction. Using this solution, we derive expressions for the
width-averaged velocity u that enters the width-averaged mass balance equation (14) and the wall shear
stress 𝜏 that enters the width-averaged momentum balance (16).

We solve the x momentum balance equation with integral transforms. Applying the transform (17) to the
momentum balance (6) yields

i𝜔v̂x + 𝜈
d2v̂x

dy2
= ik

p̂
𝜌0

, (19)

where 𝜈 ≡ 𝜇∕𝜌0 is the kinematic viscosity. Scaling analysis of (19) suggests that the character of the flow will
depend on the frequency 𝜔 relative to the viscous timescale 𝛼−1, as defined in (2). The viscous time 𝛼−1 is the
timescale required for momentum to diffuse across the conduit; 𝛼 can also be viewed as a viscous damping
rate in the fully developed flow limit. The damping ratio 𝜁 is the ratio of the damping rate 𝛼 to the angular
frequency 𝜔:

𝜁 ≡ 𝛼

𝜔
. (20)

The parameter
√
𝜁 is the Womersley number, a quantity encountered in cardiovascular mechanics

[Womersley, 1955; Barnard et al., 1966].

3.1. Fluid Velocity Profile
The symmetric solution of equation (19) that satisfies the no-slip condition (11) is

v̂x = â(y, 𝜔)
(
−ik

p̂
𝜌0

)
+ b̂(y, 𝜔)

(
−i𝜔ûx

)
, (21)

in which

â(y, 𝜔) = 1
−i𝜔

[
1 −

cosh(𝜉y∕w0)
cosh 𝜉

]
(22)

and

b̂(y, 𝜔) =
cosh(𝜉y∕w0)

cosh 𝜉
. (23)

In this solution we have introduced

𝜉 ≡
√

−i
w2

0𝜔

𝜈
, (24)

with branch cut defined so that Re 𝜉 ≥ 0 when 𝜔 is complex. Because 𝜉2 = −i∕𝜁 , it is clear that these two
parameters represent two ways to express the same information. We retain the use of 𝜉 for notational con-
venience. The solution for the fluid velocity profile (21) shows that changes in fluid velocity arise from both
the fluid pressure and the wall-parallel wall motion. The solution (21) matches that of Biot [1956] and Mavko
and Nur [1979] in the rigid wall limit.

In the time domain, the fluid velocity profile is given by a convolution integral of the form

vx(x, y, t) = ∫
t

−∞

{
a(y, t − t′)

[
− 1
𝜌0

𝜕p(x, t′)
𝜕x

]
+ b(y, t − t′)

[
𝜕ux(x, t′)

𝜕t′

]}
dt′. (25)

The kernels a(y, t) and b(y, t) may be found by inverting the transform of (22) and (23). For our purposes,
however, it is more useful to consider the following asymptotic analyses. The fluid velocity profile (21) has
two end-member behaviors: fully developed flow (𝜁 ≫ 1) and boundary layer flow (𝜁 ≪ 1).
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We begin by describing the velocity for an inviscid fluid (𝜁 = 0). In this case 𝜉 → ∞, â → 1∕(−i𝜔), and b̂ → 0.
In the time domain,

vx(x, t) = − 1
𝜌0 ∫

t

−∞

𝜕p(x, t′)
𝜕x

dt′. (26)

The fluid velocity profile is constant across the conduit, and horizontal wall motion plays no role in the fluid
motion. The fluid is uniformly accelerated by the pressure gradient.

The high-frequency limit for a viscous fluid (𝜁 ≪ 1) is characterized by the formation of narrow boundary
layers near the wall. The width of the boundary layer is ∼

√
𝜈∕𝜔. Outside of the boundary layers the velocity

profile is nearly constant and matches the inviscid solution (26). The transfer functions take the asymptotic
forms

â(y, 𝜔) = 1
−i𝜔

{
1 − exp

[
−𝜉

(
1 −

y
w0

)]}
, (27)

b̂(y, 𝜔) = exp
[
−𝜉

(
1 −

y
w0

)]
. (28)

The fluid velocity profile is

vx(x, y, t) = ∫
t

−∞
erf

(
1 − y∕w0√
4𝛼(t − t′)

)(
− 1
𝜌0

𝜕p(x, t′)
𝜕x

)
dt′ (29)

+ ∫
t

−∞
erfc

(
1 − y∕w0√
4𝛼(t − t′)

)(
𝜕2ux(x, t′)

𝜕t′2

)
dt′. (30)

In the low-frequency, fully developed flow limit (𝜁 ≫ 1)

â(y, 𝜔) =
w2

0

2𝜈

(
1 −

y2

w2
0

)
, (31)

b̂(y, 𝜔) = 1. (32)

Inverting these transfer functions shows that the velocity field has a parabolic profile:

vx(x, y, t) =
w2

0

2𝜇

(
1 −

y2

w2
0

)(
−
𝜕p
𝜕x

)
+

𝜕ux

𝜕t
, (33)

and we see that the velocity only depends on the instantaneous pressure gradient and wall-parallel wall
velocity.

3.2. Width-Averaged Fluid Velocity and Wall Shear Stress
We now calculate the width-averaged fluid velocity for use in the width-averaged mass balance (14). The
width-averaged velocity, using equations (15) and (21), is

û = 1 − T
−i𝜔

(
−

ikp̂
𝜌0

)
+ T

(
−i𝜔ûx

)
, (34)

where

T ≡ tanh 𝜉

𝜉
. (35)

In the boundary layer limit, 𝜁 ≪ 1 and to leading order in 𝜉−1,

T ≈ 1
𝜉
=
√

i𝜁. (36)

In the fully developed limit, 𝜁 ≫ 1 and

T = 1 − 1
3
𝜉2 + · · · ≈ 1 − 1

3i𝜁
. (37)
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Figure 2. (a and b) The phase relationships between pressure, velocity,
and shear stress for a time-harmonic wave having angular frequency
𝜔 and pressure amplitude A. In the fully developed flow limit (𝜁 ≫ 1),
velocity and shear stress lead the pressure perturbation. In the
boundary layer limit (𝜁 ≪ 1), pressure and velocity are in phase. The
fully developed and boundary layer characteristic velocities and shear
stresses (42)–(45) are used to normalize wave amplitudes. The motions
arise from the dispersion relation (57) with complex wave number. The
phase relationships to not depend on Ω.

The wall shear stress 𝜏 defined by
equation (10) is found by differen-
tiating the velocity field (21) and
evaluating the result at y =w0. The
result is

𝜏 = w0𝜌0T

(
−

ikp̂
𝜌0

)
+i𝜔w0𝜌0T

(
−i𝜔ûx

)
.

(38)

We combine (34) and (38) to eliminate
pressure p from the expression for wall
shear stress 𝜏 :

𝜏 = −i𝜔w0𝜌0
T

1 − T

(
û + i𝜔ûx

)
. (39)

In the fully developed flow limit (39)
takes the time domain limit

𝜏 = 3
𝜇

w0

(
u −

𝜕ux

𝜕t

)
, (40)

which shows that the wall shear
stress only depends on the difference
between the average fluid velocity and
the horizontal wall velocity. We have
used the limit that T∕(1 − T) ≈ 3i𝜁 from
(37). Neglecting horizontal wall motion,
as we later find is justified, results in
the same drag law, 𝜏 = 3𝜇u∕w0, that

was used by Dunham and Ogden [2012]. Dunham and Ogden [2012], however, used this drag law for all 𝜁 ,
including in the 𝜁 ≪ 1 limit where it is not appropriate.

