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ABSTRACT

Fluid-filled fractures support guided waves known as Krauklis
waves. The resonance of Krauklis waves within fractures occurs
at specific frequencies; these frequencies, and the associated at-
tenuation of the resonant modes, can be used to constrain the frac-
ture geometry. We use numerical simulations of wave propagation
along fluid-filled fractures to quantify fracture resonance. The
simulations involve solution of an approximation to the compress-
ible Navier-Stokes equation for the viscous fluid in the fracture
coupled to the elastic-wave equation in the surrounding solid. Var-
iable fracture aperture, narrow viscous boundary layers near the
fracture walls, and additional attenuation from seismic radiation

are accounted for in the simulations. We then determine how tube
waves within a wellbore can be used to excite Krauklis waves
within fractures that are hydraulically connected to the wellbore.
The simulations provide the frequency-dependent hydraulic
impedance of the fracture, which can then be used in a fre-
quency-domain tube-wave code to model tube-wave reflection/
transmission from fractures from a source in the wellbore or at
the wellhead (e.g., water hammer from an abrupt shut-in). Tube
waves at the resonance frequencies of the fracture can be selec-
tively amplified by proper tuning of the length of a sealed section
of the wellbore containing the fracture. The overall methodology
presented here provides a framework for determining hydraulic
fracture properties via interpretation of tube-wave data.

INTRODUCTION

Hydraulic fracturing is widely used to increase the permeability
of oil and gas reservoirs. This transformative technology has en-
abled production of vast shale oil and gas resources. Although en-
gineers now have optimal control of well trajectories, the geometry
(length, height, and aperture) of hydraulic fractures is still poorly
known, which poses a challenge for optimizing well completion.
Monitoring hydraulic fracture growth is desirable for many reasons.
Tracking the length of fractures ensures that multiple subparallel
fractures remain active, rather than shielding each other through
elastic interactions. It might also be used to prevent fractures in
nearby wells from intersecting one another. In addition, the ability
to measure fracture geometry would facilitate estimates of the
stimulated volume and could be used to help guide the delivery
of proppant.

Due to their sensitivity to properties of the surrounding formation
and fractures intersecting the wellbore, tube waves or water hammer
propagating along the well are widely used for formation evaluation
and fracture diagnostics (Paillet, 1980; Paillet andWhite, 1982; Holz-
hausen and Gooch, 1985a, 1985b; Holzhausen and Egan, 1986;
Hornby et al., 1989; Tang and Cheng, 1989; Paige et al., 1992, 1995;
Kostek et al., 1998a, 1998b; Patzek and De, 2000; Henry et al., 2002;
Ziatdinov et al., 2006; Ionov, 2007; Wang et al., 2008; Derov et al.,
2009; Mondal, 2010; Bakku et al., 2013; Carey et al., 2015; Livescu
et al., 2016). Here, we are specifically concerned with low-frequency
tube waves having wavelengths much greater than the wellbore
radius. In this limit, tube waves propagate with minimal dispersion
at a velocity slightly less than the fluid sound speed (Biot, 1952).
Besides excitation from sources within the well or at the wellhead,
tube waves can be generated by incident seismic waves from the sur-
rounding medium (Beydoun et al., 1985; Schoenberg, 1986; Ionov
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and Maximov, 1996; Bakku et al., 2013) and by sources within hy-
draulic fractures (Krauklis and Krauklis, 1998; Ionov, 2007; Derov
et al., 2009). Furthermore, tube waves incident on a fracture in hy-
draulic connection to the wellbore will reflect and transmit from the
fracture, with frequency-dependent reflection/transmission coeffi-
cients. As described in more detail below, these reflected and trans-
mitted tube waves carry information about fracture geometry.
A closely related concept is that of hydraulic impedance testing

(Holzhausen and Gooch, 1985a), initially developed to estimate the
geometry of axial fractures (fractures in the plane of the wellbore).
This method, using very low frequency tube waves or water-ham-
mer signals, was validated through laboratory experiments (Paige
et al., 1992) and applied to multiple field data sets (Holzhausen
and Egan, 1986; Paige et al., 1995; Patzek and De, 2000; Mondal,
2010; Carey et al., 2015). The method is typically presented using
the well-known correspondence between hydraulics and electrical
circuits, with hydraulic impedance defined as the ratio of pressure to
volumetric flow rate (velocity times the cross-sectional area). The
fracture consists of a series connection of resistance (energy loss
through viscous dissipation and seismic radiation), capacitance (en-
ergy stored in elastic deformation of the solid and compression/
expansion of the fluid), and inertance (kinetic energy of the fluid),
which can be combined into a complex-valued hydraulic impedance
of the fracture. The hydraulic impedance is then related to the geom-
etry of the fractures (Holzhausen and Gooch, 1985a; Paige et al.,
1992; Carey et al., 2015). However, this method, at least as pre-
sented in the literature thus far, assumes a quasi-static fracture
response when relating (spatially uniform) pressure in the fracture
to the fracture volume. This assumption is valid only for extremely
low frequencies, and it neglects valuable information at higher
frequencies in which there exists the possibility of a resonant frac-
ture response associated with waves propagating within the fracture.
The treatment of dissipation from fluid viscosity is similarly overly
simplistic.
Thus, a more rigorous treatment of the fracture response is re-