In the boundary layer limit, the wall shear stress is history dependent. We eliminate pressure in (34) and (39),
and with the help of (36), we find the convolution integral

𝜏(x, t) = 𝜇√
4𝜋 ∫

t

−∞

𝜕u(x, t′)∕𝜕t′ − 𝜕2ux(x, t′)∕𝜕t′2√
𝜈(t − t′)

dt′. (41)

We note that shear stress does not depend on the fracture width in the boundary layer limit. This is expected
because the fluid shear is confined to a narrow region near the wall.

3.3. Scaling Relations
Several scaling relationships arise between 𝜏 , u, and p that may be useful in calculating the magnitudes
of these fields. In Appendix B we show that the horizontal motion of the wall has a negligible role in wave
motion. For this reason we neglect its contribution in this section.

The fully developed flow and boundary layer limits each have characteristic average velocities. In the fully
developed flow limit this characteristic velocity is

uFD ≡ w2
0

3𝜇

||||−𝜕p
𝜕x

|||| , (42)

which reflects the dominant balance in (6) between the pressure gradient driving the flow and viscous
resistance. In this limit, inertial effects are negligible and the average velocity is out of phase with pressure
(Figure 2).

In contrast, the characteristic average velocity in the boundary layer limit is

uBL ≡ 1
𝜔𝜌0

||||−𝜕p
𝜕x

|||| , (43)

now reflecting the dominant balance between the pressure gradient and fluid inertia. The presence
of boundary layers confines the effects of viscosity to a thin region near the conduit wall and, for
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time-harmonic motions, allows the central part of the flow to maintain a velocity that is in phase with the
pressure perturbation, as for an inviscid fluid (Figure 2). In the boundary layer limit the average velocity is
independent of viscosity and conduit width.

In the fully developed flow limit, the wall shear stress scales as

𝜏FD ≡ w0

||||−𝜕p
𝜕x

|||| , (44)

and in the boundary layer limit as

𝜏BL ≡
√

𝜈

𝜔

||||−𝜕p
𝜕x

|||| . (45)

As before in (41), it is useful to eliminate pressure p to state the scaling relationship between 𝜏 and u; for fully
developed flow,

𝜏FD = 3𝜇
w0

uFD. (46)

In the boundary layer limit the corresponding relationship is

𝜏BL = 𝜇
uBL√
𝜈∕𝜔

. (47)

For a linear viscous fluid, the shear stress in a viscous fluid is the product of the shear strain rate and the
dynamic viscosity. In the fully developed flow limit, momentum has diffused across the entire width of
the conduit, and the shear strain rate is ∼ uFD∕w0. In the boundary layer limit, the shear strain rate is
∼ uBL∕

√
𝜈∕𝜔, where

√
𝜈∕𝜔 is the momentum diffusion length.

We emphasize that the scaling relationships (42)–(47) are not exact expressions for the evolution of veloci-
ties and shear stresses. Rather, they are estimates of the amplitude response to a harmonic perturbation.

4. Wave Dispersion Relation

Our goal is to describe the motions that arise from the coupled fluid-elastic system. Seeking solutions with
ei(kx−𝜔t) dependence to the homogeneous equations results in a dispersion relation D(k, 𝜔) = 0 that relates
k and 𝜔.

The governing equations are the width-averaged conservation of mass (14) and x momentum (16), the
equations of elasticity (18), and the fluid drag law (38). Together, these relations form a homogeneous
system of equations:

⎛⎜⎜⎜⎜⎜⎜⎝

𝜔

Kf
0 −k 𝜔

w0
0

ikw0T 1 0 0 −𝜔2w0𝜌0T
−ik −1∕w0 i𝜔𝜌0 0 0
− 1−𝜈s

G|k| − 1−2𝜈s

2iGk
0 1 0

− 1−2𝜈s

2iGk

1−𝜈s

G|k| 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

p̂
𝜏

û
ŵ
ûx

⎞⎟⎟⎟⎟⎟⎠
= 0. (48)

In this matrix equation, the equation of state (8) was used to eliminate density 𝜌 and the kinematic boundary
condition (13) was used to eliminate vy . The system (48) has nontrivial solutions only when the determinant
of the coefficient matrix, the characteristic equation, vanishes. Without approximation, the characteristic
equation is

(T − 1)
k2c2

0

𝜔2
+

Kf

G∗w0|k| + 1 + T

[
Kf𝜔

2𝜌0

4(G′)2k2
−

Kf𝜔
2𝜌0

(G∗)2|k|2
+ (1 − 2T)

k2Kf w0

G∗|k| −
𝜔2𝜌0w0

G∗|k|
]
= 0, (49)

in which T = tanh(𝜉)∕𝜉, G∗ =G∕(1−𝜈s) and G′ =G∕(1−2𝜈s). Ignoring O(𝜖2) terms, as discussed in Appendix B,
yields the simplified dispersion relation

D(k, 𝜔) ≡
(

tanh 𝜉

𝜉
− 1

)(
c0

𝜔∕k

)2

+ 1 +
Kf

G∗|k|w0
= 0. (50)
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Several nondimensional parameters appear in the dispersion relation (50). We have already discussed the
nondimensional viscous damping parameter 𝜁 in equation (20), which enters (50) through 𝜉. The ratio of the
restoring forces from fluid compressibility and elastic wall deformation is [Dunham and Ogden, 2012]

Λ ≡ Kf

G∗|k|w0
. (51)

Understood as a ratio of wavelengths (or wave numbers), the parameter Λ = 𝜆∕𝜆el defines a characteristic
elastic coupling length scale

𝜆el ≡ 2𝜋
G∗w0

Kf
(52)

and associated wave number kel ≡ 2𝜋∕𝜆el. When Λ≫ 1, waves have restoring force from the elasticity of
the conduit walls. When Λ ≪ 1, waves have restoring force from fluid compressibility. It will sometimes be
useful to characterize the restoring force regime by frequency rather than by wave number. For this purpose,
we define the corresponding elastic coupling frequency,

𝜔el ≡ kelc0 ≡ Kf c0

G∗w0
. (53)

This characteristic elastic coupling frequency gives rise to the nondimensional frequency,

Ω ≡ 𝜔

𝜔el
. (54)

We use Ω when studying waves with real-valued frequency 𝜔 and Λ when studying waves with real-valued
wave number k.

We nondimensionalize the wave number by the wave number of a sound wave with angular frequency 𝜔:

K ≡ k
𝜔∕c0

. (55)

We note that

Λ = 1
Ω|K| . (56)

The dispersion relation (50) may be written using these nondimensional parameters:

D(k, 𝜔) ≡ (T − 1) K2 + 1 + (Ω|K|)−1 = 0; (57)

its solutions depend only on the dimensionless wave number K , and the two parameters Ω, and 𝜁 , the latter
by way of the dependence T(𝜁 ). In the rest of this work we describe the wave motion that arises from this
relation.

5. Wave Behavior With Real Frequency

We consider two types of excitation of hydraulic fracture guided waves. In the first scenario waves have a
real-valued frequency 𝜔. This real-frequency model of wave propagation results in a spatial quality factor
and is well suited to describe the spatial decay of perturbations that propagate along a fracture, away from a
constant-frequency source [e.g., Montagna and Gonnermann, 2013]. In section 6 we consider the contrasting
case of a wave propagating with real-valued wave number k. Such a real-wave number model of wave
propagation results in a temporal quality factor and is well suited to describe the temporal decay of
resonant modes of a finite-length hydraulic fracture.