quired, motivating a more nuanced description of the dynamics
of fluid flow within the fracture and of its coupling to the surround-
ing elastic medium over a broader range of frequencies. The key
concept here is a particular type of guided wave that propagates
along fluid-filled cracks. These waves, known as crack waves or
Krauklis waves, have been studied extensively in the context of the
oil and gas industry, volcano seismology, and other fields (Krauklis,
1962; Paillet and White, 1982; Chouet, 1986; Ferrazzini and Aki,
1987; Korneev, 2008, 2010; Yamamoto and Kawakatsu, 2008;
Dunham and Ogden, 2012; Lipovsky and Dunham, 2015; Nikitin
et al., 2016). At the frequencies of interest here (approximately 1–
1000 Hz), they are anomalously dispersed waves of opening and
closing that propagate along fractures at speeds approximately
10–1000 m∕s. Experimental studies have confirmed the existence
and propagation characteristics of these waves (Tang and Cheng,
1988; Nakagawa, 2013; Shih and Frehner, 2015; Nakagawa et al.,
2016). Counterpropagating pairs of Krauklis waves form standing
waves (eigenmodes) of fluid-filled cracks, and the resonance fre-
quencies and decay rates of these modes are sensitive to the fracture
length and aperture. Krauklis waves are thought to be responsible
for the long period and very long period seismicity at active volca-
noes (Aki et al., 1977; Chouet, 1988), and they have been suggested
as a possible explanation for harmonic seismic signals recorded dur-
ing hydraulic fracturing treatments (Ferrazzini and Aki, 1987; Tary

et al., 2014). Most studies of Krauklis waves have been analytical or
semianalytical, with a major focus on deriving dispersion relations
for waves in infinitely long fluid layers of uniform width. A notable
exception is the work of Frehner and Schmalholz (2010) and Freh-
ner (2013), in which finite elements in two dimensions were used to
study Krauklis waves in finite-length fractures with variable aper-
ture. Using a numerical approach provides a means to investigate
the reflection and scattering of Krauklis waves at fracture tips (Freh-
ner and Schmalholz, 2010) and the excitation of Krauklis waves by
incident seismic waves (Frehner, 2013). However, these studies did
not consider the interaction between the Krauklis and tube waves,
which is a central focus of our study.
Mathieu and Toksoz (1984) were the first to pose the mathemati-

cal problem of tube-wave reflection/transmission across a fracture
in terms of the fracture impedance. In this work, we define the frac-
ture hydraulic impedance in the frequency domain as

ZfðωÞ ¼
p̂fðωÞ
q̂fðωÞ

; (1)

where p̂fðωÞ and q̂fðωÞ are the Fourier transforms of the pressure
and volumetric flow rate into the fracture, both evaluated at the frac-
ture mouth. The Fourier transform of some function gðtÞ is defined as

ĝðωÞ ¼
Z

∞

−∞
gðtÞeiωtdt: (2)

Mathieu and Toksoz (1984) treated the fracture as an infinite fluid
layer or a permeable porous layer with the fluid flow being described
by Darcy’s law. The fracture hydraulic impedance built on Darcy’s
law was then replaced with analytic solutions based on the dispersion
relation for acoustic waves in an inviscid (Hornby et al., 1989) or
viscous (Tang and Cheng, 1989) fluid layer bounded by rigid fracture
walls. Later studies established that elasticity of the fracture wall rock
significantly changes the reflection and transmission across a fracture
(Tang, 1990; Kostek et al., 1998a, 1998b). The arrival time and am-
plitude of reflected tube waves can be used to infer the location and
effective aperture of fractures (Medlin and Schmitt, 1994). However,
most of these models assume an infinite fracture length, as is well-
justified (Hornby et al., 1989) for the high frequencies (approximately
1 kHz) that were the focus of these studies. By focusing instead on
lower frequencies (< 100 Hz) and considering Krauklis waves re-
flected from the fracture tip, Henry et al. (2002) and Henry (2005)
argued that reflection/transmission of tube waves is affected by the
resonance of the fracture, and this consequently provides sensitivity
to fracture length.
One approach to account for the finite extent of the fracture is to

use the dispersion relation for harmonic Krauklis waves to deter-
mine the eigenmodes of a circular disk-shaped fracture of uniform
aperture with a zero radial velocity boundary condition at the edge
of the disk (Hornby et al., 1989; Henry et al., 2002; Henry, 2005;
Ziatdinov et al., 2006; Derov et al., 2009). This treatment fails to
account for the decreased aperture near the fracture edge, which
decreases the Krauklis-wave phase velocity and increases the vis-
cous dissipation. It furthermore implicitly assumes perfect reflec-
tion from the fracture edge, thereby neglecting attenuation from
seismic-wave radiation. Recent studies have established the impor-
tance of this attenuation mechanism (Frehner and Schmalholz,
2010; Frehner, 2013).

D172 Liang et al.
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In this work, we examine how Krauklis waves propagating in
fluid-filled fractures, as well as tube-wave interactions with fractures,
can be used to infer fracture geometry. Figure 1 shows the system.
The overall problem is to determine the response of the coupled
fracture-wellbore system to excitation at the wellhead, within the
wellbore, or at the fracture mouth. Other excitation mechanisms,
including sources in the fracture or incident seismic waves from
some external source in the solid (e.g., microseismic events or active
sources), are not considered here. The fracture and wellbore are
coupled in several ways, the most important of which is through
the direct fluid contact at the fracture mouth. Pressure changes at this
junction, for instance, due to tube waves propagating along the well-
bore, will excite Krauklis waves in the fracture. Similarly, fluid can be
exchanged between the wellbore and fracture. Other interactions,
such as through elastic deformation of the solid surrounding the well-
bore and fracture, are neglected in our modeling approach.
By making this approximation, and by further assuming that all

perturbations are sufficiently small so as to justify linearization, the
response of the coupled fracture-wellbore system can be obtained in
two steps (Mathieu and Toksoz, 1984; Hornby et al., 1989; Kostek
et al., 1998a; Henry, 2005). In the first step, we determine the re-
sponse of the fracture, in isolation from the wellbore, to excitation at
the fracture mouth. Specifically, we calculate the (frequency-depen-
dent) hydraulic impedance of the fracture, as defined in equation 1,
using high-resolution finite-difference simulations of the dynamic
response of a fluid-filled fracture embedded in a deformable elastic
medium. This provides a rigorous treatment of viscous dissipation
and seismic radiation along finite-length fractures with possibly
complex geometries, including variable aperture. The numerical
solutions are compared with semianalytic solutions based on disper-
sion relations for harmonic waves propagating along an infinitely
long fluid layer of uniform width. In the second step, we solve the
tube-wave problem in the frequency domain, in which the fracture
response is captured through the fracture hydraulic impedance, and
then it is converted to the time domain by inverting the Fourier
transforms. The fracture response, as embodied by the fracture hy-
draulic impedance, features multiple resonance peaks associated
with the eigenmodes of the fracture. The frequencies and attenua-
tion properties of these modes are sensitive to the fracture length
and aperture. These resonances furthermore make the tube-wave
reflection/transmission coefficients dependent on frequency, with
the maximum reflection at the resonance frequencies of the fracture.
We close by presenting synthetic pressure seismograms for tube
waves within the wellbore, along with a demonstration of the sen-
sitivity of these signals to fracture geometry.

FLUID-FILLED FRACTURES

Fluid governing equations and numerical simulations
of fluid-filled fractures

The first step in the solution procedure outlined above is to de-
termine the hydraulic impedance of the fracture. In fact, we find it
more convenient to work with a nondimensional quantity propor-
tional to the reciprocal of the fracture hydraulic impedance, which
we refer to as the fracture transfer function FðωÞ. Although the frac-
ture hydraulic impedance diverges in the low-frequency limit, the
fracture transfer function goes to zero in a manner that captures the
quasi-static fracture response used in the original work on hydraulic
impedance testing.