Due to the symmetry of the problem, propagating wave solutions always come in pairs, corresponding to
waves traveling in the +x and −x directions. Without any loss of generality, we restrict attention to waves
propagating in the +x direction. For the real-valued k problem, we also find, in certain parts of parameter
space, nonpropagating modes that rapidly decay. These modes are unlikely to play an important role in
problems of interest, so we focus solely on the propagating waves.
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Figure 3. (a) Phase velocity and (b) spatial attenuation plotted against
frequency. The figure is drawn for a 1 m wide basaltic melt-filled
conduit in rock (Tables 2 and 3). Several asymptotic limits are plotted.
Not shown is the sound wave, boundary layer limit (63) because spatial
attenuation in this limit closely follows the crack wave, boundary
layer limit (70).

Guided waves along hydraulic fractures
experience a decay in amplitude as they
travel in space at a given real-valued fre-
quency. Waves that experience a decay
in amplitude of e−2𝜋 over Q wavelengths
are said to have a spatial quality factor Q,
defined by

1
2Q

≡ Im K
Re K

. (58)

Because such waves travel in a quasi
one-dimensional waveguide, there
is no decrease in amplitude due to
geometrical spreading. Instead, hydraulic
fracture guided waves experience
amplitude decay through viscous dis-
sipation in the fluid. We also neglect
damping from seismic radiation.

The normalized wave phase velocity is

c
c0

≡ 1
Re K

. (59)

Phase velocity and attenuation, obtained
by numerical solution of the dispersion
relation (57), are plotted in Figure 3.
Waves are anomalously dispersed in the
sense that phase velocity is an increasing
function of frequency. Attenuation, in
contrast, is a decreasing function of
frequency. Diminished attenuation at
high frequencies is due to the confine-
ment of viscous dissipation to narrow
boundary layers.

Two important transitions occur as 𝜔 is
varied: the transition from sound waves
to crack waves and the transition from
fully developed flow to boundary layer

flow. The first is associated with the frequency 𝜔el and the second with 𝛼. Upon choosing one of these to
nondimensionalize 𝜔, the only remaining parameter governing wave behavior is 𝜔el∕𝛼.

These two transitions divide the parameter space into four quadrants. In the remainder of this section we
present closed-form analytic solutions for each of these end-member wave behaviors. We first describe
waves in a rigid-walled conduit (Ω−1 = 0). We then describe waves in a highly deformable conduit (Ω ≪ 1).
For each of these two scenarios we discuss boundary layer (𝜁 ≪ 1) and fully developed (𝜁 ≫ 1) flow. We
begin with the simpler case where viscosity is neglected and 𝜁 = 0.

Seismic observations of resonating, fluid-filled cracks in geologic media often exist in a part of parameter
space where perturbations propagate as crack waves with boundary layer flow. These waves have low
attenuation because they are in the boundary layer limit; they have high fluid-solid coupling in the sense

Table 2. Properties of Solids

Material Poisson’s Ratio, 𝜈s P Wave Speed (m/s) Density, 𝜌0 (kg/m3)

Rock 0.25 5000 2700
Ice 0.35 3600 920
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Table 3. Properties of Fluids

Material Viscosity, 𝜇 (Pa s) Sound Speed, c0 (m/s) Density, 𝜌0 (kg/m3)

Basalt Melt 102 1000 2500
Andesite Melt 105 1000 2500
Water 10−3 1400 1000

that a pressure perturbation results in a greater wall deformation in the crack wave limit than in the sound
wave limit. Boundary layer crack waves exist in the frequency range 𝛼 < 𝜔 < 𝜔el. Asymptotic limits of the
phase velocity and attenuation in this range are given in section 5.2.2. For a 1 m dike filled with basaltic melt
in crustal rock, this range is approximately 6 × 10−3 Hz < f < 10 Hz (Table 4), where f ≡ 𝜔∕(2𝜋). For a 1 mm
water-filled fracture in ice this range is approximately 0.2 Hz < 𝜔 < 2 × 105 Hz.

Most geologic systems have 𝜔el∕𝛼 ≫ 1, but our results do not depend on this condition. Whenever 𝜔el > 𝛼

waves can occur as fully developed crack waves, boundary layer crack waves, and boundary layer sound
waves. When 𝜔el > 𝛼, fully developed sound waves cannot occur because it is not possible to reach the
sound wave limit (𝜔 > 𝜔el) while 𝜔 < 𝛼. The same reasoning shows that if 𝛼 > 𝜔el, possible wave types are
boundary layer sound waves, fully developed sound waves, and fully developed crack waves.

5.1. Sound Waves and the Rigid Wall Limit
Perturbations take the form of sound waves when Ω−1 ≪ 1. In this limit, the dominant mass balance (14)
is between changes in density and the velocity gradient. In Appendix B we note a condition for the exis-
tence of sound waves within the thin fracture approximation. More exact treatments that do not make
this approximation find that at wavelengths much shorter than the crack width, there exist multiple wave
modes; the fundamental mode velocity approaches the Scholte wave speed at a fluid-solid interface and
the higher modes approach the sound speed. Our analysis precludes study of waves in this very short
wavelength or high-frequency limit.

There are two limiting sound wave behaviors that depend on the fluid flow regime. The fluid may either
have 𝜔≫𝛼 (i.e., 𝜁 ≪ 1) or 𝜔≪𝛼 (i.e., 𝜁 ≫ 1). In the 𝜁 ≪ 1 limit the flow is in the boundary layer limit.
Waves in this higher-frequency regime have low attenuation and phase velocity nearly equal to the fluid
sound wave speed. In the 𝜁 ≫ 1 limit the flow is fully developed. Waves in this lower frequency regime have
high attenuation due to viscous dissipation and have a reduced, dispersive phase velocity.

The sound wave dispersion relation is the limit of equation (57) for Ω−1 = 0:

K = (1 − T)−1∕2. (60)

Upon recalling that T = tanh(𝜉)∕𝜉, where 𝜉2 = −i∕𝜁 , we note that the only nondimensional parameter in
equation (60) is 𝜁 .
5.1.1. Inviscid Case
In the simplest scenario a rigid-walled conduit contains an inviscid fluid (𝜁 = 0). Because T = 0, the
dispersion relation equation (57) reduces to

K = 1 (61)

or k = 𝜔∕c0. These are unattenuated sound waves that propagate with the nondispersive phase velocity
equal to the fluid sound speed c0.

Table 4. Characteristic Parameters

System Fracture Half Width (w0) Damping Rate (𝛼) Elastic Coupling Frequency (𝜔el)

Basalt melt in crustal rock 1 m 0.04 s−1 83 s−1

Andesite melt in crustal rock 1 m 40 s−1 83 s−1

Water in ice 1 mm 1.0 s−1 6.4 × 105 s−1

Water in rock 1 mm 1.8 s−1 9.2 × 104 s−1

LIPOVSKY AND DUNHAM ©2015. American Geophysical Union. All Rights Reserved. 1092



Journal of Geophysical Research: Solid Earth 10.1002/2014JB011286

5.1.2. Boundary Layer Limit
We now consider effects of viscosity. In the high-frequency, 𝜁 ≪ 1 limit, we approximate T as in (36). The
approximate dispersion relation is

K =

(
1 + i

√
𝜁

8

)
. (62)

The phase velocity is again c = c0, as in the inviscid case. Attenuation is

1
2Q

=
√

𝜁

8
= 1

2w0

√
𝜈

2𝜔
. (63)

5.1.3. Fully Developed Flow Limit
At lower frequencies, 𝜁 ≫ 1 and the dispersion relation is

K = (1 + i)
√

3
2
𝜁, (64)

where we have used (37). In this limit, damped sound waves have a dispersive phase velocity

c
c0

=
√

2
3𝜁

= w0

√
2
3
𝜔

𝜈
. (65)

Attenuation is constant, with

1
2Q

= 1. (66)

This attenuation result is not plotted in Figure 3 because, as discussed previously, fully developed sound
waves do not occur when 𝛼 < 𝜔el.