The fluid-filled fracture system is described by the elastic-wave
equation, governing displacements of the solid, and the compress-
ible Navier-Stokes equation for the viscous fluid in the fracture. In
this work, we use a linearized, approximate version of the Navier-
Stokes equation that retains only the minimum set of terms required
to properly capture the low-frequency response of the fluid (Lipov-
sky and Dunham, 2015). By low frequency, we mean ωw0∕c0 ≪ 1,
where ω is the angular frequency, w0 is the crack aperture or width
(the two terms are used interchangeably hereafter), and c0 is the
fluid sound speed. For w0 ∼ 1 mm and c0 ∼ 103 m∕s, frequencies
must be smaller than approximately 1 MHz. This is hardly a restric-
tion because fracture resonance frequencies are typically well less
than approximately 100 Hz. The derivation of the governing equa-
tions and details of the numerical treatment (using a provably stable,
high-order-accurate finite-difference discretization) are discussed
by Lipovsky and Dunham (2015) and O. O’Reilly et al. (personal
communication, 2017). Here, we explain the geometry of our sim-
ulations and then briefly review the fluid governing equations
within the fracture to facilitate the later discussion of Krauklis
waves and the fracture transfer function.
Although a solution to the 3D problem is required to quantify

how the fracture transfer function depends on the fracture length,
height, and width, in this preliminary study, we instead use a 2D
plane strain model (effectively assuming an infinite fracture height).
We anticipate that this 2D model will provide a reasonable de-
scription of axisymmetric fractures, such as the one illustrated in
Figure 1, although some differences should be expected from the
differing nature of plane waves and axisymmetric waves. However,
the procedure for using the fracture transfer function, obtained from
numerical simulations, to solve the coupled wellbore-fracture prob-
lem, is completely general, as are the overall qualitative results con-
cerning matched resonance that are discussed in the context of tube-
wave interactions with fractures. Finally, when the fracture transfer
functions from 3D simulations are available, the coupling solution
procedure can be used with no additional modifications.

Seismic 
radiation

Viscous dissipation

Linear elastic solid 
Incident 
tube wavetube wave

Transmitted
tube wave

Sealed bottom

wellbore

Nonplanar
fracture geometry

Compressible

Source input
at wellhead

tube wave

Krauklis wave

z

Figure 1. Tube waves, excited at the wellhead, are incident on a
fluid-filled fracture intersecting the wellbore. Pressure changes and
fluid-mass exchange between the wellbore and fracture excite Krau-
klis waves within the fracture, leading to partial reflection of the
tube waves and dissipation of energy.
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Returning to the 2D plane strain problem, let x be the distance
along the fracture and y be the distance perpendicular to the frac-
ture; the origin is placed at the fracture mouth, where we will later
couple the fracture to a wellbore. We use an approximation similar
in many respects to the widely used lubrication approximation for
thin viscous layers (Batchelor, 2000), although we retain terms de-
scribing fluid inertia and compressibility. In the low-frequency limit
(ωw0∕c0 ≪ 1), the y-momentum balance establishes the uniformity
of pressure across the width of the fracture (Ferrazzini and Aki,
1987; Korneev, 2008; Lipovsky and Dunham, 2015). The linearized
x-momentum balance is

ρ
∂v
∂t

þ ∂p
∂x

¼ μ
∂2v
∂y2

; (3)

where vðx; y; tÞ is the particle velocity in the x-direction, pðx; tÞ is the
pressure, and ρ and μ are the fluid density and dynamic viscosity,
respectively. We have retained only the viscous term corresponding
to shear along planes parallel to y ¼ 0; scaling arguments show that
other viscous terms are negligible in comparison for this class of
problems (Lipovsky and Dunham, 2015). The initial and perturbed
fracture widths are defined as

w0ðxÞ ¼ wþ
0 ðxÞ − wþ

0 ðxÞ; (4)

wðx; tÞ ¼ wþðx; tÞ − w−ðx; tÞ: (5)

Note that w0 refers to the full width, whereas some previous work
(Lipovsky and Dunham, 2015) used this to refer to the half-width.
Combining the linearized fluid mass balance with a linearized equa-
tion of state, we obtain

1

K
∂p
∂t

þ 1

w0

∂w
∂t

¼ −
1

w0

∂ðuw0Þ
∂x

; (6)

where

uðx; tÞ ¼ 1

w0ðxÞ
Z

wþ
0
ðxÞ

w−
0
ðxÞ

vðx; y; tÞdy (7)

is the x-velocity averaged over the fracture width and K is the fluid
bulk modulus. The fluid sound speed is c0 ¼

ffiffiffiffiffiffiffiffiffi
K∕ρ

p
. Accumulation/

loss of fluid mass at some location in the fracture can be accommo-
dated by either compressing/expanding the fluid (the first term on the
left side of equation 6) or opening/closing the fracture walls (the sec-
ond term on the left side of equation 6). The latter is the dominant
process at the low frequencies of interest in this study.
Coupling between the fluid and solid requires balancing tractions

and enforcing continuity of normal and tangential particle velocity
on the fracture walls (i.e., the kinematic and no-slip conditions). At
the fracture mouth, pressure is prescribed; zero velocity is prescribed
at the fracture tip. At the outer boundaries of the solid domain, ab-
sorbing boundary conditions are used to suppress artificial reflec-
tions. The computational domain in both directions is 12 times the
length of the fracture so as to fully capture the quasi-static displace-
ments in the solid and to further minimize boundary reflections.
Spatial variations in the fracture width are captured through w0ðxÞ.