5.2. Crack Waves and the Deformable Conduit Limit
Perturbations to the fracture result in crack waves when Ω−1 ≫ 1. As before, we consider two limits of the
fluid flow: boundary layer (𝜁 ≪ 1) and fully developed (𝜁 ≫ 1).
5.2.1. Inviscid Case
We initially neglect viscosity by taking 𝜁 = 0. The dispersion relation is

K = Ω−1∕3. (67)

The phase velocity is

c =
(
𝜔

G∗w0

Kf

)1∕3

, (68)

as stated in equation (1). Because Kf = 𝜌0c2
0, c depends only on fluid density 𝜌0 and not on the compress-

ibility Kf . Following Chouet [1986] we refer to such waves as crack waves. Several recent studies refer to
such waves as either Krauklis or Stoneley guided waves [Korneev, 2008, 2010; Frehner and Schmalholz, 2010;
Frehner, 2014], although other names have also been used [Korneev et al., 2012].
5.2.2. Boundary Layer Limit
When 𝜁 ≪ 1, the dispersion relation is

K = Ω−1∕3

(
1 + i

√
𝜁

9

)
. (69)

Boundary layer crack waves have the same phase velocity as undamped crack waves (68); their attenuation
remains independent of the elastic coupling parameter Ω,

1
2Q

= 1
3w0

√
𝜈

𝜔
, (70)

The attenuation (70) differs only from the boundary layer sound wave attenuation (63) by a small constant
factor that amounts to ≈ 6% difference in 1∕2Q.
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5.2.3. Fully Developed Flow Limit
The dispersion relation for 𝜁 ≫ 1 is

K = i1∕3

(
3𝜁
Ω

)1∕3

=
√

3 + i
2

(
3𝜁
Ω

)1∕3

. (71)

The phase velocity,

c = 2√
3

(
Ωc3

0

3𝜁

)1∕3

=
2w0√

3

(
1
3
𝜔2G∗

𝜂

)1∕3

, (72)

is less than the undamped crack wave velocity (68). This expression matches that given in Korneev [2008] in
his (37). The phase velocity (72) applies regardless of whether 𝛼 > 𝜔el or 𝜔el > 𝛼. Attenuation is given by

1
2Q

= 1√
3
. (73)

The dispersion relation (71) is cubic and therefore has three roots. The first two roots have the same prop-
erties but propagate in opposite directions. The third root does not correspond to a wave-like solution
because it has zero phase velocity. When this mode is excited by a perturbation, it will decay rapidly with
distance and will not cause disturbances to propagate or travel away from the perturbation.

6. Wave Behavior With Real Wave Number

In section 5 we considered waves with real-valued frequency 𝜔. This wave model results in a complex-valued
wave number. In this section we consider the complementary case of waves with real-valued wave number
k and complex-valued frequency, 𝜔 = 𝜔R + i𝜔I. This model is well suited to describe the temporal decay of
the resonance of a finite-length fracture in terms of both its frequency and decay rate or temporal quality
factor. We refer to 𝜔R as the oscillation frequency and −𝜔I as the decay rate. Again, we restrict attention to
waves propagating in the +x direction and do not discuss highly damped, nonpropagating solutions for
which 𝜔R = 0. Wave behavior is similar between the real-wave number and real-frequency models at high
wave number and at high frequency. The long-period and long-wavelength limits, however, differ in several
important ways.

The most important difference is the existence of a cutoff wave number. Propagating waves (i.e., waves with
nonzero phase velocity) exist at all frequencies in the real-frequency description but not below a critical
wave number, kc, in the real-wave number description. We analyze several aspects of real-wave number
wave propagation to set the stage for a discussion of the cutoff wave number in section 6.3.

In the real-wave number representation, the temporal quality factor and phase velocity are

1
2Q

≡ − Im 𝜔

Re 𝜔
, (74)

and

c
c0

≡ Re 𝜔

kc0
. (75)

The general dispersion relation is (
1 − tanh 𝜉

𝜉

)(
c0

𝜔∕k

)2

= 1 + Λ, (76)

which is the same as equation (57) except that k is now considered to be a real-valued parameter. We recall
that 𝜉 =

√
−i𝜔∕𝛼, with branch cut defined so that Re 𝜉 ≥ 0.

Solutions to the dispersion relation, which are plotted in Figures 4 and 5, are characterized by two nondi-
mensional parameters. The restoring force parameter Λ distinguishes between sound waves (Λ≪ 1)
and crack waves (Λ≫ 1). We note that equation (57) used the restoring force parameter Ω because for
real-valued 𝜔, Ω is also real valued. In this section we use Λ ≡ kel∕k (51) to express the restoring force ratio.
Additionally, damping of real-wave number waves is characterized by the parameter 𝛼∕(kc0). This parameter
is qualitatively similar to 𝜁 as defined in (20).
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Figure 4. (a) Phase velocity and (b) temporal attenuation of waves
with real wave number plotted against wave number. The vertical
lines show the cutoff wave number (left, equation (85)) and k = kel
(right). The figure is drawn for a 1 m wide basaltic melt-filled conduit
in rock (Tables 2 and 3).

6.1. Inviscid Case
In the special case of an inviscid fluid,
tanh 𝜉∕𝜉 → 0, and the dispersion relation
(76) is

𝜔

kc0
=
√

1
1 + Λ

. (77)

This solution to the dispersion relation is
always real valued, and so its solutions are
undamped. When Λ ≪ 1, (77) describes
sound waves; when Λ ≫ 1, waves have
phase velocity

c = c0∕
√
Λ =

√
G∗|k|w0

𝜌0
(78)

The real k sound wave and crack wave
solutions of (77) and (78) are the same as
the real 𝜔 sound wave and crack wave
solutions of (61) and (67). The sound
wave and crack wave phase velocities are
plotted as a function of wave number in
Figure 4.

6.2. Boundary Layer Limit
To account for a small amount of viscous
damping, we carry out an asymptotic
analysis by considering a correction to
the inviscid solution (77). We write the
complex frequency 𝜔=𝜔0 + 𝜔1. We
take 𝜔0 =kc0(1 + Λ)−1∕2 and substitute
𝜔=𝜔0 + 𝜔1 into (76). We then treat
𝛼(1 + Λ)1∕2∕(kc0) as a small parameter and
solve for 𝜔1. The result is the boundary
layer limit dispersion relation:

𝜔

kc0
=
√

1
1 + Λ

[
1−(i + 1)

√
𝛼

8kc0

√
1+Λ

]
.

(79)

The general phase velocity and temporal attenuation that result from this dispersion relation are

c = c0

√
1

1 + Λ

(
1 −

√
𝛼

8kc0

√
1 + Λ

)
, (80)

and

1
2Q

=
√

𝛼

8kc0

√
1 + Λ. (81)

Equations (80) and (81) are used to derive (3) and (4).