A uniformly pressurized fracture in an infinite medium has an ellip-
tical opening profile, w0ðxÞ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − x2

p
, and a stress singularity at

the fracture tips. Here, we use a related solution for w0ðxÞ in which
closure at the tip occurs in a more gradual manner so as to remove
that singularity. In particular, we use expressions for w0ðxÞ from a
cohesive zone model (Chen and Knopoff, 1986), appropriately modi-
fied from antiplane shear to plane strain by replacement of the shear
modulus G with G� ¼ G∕ð1 − νÞ, where ν is Poisson’s ratio. The
cohesive zone region is approximately 25% of the fracture length.
In addition, we blunt the fracture tip so that it has a finite width (usu-
ally a small fraction of the maximum width at the fracture mouth,
unless otherwise indicated).
Figure 2 shows snapshots of the numerical simulation of Krauklis

waves propagating along a fluid-filled fracture. For this example
only, we add to w0ðxÞ a band-limited self-similar fractal roughness,
as in Dunham et al. (2011) with an amplitude-to-wavelength ratio of
10−2, similar to what is observed for natural fracture surfaces and
faults (Power and Tullis, 1991; Candela et al., 2012). Material prop-
erties used in this and other simulations are given in Table 1. The
fracture opens in regions of converging fluid flow, and it contracts
where the flow diverges. Krauklis waves with different wavelengths
separate as they propagate along the fracture due to dispersion.
Krauklis waves arise from the combined effects of fluid inertia and
the restoring force from fracture wall elasticity. Because the elastic
wall is more compliant at longer wavelengths, all else being equal,
long-wavelength waves experience smaller restoring forces and
hence propagate more slowly. Elastic waves in the solid are excited
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Figure 2. Snapshots from simulation of Krauklis and elastic waves
excited by an imposed pressure chirp at the fracture mouth, for a 10 m
long fracture with a 4 mm width at the fracture mouth. The back-
ground shows the solid response (to scale), and the inset shows the
fluid response (vertically exaggerated). Colors in the solid show the
particle velocity in the direction normal to the fracture walls; discon-
tinuities across the fracture indicate opening/closing motions charac-
teristic of Krauklis waves. Colors in the fluid show the particle
velocity; note the narrow viscous boundary layers near the nonplanar
fracture walls. The multimedia version of Figure 2 can be accessed
through this link: s1.mp4.
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at the fracture mouth and along the fracture due to inertia of the
solid during Krauklis-wave reflection from the fracture tip and frac-
ture mouth. Note that elastic waves propagate nearly an order of
magnitude faster than Krauklis waves; this is evident in Figure 2a.
As seen in the Figure 2 insets, viscous effects are primarily re-
stricted to narrow boundary layers near the fracture walls and there
can even be flow reversals and nonmonotonic velocity profiles. The
decreased width near the fracture tip decelerates the Krauklis waves
and enhances the viscous dissipation in the near-tip region. After
being reflected multiple times, pairs of counterpropagating Krauklis
waves form standing waves along the fracture, which set the fluid-
filled fracture into resonance. Shorter period modes are damped out
first, by the viscous dissipation and seismic radiation, leaving long-
period modes with wavelengths of the order of the fracture length.
The frequency and decay rate, or attenuation, of these resonant
modes are captured by the location and width of spectral peaks
in the fracture transfer function, as we demonstrate shortly.

Krauklis waves

Before discussing the fracture transfer function, we review some
key properties of Krauklis waves. This is most easily done in the
context of an infinitely long fracture or fluid layer (with the constant
initial width w0) between identical elastic half-spaces. Seeking
eiðkx−ωtÞ solutions to the governing equations, and neglecting inertia
of the solid (which is negligible for Krauklis waves at the low
frequencies of interest to us), leads to the dispersion relation (Lip-
ovsky and Dunham, 2015)