6.3. Fully Developed Flow and the Cutoff Wave Number
The dispersion relationship in the fully developed flow limit is found by taking the limit of (76) when 𝜔∕𝛼 ≪

1. We use the Taylor series

1
1 − T

≈ 3
𝜉2

1

1 − 2
5
𝜉2 + · · ·

≈ 3
𝜉2

+ 6
5
, (82)
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Figure 5. Temporal attenuation plotted against frequency of oscillation
𝜔R for waves with real-valued wave number k. Attenuation is calculated
as a function of a real wave number using (76). The boundary layer
limit spatial attenuation is the same as the boundary layer limit
temporal attenuation (blue dashed line, equation (63)). The fully
developed flow limit has temporal attenuation shown with a red
dashed line (90). The figure is drawn for a 1 m wide basaltic melt-filled
conduit in rock (Tables 2 and 3).

consistent with (37), and arrive at the
dispersion relation

6
5

(
𝜔

kc0

)2

+ 3i
𝛼

kc0

(
𝜔

kc0

)
− 1

1 + Λ
= 0.

(83)
This dispersion relation is the same as
that considered by Dunham and Ogden
[2012] except for the appearance of the
prefactor of 6∕5. The difference results
from the uneven use of fluid inertia by
Dunham and Ogden [2012], who retained
fluid inertia in their width-averaged
momentum balance equation (our
equation (16)) but not in solving for
the fluid drag relationship (i.e., our
equation (19)). Equation (83) is quadratic
in 𝜔∕(kc0) and so has the simple solution

𝜔

kc0
= 5

4

⎡⎢⎢⎣−i
𝛼

kc0
±

√
8

15
1

1+Λ
−
(

𝛼

kc0

)2⎤⎥⎥⎦ .
(84)

6.3.1. Long-Wavelength Limit
At long wavelengths there exists a cutoff
wave number below which perturba-

tions have zero phase velocity. The cutoff wavelength occurs when the radical in (84) vanishes. Setting the
radical equal to zero and isolating the wave number results in

kc ≡
(

15
8

kel𝛼
2

c2
0

)1∕3

=

(
15
8

𝜇2

G∗𝜌0w5
0

)1∕3

, (85)

for the most relevant, Λ ≫ 1, limit.

The dispersion relation (83) may then be rewritten, in this limit, using the cutoff wave number,

𝜔

𝛼
= 5

4

⎡⎢⎢⎣−i ±

√(
k
kc

)3

− 1
⎤⎥⎥⎦ . (86)

At wave numbers near but greater than the cutoff wave number, the phase velocity and attenuation are

c = 5
4
𝛼

k

√
k
kc

− 1 (87)

and

1
2Q

=
(

k
kc

− 1

)−1∕2

. (88)

The phase velocity vanishes at k = kc. This attenuation expression shows that 1∕2Q diverges as k → kc, which
is a consequence of the oscillation frequency Re 𝜔 → 0 as the decay rate Im 𝜔 remains finite.
6.3.2. Low-Frequency Limit
Waves with real wave number exist at arbitrarily low frequencies, but the wavelength approaches a finite
value (the cutoff wavelength) as frequency approaches zero. To quantify the seismic frequencies associated
with hydraulic fracture resonance at some real wave number (which would be related to the fracture length),
we examine the frequency dependence of waves with real wave numbers. This is done by stating the phase
velocity and temporal attenuation of such waves with explicit reference to the frequency of oscillation 𝜔R.
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Near the cutoff wave number the phase velocity is

c =
𝜔R

kc
, (89)

where we have used k = kc in (75). Note that as k → kc, 𝜔R → 0, and hence, c → 0. We refer to this type
of wave motion as real-wave number damped crack waves. These waves occur at frequencies 𝜔R < 𝛼, and
they propagate more slowly than their counterpart with real frequency (72). The phase velocity is plotted in
Figure 3 as a function of 𝜔R.

The temporal attenuation is

1
2Q

= 5
4

𝛼

𝜔R
, (90)

where we have used (86) in (74). We note that spatial and temporal attenuation does not coincide in
the low-frequency, fully developed flow limit. This is in contrast to the high-frequency, boundary layer
limit, where spatial attenuation as a function of real 𝜔 and temporal attenuation as a function of 𝜔R coin-
cide. Figure 5 shows temporal attenuation as a function of frequency 𝜔R, and Figure 3b shows temporal
attenuation as a function of frequency 𝜔.

6.4. Attenuation in the Boundary Layer and Fully Developed Flow Limits
Several previous analyses have analyzed attenuation in the fully developed flow limit [Chouet, 1986;
Balmforth et al., 2005; Dunham and Ogden, 2012]. In this limit and for real wave numbers, the attenuation
relation is (90) [Dunham and Ogden, 2012]. This attenuation relation, however, has been used at frequencies
𝜔 > 𝛼 where it is not strictly valid. In this limit, the correct attenuation is described by the boundary layer
relations (81) and (70). Near the frequency 𝜔 = 𝛼, these two relations give the same value for 1∕2Q. At higher
frequencies, the difference between these two relations grows. For 𝜔el∕𝛼 ∼104, as in the example of a 1 m
wide dike filled with basalt shown in Figure 3b, the fully developed flow attenuation relation underestimates
the actual attenuation by about 2 orders of magnitude.

7. Inferring Hydraulic Fracture Geometry Using Resonant Modes

While our theory has been developed for infinitely long conduits, we can apply it in an approximate manner
to study the resonant vibrations of a finite-length crack that are thought to explain many long-period
seismic events. This is done for the two-dimensional problem involving a hydraulic fracture with length L,
but the general relations should apply also to the more realistic three-dimensional problem, provided that
the crack is approximately equidimensional.

7.1. Resonance Condition
Resonance occurs when pairs of counterpropagating waves along the waveguide constructively interfere
at certain wavelengths related to the crack length and boundary conditions at the crack tips. We restrict
attention to a crack with closed tips, for which u = 0 at both ends, though our theory could be generalized
to cracks connected to some form of reservoir at one or both ends.

For a closed fracture, a solution to the governing equations and boundary conditions (u= 0 at x = 0 and
x = L) is u ∝ sin(n𝜋x∕L) and p − p0 ∝ cos(n𝜋x∕L) for n = 1, 2,…. The corresponding wavelengths are thus
𝜆n = 2L∕n, and resonant frequencies are

fn = c(𝜆n)∕𝜆n. (91)

Resonances from nondispersive waves have fn∕f1 = n, implying that overtones appear at integer multiples
of the fundamental (n= 1) mode. In contrast, dispersion results in noninteger spacing between resonant
frequencies. Specifically, for waves in the crack wave regime, combining the crack wave phase velocity (78)
with (91) gives

fn

f1
= n3∕2. (92)

The frequency spacing between successive peaks therefore increases. This could serve as a useful diagnostic
for deciding if some observed resonances are indeed associated with fluid-filled cracks.
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Figure 6. Plot to infer fracture half width and length of magmatic
hydraulic fractures from observed characteristic seismic frequency f1
and quality factor Q1. Observations and inferred parameters are listed
in Table 1. We carry out calculations for two different fluids: (a) basalt
melt and (b) water.

7.2. Geometry Estimation
Each resonant frequency fn has an
associated temporal quality factor, Qn.
Together, the resonance frequency
and the quality factor constitute two
seismically observable attributes
of a long-period seismic event. The
resonance frequencies and quality
factors, for specified material properties,
may be thought of as functions of the
fracture length and aperture. Using the
resonance condition (91), we write the
temporal attenuation and characteristic
frequency of the nth mode as

Qn = Qn(w0, L), (93)

fn = fn(w0, L). (94)

We obtain these functions numerically
by solving the dispersion relation (76)
with wave number kn = n𝜋∕L. The
inverse problem is then to estimate w0

and L from a data set of Qn and fn.

Here we limit attention to the lowest
frequency (n = 1) mode; although this
mode has lower Q than higher modes, its
decay time will be the longest, making
it the most likely observed mode. We
plot contour lines of resonant frequency
and quality factor, (94) and (93), over a
range of w0 and L in Figures 6–8. In the

sound wave limit the lines of resonant frequency (94) are vertical because the phase velocity, and thus,
frequency do not depend on fracture width in this limit. In the boundary layer crack wave limit, asymptotic
expressions for the characteristic frequency and quality factor are given by equations (3) and (4).

Figure 7. Plot to infer fracture half width and length of glacial hydraulic
fractures from observed characteristic seismic frequency f1 and quality
factor Q. Observations and inferred parameters are listed in Table 1.
Data points with red outlines have evenly spaced spectral peaks and
therefore may not correspond to hydraulic fracture resonance.

7.3. Analysis of Data
We analyze published data from several
studies (Table 1); the results are plotted
in Figures 6–8. Our analysis of these data
is in reasonable agreement with previous
estimates of fracture length L. Most
previous studies, however, have not
attempted to simultaneously constrain
fracture length and width. Instead,
previous work has simply assumed some
width thought to be reasonable for the
system under study. In some of the data,
multiple spectral peaks are observed.
In this study we analyze only the
fundamental mode. However, we note
that if multiple spectral peaks are
observed, an optimization problem
could be carried out to find the best
geometry or geometries of one or
several fractures.
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Figure 8. Plot to infer fracture half-width and length in
several reservoirs from observed characteristic seismic
frequency f1 and quality factor Q, assuming water-filled
fractures in rock. Observations and inferred parameters are
listed in Table 1. Data points with red outlines have evenly
spaced spectral peaks and therefore may not correspond to
hydraulic fracture resonance.

When analyzing data, we estimate the quality
factor in one of two ways. When analyzing
spectral peaks, by assuming decay according to
e−f1t∕(2Q1), the quality factor may be calculated
as Q1 = f1∕Δf , where Δf is the width, in
frequency units, of the spectral peak at the level of
1∕

√
2 of the maximum amplitude. Alternatively,

when seismograms are available, we may
count the number of oscillations that occur
before an amplitude decay to 4% of the signal’s
initial value. There is some uncertainty in
using previously published spectra because
published spectrograms may not state a color
scale or whether seismic amplitude or seismic
power is plotted.

We interpret the seismic signal of Anandakrishnan
and Alley [1997] near the grounding line of the
Kamb Ice Stream, Antarctica, as due to a fracture
with an aperture ∼1 cm. This estimate is consis-
tent with other observations of basal water layer
thickness [Kamb, 2001; Schroeder et al., 2014]. All
of the other glacier data that we analyze suggest

fracture apertures on the order of 1 to 3 mm. This is notable because our estimates of fracture lengths
show much greater variability: from about 1 m at Bakaninbreen to 12 m at Cotopaxi Glacier. Assuming
the cracks open when pressure p0 exceeds a remote compressive stress 𝜎 with linear elastic response of
the solid, as opposed to melting, we can estimate the excess pressure as p0 − 𝜎 ∼ G∗w0∕L. Except for
Bakaninbreen, estimated p0 − 𝜎 are a few megapascals. In contrast, the elastic-opening estimate for
Bakaninbreen is ∼50 MPa. This unreasonably large value likely suggests that the fracture opened by melting
instead of elastic deformation.

Many volcano LP events are striking because of their quality factors as large as Q1 ∼1000. Large Q requires
low damping and therefore small 𝛼 ≡ 𝜈∕w2

0 relative to the wave frequency 𝜔. We find that in some cases,
even for the relatively low viscosity of basaltic melts, our model requires wide conduits to explain volcanic
LP events as due to the resonance of fractures filled with magma. The waveform of Kumagai and Chouet
[1999] from Galeras Volcano, for example, requires a conduit on the order of 60 m in width for a fracture
filled with a basaltic magma (𝜇 ∼100 Pa s). Galeras Volcano has a dominantly andesitic composition, and
we expect the viscosity of melt to be much higher than that of basalt. Fractures filled with high-viscosity
andesitic melts (𝜇 ∼105 Pa s), however, produce the observed quality factors only for conduits that are so
wide as to be geologically unrealistic. It may be the case that basaltic intrusions are present in this generally
andesitic volcano [Eichelberger and Izbekov, 2000].

Hydrothermal fluid-filled fractures are another possible source of volcanic LP events. We carry out calcu-
lations to estimate fracture length and width assuming this composition and generally find that smaller
fractures satisfy the data (Figure 6). At Galeras Volcano, for example, the fracture width and length are
estimated to be 40 cm and 80 m. The general interpretation of volcanic LP events originating from the
volcano-hydrothermal system is consistent with a large literature on this topic [Kumagai et al., 2005; Waite
et al., 2008; Matoza and Chouet, 2010; Arciniega-Ceballos et al., 2012].

In the reservoir setting, Tary et al. [2014] interpret a seismic event to be due to a source fracture with
L = 15–30 m; our estimate is L = 7 m and 2w0 = 8 mm. The discrepancy in fracture length is due to a mistake
in equation (A1) of Tary et al. [2014], where a factor of 2𝜋 is necessary in the denominator of the radical
because f = 𝜔∕2𝜋.

In the Fenton Hill geothermal site Ferrazzini et al. [1990] estimate a fracture to have in-plane dimensions of
3 m and 1 m and width of 3 mm, respectively. Our estimated length is 1 m and width is 1 mm. Ferrazzini et al.
[1990] neglected the viscosity of water in their analysis; instead, all attenuation is from seismic radiation.
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We also point out that contrary to our prediction of nonequally spaced resonant frequencies, the over-
tones in the Tary et al. [2014] and Anandakrishnan and Alley [1997] data sets are at integer multiples of the
fundamental frequency. It is therefore possible that these seismograms are not caused by hydraulic fracture
resonances as idealized in our work.

7.4. Uncertainties and Limitations
Our fracture geometry estimation method has several uncertainties and limitations arising from various
approximations. While for certain approximations the estimates can be viewed as either upper or lower
bounds, taken together, it is not possible to classify our estimates as strict upper or lower bounds.

Our use of a two-dimensional model probably results in a reasonable description of roughly equidi-
mensional fractures. But for fractures with large aspect ratio, such as dikes extending laterally for many
kilometers, the elastic response will be determined by the shorter height dimension rather than the length,
and crack wave propagation will become nondispersive at long wavelengths. Our description requires
modification for such problems.

In addition, we calculate phase velocity and attenuation for sinusoidal waves propagating along an infinitely
long channel. A finite-length crack will have increased elastic stiffness, which will alter the shape of the
eigenfunctions and shift resonant frequencies (especially of the lowest modes) to higher values. With
correcting for this additional stiffness, we will underestimate length.

Similarly, we neglect variations in width, such as roughness of fracture walls and the tapering of width to
zero at the crack tips. The latter has been considered, in an approximate way, by Tary et al. [2014], who
suggest that it will decrease resonant frequencies. The decrease in width will also alter flow and will
eventually lead to fully developed flow and increased attenuation in some region near the crack tips. We
estimate that many fractures have millimeter-scale aperture, which suggests that the realistically rough
fracture walls may be in contact at points of geometric irregularity; this might increase the stiffness of the
fracture in the wall-normal direction and increase the crack wave phase velocities, as shown by Nakagawa
and Korneev [2014].