DKðk;ωÞ ¼
�
tan ξ

ξ
− 1

��
c0k
ω

�
2

þ 1þ 2K
G�kw0

¼ 0; (8)

where ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−iw2

0ω∕4ν
p

, ν ¼ μ∕ρ is the fluid kinematic viscosity, k
is the wavenumber, and ω is the angular fre-
quency. Using the full linearized Navier-Stokes
equation for the fluid and retaining inertia in
the solid give rises to a more complex dispersion
relation (Ferrazzini and Aki, 1987; Korneev,
2008) that has fundamental and higher mode sol-
utions. In contrast, our approximate fluid model
only captures the fundamental mode. However,
the higher modes exist only above specific cutoff
frequencies that are well outside the frequency
range of interest. Here, we first discuss solutions
to equation 8 for realω and complex k. The spatial
attenuation of the modes is quantified by

1

2Q
¼ Im k

Re k
; (9)

where Q is the quality factor, approximately the
number of spatial oscillations required for an ap-
preciable decay of the amplitude. Plots of the phase
velocity and attenuation are presented in Figure 3.
At high frequency (but still sufficiently low

frequency as to justify the ωw0∕c0 ≪ 1 approxi-
mation), the phase velocity approaches the fluid
sound speed because the fracture walls are effec-
tively rigid relative to the compressibility of the
fluid. At frequencies below

fel ¼
ωel

2π
¼ Kc0

πG�w0

; (10)

the elastic wall deformation becomes appreciable. This additional
compliance leads to reduced phase velocity, given approximately as
(Krauklis, 1962)

c ≈
�
G�w0ω

2ρ

�
1∕3

: (11)

Lower frequency waves propagate slower than higher frequency
waves because the elastic walls are more compliant at longer wave-
lengths. Viscous dissipation is confined to thin boundary layers
around the fracture walls.
At even lower frequencies, below

fvis ¼
ωvis

2π
¼ 2μ

πρw2
0

; (12)

Table 1. Material properties.

Solid (rock)

Density ρs (kg∕m3) 2489

P-wave speed cp (m∕s) 4367

S-wave speed cs (m∕s) 2646

Fluid (water)

Density ρ0 (kg∕m3) 1000

Sound wave speed c0 (m∕s) 1500

Viscosity μ (Pa:s) 0.001
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Figure 3. (a) Phase velocity and (b) spatial attenuation of Krauklis waves for a real fre-
quency. (c) Phase velocity and (d) temporal attenuation for a real wavelength. Dispersion
and attenuation curves are plotted for four fracture widths: 0.5, 1, 3, and 10mm, as labeled.
The dashed black and red lines in (a and b) mark the characteristic frequencies fvis and fel
defined in the text. Dashed lines in (c and d) mark the cutoff wavelength λc, beyond which
waves cease to propagate.
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viscous effects are felt across the entire width of the fluid layer and
the velocity v approaches the well-known parabolic Poiseuille flow
profile. Viscous dissipation is sufficiently severe as to damp out
waves over only a few cycles of oscillation; in addition, phase
velocity decreases below that given in equation 11.
An important consequence of dissipation, from the viscous ef-

fects and from elastic-wave radiation, is that Krauklis-wave reso-
nance will only occur in sufficiently short fractures. We can gain
deeper insight by plotting the phase velocity and attenuation of
Krauklis waves for real wavelength λ and complex frequency in
Figure 3c and 3d, which correspond to standing waves formed by
pairs of counterpropagating Krauklis waves. The temporal attenu-
ation is quantified by

1

2Q
¼ Imω

Reω
; (13)

for temporal quality factor Q. When the wavelength exceeds a cut-
off wavelength (Lipovsky and Dunham, 2015)

λc ¼ 2π

�
60μ2

G�ρw5
0

�−1∕3
; (14)

the phase velocity drops to zero and temporal attenuation diverges.
This expression, corresponding to the dashed lines in Figure 3c and
3d, provides a crude estimate of the maximum length of fractures
that can exhibit resonant oscillations. However, it is essential to ac-
count for additional dissipation that occurs from the decreased width
near the fracture tip, and this is best done numerically. We therefore
quantify the detectability limits of the fractures, using our 2D plane-
strain simulations, in a later section.

Fracture transfer function

Now, we turn our attention to finite-length fractures. Our objec-
tive is to quantify the response of the fracture to forcing at the frac-
ture mouth, where the fracture connects to the wellbore. This is
done through the dimensionless fracture transfer function FðωÞ that
relates pressure pð0; tÞ and width-averaged velocity uð0; tÞ at the
fracture mouth:

ûð0;ωÞ ¼ FðωÞ
ρc0

p̂ð0;ωÞ; (15)

where ûð0;ωÞ and p̂ð0;ωÞ are the Fourier transform of width-aver-
aged velocity and pressure, respectively. The fracture transfer func-
tion is related to the more commonly used fracture hydraulic
impedance ZfðωÞ defined in equation 1 by

FðωÞ ¼ ρc0∕Af

ZfðωÞ
; (16)

where Af is the cross-sectional area of the fracture mouth. We have
nondimensionalized FðωÞ using the fluid acoustic impedance ρc0,
such that FðωÞ ¼ 1 for an infinitely long layer of inviscid, com-
pressible fluid between parallel, rigid walls.
To calculate the fracture transfer function, numerical simulations

such as that in Figure 2 are performed by imposing the pressure at
the fracture mouth pð0; tÞ and measuring the resulting width-aver-
aged velocity at the fracture mouth uð0; tÞ. Figure 4 illustrates the
sensitivity of uð0; tÞ to the fracture geometry, given the same chirp
input pð0; tÞ.
Then, pð0; tÞ and uð0; tÞ are Fourier transformed and the fracture

transfer function is calculated using equation 15. An example is
shown in Figure 5. Figure 6 compares the amplitude of the transfer
function jFj for fractures of different lengths and widths. The trans-
fer functions exhibit multiple spectral peaks, corresponding to the
resonant modes of the fracture (with a constant pressure boundary
condition at the fracture mouth). These peaks are finite because of
dissipation from viscosity and seismic radiation. Longer and nar-
rower fractures have lower resonance frequencies, which is due to
higher compliance and slower Krauklis-wave phase velocities.
We next examine the asymptotic behavior of the fracture transfer

function at low frequencies, which facilitates comparison with
quasi-static fracture models that have been widely used in the
literature on hydraulic impedance testing and fracture diagnostics us-
ing water-hammer signals (Holzhausen and Gooch, 1985a, 1985b;
Holzhausen and Egan, 1986; Paige et al., 1995; Mondal, 2010; Carey
et al., 2015). By low frequency, we mean ω ≪ cðωÞ∕L, where cðωÞ
is the Krauklis-wave phase velocity and L is the fracture length. Us-
ing equation 11 for cðωÞ, the low-frequency condition is ω ≪
ðG�w0L3∕2ρÞ1∕2 or ω∕2π ≪ 15 Hz for L ∼ 1 m and w0 ∼ 1 mm.
The low-frequency condition results in effectively uniform pressure
across the length of the crack (at least when viscous pressure losses
can be neglected) and the fracture response can be described by a
much simpler model. The global mass balance for the fracture, within
the context of our linearization, is

w0uð0; tÞ ≈
d
dt

Z
L

0

wðx; tÞdx; (17)

where we have assumed that the fluid is effectively incompressible at
these low frequencies, such that inflow of fluid (the left side) is bal-
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Figure 4. Response of fractures to (a) broadband pressure chirp at
the fracture mouth, quantified through (b) width-averaged velocity
at the fracture mouth. The response, shown for five fractures having
the same length (L ¼ 10 m) and different widths (the value given
above each curve), is characterized by several resonance frequen-
cies. The resonance frequency decreases as the width decreases, as
anticipated from the dependence of the Krauklis-wave phase veloc-
ity on the width (equation 11 and Figure 3a). Higher frequencies
decay quickly, leaving only the fundamental resonant mode. Wider
fractures experience less viscous dissipation (Figure 3b), and hence
they oscillate longer.
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anced by changes in width (the right side). Given that the fracture is
very thin and approximately planar, the change in the opening is then
related to the pressure change using the well-known solution for a
plane strain mode I crack in an infinite medium (Lawn, 1993). The
result is

uð0; tÞ ≈ πL2

4w0G�
dp
dt

: (18)

It follows, upon Fourier transforming equation 18 and using equa-
tion 15, that

FðωÞ ≈ −iπL2ρc0
4G�w0

ω as ω → 0: (19)

This asymptotic behavior is essentially the same as that quantified by
Holzhausen and Gooch (1985a) as the fracture capacitance, although
our result is for the 2D plane strain case to permit comparison with
our simulations.
The low-frequency asymptotes (equation 19) are plotted as dashed

lines in Figures 5a (inset) and 6, verifying that our numerical simu-

lations accurately capture the quasi-static response. However, this
asymptotic behavior only applies in the extreme low-frequency limit
(far below the first resonance frequency) and deviates substantially
from the actual response at higher frequencies. The traditional hy-
draulic impedance testing method (Holzhausen and Gooch, 1985a;
Holzhausen and Egan, 1986) thus leaves the vast spectrum at higher
frequencies unexplored.
We also derive an approximate analytical solution to the transfer

function based on the dispersion relation (rather than using simula-
tions). This dispersion-based approach has been used in several stud-
ies (Hornby et al., 1989; Kostek et al., 1998a; Henry, 2005; Derov
et al., 2009), and it is illustrative to compare it with the more rigorous
simulation-based solution. The solution, derived in Appendix A, as-
sumes uniform width and imposes a zero-velocity boundary condi-
tion at the fracture tip. The resulting fracture transfer function is