We do not include all possible sources of attenuation, such as damping from seismic radiation, multiphase
fluid interactions, poroelastic effects, and other sources described by various authors [Kumagai and Chouet,
2000; Morrissey and Chouet, 2001; Jousset et al., 2004; Nakagawa and Korneev, 2014]. Since both w0 and
L decrease with increasing Q1, this approximation results makes our estimates upper bounds on both
w0 and L.

The existence of the cutoff wavelength poses an additional limitation to this method. It is possible that the
first observable resonant mode might not correspond to the 𝜆1 = 2L mode, but instead to the first higher
mode having wavelength shorter than the cutoff wavelength. When a higher mode is incorrectly interpreted
as the fundamental mode, length will be underestimated.

We have also assumed that fractures are open and that velocity vanishes at the two crack tips. But if a
fracture connects to some fluid reservoir or the atmosphere at one end, then its resonant frequencies will
be altered.

Lastly, we note that data window length might prevent adequate measurement of the quality factor. In
order to observe a quality factor Q, a data window of duration ∼ Q∕f1 is required. Of the data we have
analyzed here, only the data of Anandakrishnan and Alley [1997] are potentially affected by this limitation.
The data windows of Anandakrishnan and Alley [1997] have a fixed duration of 12 s, which for 75 Hz
oscillations results in a lower bound estimate of Q1 ∼500.

8. Moment-Characteristic Frequency Scaling

Long-period seismic events due to hydraulic fracture resonant modes have unique scaling relations that
might be useful when interpreting statistics of catalogs of such events. Such catalogs have been collected,
for example, by Anandakrishnan and Alley [1997], Aki and Ferrazzini [2000], Kumagai et al. [2002], Okubo
and Wolfe [2008], West et al. [2010], and Power et al. [2013]. Such analysis may also be relevant to glacial
crevassing events [Neave and Savage, 1970; Walter et al., 2008, 2010, 2013; Röösli et al., 2014].
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Figure 9. Plot to infer fracture pressure changes Δp from
seismically observed characteristic frequency f1 and
moment M0. Curves of constant pressure perturbation are
drawn from (97).

The source process of an LP event is the oscillation
of the walls of a hydraulic fracture. The charac-
teristic amplitude of oscillatory width changes is
Δw ≡ w − w0, and for a roughly equidimensional
fracture of dimension L this gives rise to the
seismic moment

M0 ∼ G∗L2Δw. (95)

Whereas seismic sources with a static offset
have seismic moment proportional to the
low-frequency asymptote of the displacement
spectra, we note that oscillatory seismic sources
have seismic moment related to the maximum
amplitude of the fundamental spectral peak.

These oscillations in width are caused by pressure
changes Δp ≡ p−p0 in the crack, which are related
by linear elasticity (18):

Δp ∼ G∗Δw∕L. (96)

We can envision no physical process that would
introduce any systematic dependence of Δp
on crack length L. We henceforth take Δp to be
constant. This assumption is analogous to the
constant stress drop assumption for earthquakes.

For resonant cracks, the dominant frequency is
related to the crack length by way of the phase
velocity: f1 ∼ c∕L. Combining (91), (95), and (96)
results in a scaling law relating seismic moment
and oscillation frequency:

M0 ∼
(

c
f1

)3

Δp (97)

In the nondispersive sound wave limit, (97) gives M0 ∝ f−3
1 . However, in the crack wave limit, where c is given

by (1), this relationship becomes

M0 ∼
(

G∗w0Δp

𝜌0

)
f−2
1 . (98)

The scaling law (98) contrasts with the well-known scaling for earthquakes, M0 ∝ f−3
1 , due to the dispersive

nature of crack waves.

Alternatively, (97) may be written to express the pressure change Δp as a function of moment and
characteristic frequency:

Δp ∼
M0𝜌0

G∗w0
f 2
1 . (99)

This relationship (97) is depicted for two systems in Figure 9, where the phase velocity c is found numerically
by solving (76). The different scaling between M0 and f1 for shear fractures versus resonating hydraulic
fractures may be useful in differentiating between these two processes in situations where both may
plausibly occur.
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9. Conclusions

We have described wave motion along a thin hydraulic fracture waveguide with an emphasis on viscous
attenuation. A central result of this analysis is a method to estimate hydraulic fracture width and length from
seismic observations (Figure 6). We conclude by highlighting several assumptions made in this work and by
suggesting how future work may lift several of these assumptions to better represent seismic observations.

We have focused exclusively on the symmetric mode of conduit deformation. Ferrazzini and Aki [1987]
demonstrated the existence of antisymmetric modes of conduit deformation. It remains for future work to
investigate the effects of viscous boundary layers on the behavior of such modes. Future work may also
choose to examine three-dimensional effects.

Attenuation due to seismic radiation is not included in our model. Any geometrical heterogeneity will
convert guided waves into seismic waves, including wave reflection and diffraction at the crack tip
[Freund, 1971; Frehner and Schmalholz, 2010]. Diffraction also plays an important role in wave transmission
by converting evanescent guided waves to seismic body waves that travel to seismometers [Ferrazzini and
Aki, 1987; Groenenboom and Falk, 2000]. Our current model thus underestimates wave attenuation. The
attenuation that we estimate from viscosity is of similar magnitude or greater than published values for the
attenuation due to seismic radiation [e.g., Aki et al., 1977; Ferrazzini et al., 1990; Kumagai and Chouet, 1999,
2000, 2001; Morrissey and Chouet, 2001; Kumagai et al., 2002]. Further work on the topic of simultaneous
seismic and viscous attenuation is warranted.

Appendix A: Derivation of the Governing Equations

The goal of this appendix is to simplify the mass and momentum balance equations using scaling
arguments. In two spatial dimensions, the linearized equations are

𝜕𝜌

𝜕t
+ 𝜌0

𝜕vx

𝜕x
+ 𝜌0

𝜕vy

𝜕y
= 0, (A1)

𝜌0
𝜕vx

𝜕t
+

𝜕p
𝜕x

= 𝜇

(
2
𝜕2vx

𝜕x2
+

𝜕2vx

𝜕y2
+

𝜕2vy

𝜕x𝜕y

)
, (A2)

𝜌0

𝜕vy

𝜕t
+

𝜕p
𝜕y

= 𝜇

(
𝜕2vy

𝜕x2
+ 2

𝜕2vy

𝜕y2
+

𝜕2vx

𝜕x𝜕y

)
, (A3)

1
𝜌0

𝜕𝜌

𝜕t
= 1

Kf

𝜕p
𝜕t

. (A4)

We have included the fluid equation of state (A4) for completeness.

We nondimensionalize these governing equations by introducing the following dimensionless quantities:

v′
x = vx∕cx , (A5)

v′
y = vy∕cy, (A6)

x′ = x∕𝜆, (A7)

y′ = y∕w0, (A8)

t′ = t∕(𝜆∕c), (A9)

where cx and cy are characteristic particle velocities, 𝜆 is the wavelength, and pressure and density
fluctuations are made nondimensional with the wave impedance 𝜌0c,

(p − p0)′ =
p − p0

𝜌0ccx
, (A10)

(𝜌 − 𝜌0)′ =
𝜌 − 𝜌0

𝜌0cx∕c
. (A11)

The governing equations have eight dimensional quantities (cx , cy , c, c0, 𝜆, w0, 𝜌0, and 𝜇) to represent three
dimensions (length, time, and mass). The system is therefore described by five nondimensional parameters.
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Since the system is linear and homogeneous, one of these parameters is a nondimensional perturbation
amplitude. We choose the four remaining parameters to be

c∕c0, (A12)

𝛾 ≡ cy

cx
, (A13)

𝜖 ≡ w0

𝜆
, (A14)

𝜁∗ ≡ 𝛼

c∕𝜆
. (A15)

The damping parameter 𝜁∗ is qualitatively similar to 𝜁 ≡ 𝛼∕𝜔 defined in the main text (20) in that 𝜁∗ and 𝜁

both reflect the amount of viscous damping during one wave period.

The linearized Navier-Stokes equations may be written using these nondimensional fields as

𝜖

(
c

c0

)2
𝜕p′

𝜕t′
+ 𝜖

𝜕v′
x

𝜕x′
+ 𝛾

𝜕v′
y

𝜕y′
= 0, (A16)

𝜕v′
x

𝜕t′
+

𝜕p′

𝜕x′
= 𝜁∗

(
2𝜖2

𝜕2v′
x

𝜕x′2
+

𝜕2v′
x

𝜕y′2
+ 𝜖𝛾

𝜕2v′
y

𝜕x′𝜕y′

)
, (A17)

𝜖𝛾
𝜕v′

y

𝜕t′
+

𝜕p′

𝜕y′
= 𝜁∗

(
𝛾𝜖3

𝜕2v′
y

𝜕x′2
+ 2𝛾𝜖

𝜕2v′
y

𝜕y′2
+ 𝜖2

𝜕2v′
x

𝜕x′𝜕y′

)
. (A18)

We have used the fluid equation of state (8) to eliminate 𝜌 in the mass balance (A16).

We take our fundamental scaling assumptions to be

𝜖 ≪ 1 and 𝛾 ≪ 1, (A19)

but we make no assumption about the relative sizes of 𝜖 and 𝛾 . The choice of 𝜖 ≪ 1 is the thin fracture
assumption, as discussed in the main text. The choice of 𝛾 ≪ 1 is due to our focus on long wavelength,
symmetric perturbations. For crack waves involving negligible changes in density, the mass balance (A16)
implies that 𝛾 ∼ 𝜖. The choice of 𝛾 ≪ 1 also precludes the antisymmetric mode of Ferrazzini and Aki [1987].
With this scaling there are no generally negligible terms in the mass balance equation. In the momentum
balance equations we neglect the O(𝜖2) and O(𝜖𝛾) terms. Reverting to dimensional form yields the
approximate linearized Navier-Stokes equations,

𝜕𝜌

𝜕t
+ 𝜌0

𝜕vx

𝜕x
+ 𝜌0

𝜕vy

𝜕y
= 0, (A20)

𝜌0
𝜕vx

𝜕t
− 𝜇

𝜕2vx

𝜕y2
+

𝜕p
𝜕x

= 0, (A21)

𝜕p
𝜕y

= 0. (A22)

Appendix B: Approximating the Dispersion Relation

In this appendix we demonstrate that the dispersion relation (49), which we restate here as

(T − 1)
k2c2

0

𝜔2
+

Kf

G∗w0|k| + 1 + T

[
Kf𝜔

2𝜌0

4(G′)2k2
−

Kf𝜔
2𝜌0

(G∗)2|k|2
+ (1 − 2T)

k2Kf w0

G∗|k| −
𝜔2𝜌0w0

G∗|k|
]
= 0, (B1)
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may be approximated by the first three terms, as stated in (50). The first three terms are order unity or larger,
so it will suffice to show that the remaining terms in brackets are much smaller than unity in order to neglect
them. There are three types of terms in the bracketed expression. The first scales as

Kf𝜔
2𝜌0

G2k2
∼
(

Kf

G

)2 (
c

c0

)2

. (B2)

We have assumed that G ∼ G∗ ∼ G′ and |k| ∼ k. The second scales as

Kf

G
kw0 ∼

(
Kf

G

)
𝜖, (B3)

and the third scales as

𝜔2𝜌0w0

Gk
∼
(

c
c0

)2 (Kf

G

)
𝜖. (B4)

First, we show that these terms are negligible in the sound wave limit. We assume that phase velocities in
the fluid-elastic system are bounded by the sound wave speed, 𝜔∕k ≤ c0, which can be verified a posteriori.
Wave numbers are thus bounded by

k ≥ 𝜔

c0
>

𝜔el

c0
=

Kf

w0G∗ (B5)

because sound waves occur only when 𝜔 > 𝜔el. Rearranging (B5) gives

Kf∕G∗ ≲ 𝜖, (B6)

which means that thin fractures (𝜖 ≪ 1) host sound waves only when Kf∕G ≪ 1. Using (B6) and c ∼ c0, we
find that (

Kf

G

)2 (
c

c0

)2

∼ 𝜖2, (B7)(
Kf

G

)
𝜖 ∼ 𝜖2, (B8)(

c
c0

)2 (Kf

G

)
𝜖 ∼ 𝜖2. (B9)

Each term is O(𝜖2) and thus may be neglected.

We next show that these terms are negligible in the crack wave limit. In this case, Λ ≫ 1 and(
c

c0

)2

∼ 1
Λ
. (B10)

The terms (B2)–(B4) become (
Kf

G

)2 (
c

c0

)2

∼
(

Kf

G

)
𝜖 ∼ 𝜖2Λ, (B11)

(
Kf

G

)
𝜖 ∼ 𝜖2Λ, (B12)

(
c

c0

)2 (Kf

G

)
𝜖 ∼ 𝜖2. (B13)

These terms are therefore negligible relative to terms of O(1) and of O(Λ).

The simplified dispersion relation is therefore

D(k, 𝜔) ≡ (T − 1)
k2c2

0

𝜔2
+

Kf

G∗w0|k| + 1 = 0, (B14)

as claimed in (50).
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Notation

a Pressure-fluid velocity transfer function
b Wall velocity-fluid velocity transfer function
c Phase velocity

c0 Fluid sound wave phase velocity
cw Crack wave phase velocity
D Dispersion relation
f Frequency

G∗ Elastic plane strain modulus
k Wave number

kc Cutoff wave number
K Nondimensional wave number

Kf Fluid bulk modulus
L Fracture length

M0 Seismic moment
p0 Unperturbed fluid pressure
Q Quality factor
t Time

T Damping function
u Width-averaged velocity

ux Wall displacement, x direction
uy Wall displacement, y direction
vx Fluid velocity, x direction
vy Fluid velocity, y direction
w Fracture half width

w0 Unperturbed fracture half width
x Along-conduit coordinate
y Cross-conduit coordinate
z Out-of-plane coordinate
𝛼 Viscous damping rate
𝛾 Velocity ratio

Δ(⋅) Difference from unperturbed state
𝜖 Conduit aspect ratio
𝜆 Wavelength

𝜆el Elastic coupling length
Λ Restoring force ratio
𝜇 Dynamic viscosity
𝜈 Kinematic viscosity
𝜈s Poisson’s ratio
𝜌 Fluid density
𝜌0 Unperturbed fluid density
𝜔 Angular frequency

𝜔el Elastic coupling frequency
Ω Nondimensional frequency, relative to 𝜔el

𝜎ij Solid stress tensor
𝜏 Wall shear stress
𝜉 Complex damping parameter
𝜁 Damping ratio
𝜁∗ Damping ratio scale
(⋅)′ Nondimensional quantity
(⋅)BL Characteristic amplitude, boundary layer limit
(⋅)FD Characteristic amplitude, fully developed flow limit
(⋅)R Real part
(⋅)I Imaginary part
(⋅)n Pertaining to nth harmonic
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