FðωÞ ¼ −ikðωÞc0 tan½kðωÞL�
ω

; (20)

where kðωÞ is the complex wavenumber obtained by solving the
dispersion equation 8, assuming real angular frequency ω.
Our numerical simulations permit an exploration of how the de-

creased width near the fracture tip alters the fracture response, relative
to the more idealized models based on dispersion (equation 20) that
assume tabular (uniform-width) fractures. Figure 7 compares transfer
functions for 1 m long fractures with the same width (2 mm) at the
fracture mouth but different profiles near the tip. These range from a
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tabular fracture to ones in which the width at the tip is decreased to
only 1∕50 of the maximum width. As the fracture tip width is re-
duced, the resonance frequencies and the fracture transfer function
amplitude at resonance peaks are shifted to lower values. This is
due to higher viscous dissipation and slower Krauklis-wave phase
velocity for narrower fractures. The differences are most pronounced
at higher frequencies and for higher resonant modes. This finding
highlights the importance of accounting for the near-tip geometry
when using high-frequency data to determine fracture geometry.
The tabular or flat fracture model (equation 20) can lead to substantial
errors; in this example, there is approximately 20% error in the fun-
damental frequency and 100% error in the amplitude of the funda-
mental mode spectral peak.

Fracture geometry inference and detectability limits

As evidenced in Figures 4–7, the fracture response, as embodied
by the fracture transfer function, is sensitive to fracture geometry
(length and width). We now consider the inverse problem, that
is, determining the fracture geometry from properties of the reso-
nant modes of the fracture. Lipovsky and Dunham (2015), building
on work by Korneev (2008) and Tary et al. (2014), show how mea-
surements of the resonance frequencies and attenuation or decay rates
associated with resonant modes could be used to uniquely determine
the length and width. Their work uses dispersion relations derived for
harmonic waves in an infinitely long fluid layer, and we have seen, in
Figure 7, some notable discrepancies as compared with our numerical
simulations of finite-length fractures. We thus revisit this problem,
focusing in particular on the detectability limits.
As the fracture length grows, the resonance wavelengths increase

and eventually reach a cutoff limit, beyond which the temporal at-
tenuation diverges (Figure 3d). This provides the most optimistic
estimate of fracture detectability using resonance; noise in real mea-
surements will further limit the detectability.

Figure 8a shows a graphical method for estimating fracture
geometry from measurements of the frequency and temporal quality
factor Q of the fundamental mode. This is similar to Figures 6–8 in
Lipovsky and Dunham (2015), but here the fundamental mode
properties are determined from transfer functions from numerical
simulations using the tapered fracture shape shown in Figure 6a.
Specifically, Q ¼ f0∕Δf for fundamental frequency f0 and Δf, the
full width at half of the maximum amplitude in a plot of jFj (Fig-
ure 6b). We also provide, in Figure 8b and 8c, a comparison between
our numerical results (for a tapered width) and predictions based on
the dispersion relation (for a uniform width). Note that the dispersion
solutions are calculated for zero velocity at the fracture tip and con-
stant pressure at the fracture mouth, whereas Lipovsky and Dunham
(2015) assume zero velocity at both tips. Viscous dissipation is under-
estimated using the dispersion-based approach, which ignores the
narrow region near the fracture tip. There are also differences in
the resonance frequency; the finite-length fractures in our numerical
simulations are stiffer, and hence they resonate at higher frequencies,
than those suggested by the dispersion-based method.
We finish this section by noting that quantitative results in Fig-

ure 8 are specific to the 2D plane strain problem. We anticipate that
an axisymmetric (penny-shaped) fracture would have a similar re-
sponse, but we caution that these results are unlikely to apply to 3D
fractures when the length greatly exceeds the height. That case,
which is of great relevance to the oil and gas industry, warrants
study using 3D numerical simulations.

TUBE-WAVE INTERACTIONWITH FLUID-FILLED
FRACTURES

Having focused on the fracture response in the previous sections,
we now return to the overall problem of determining the response of
the coupled wellbore-fracture system. We present a simple model
for low-frequency tube waves, and we derive reflection/transmis-
sion coefficients that quantify tube-wave interaction with a fracture
intersecting the wellbore. We then examine the system response to
excitation at the wellhead or at one end of a sealed interval, noting
the possibility of a matched resonance between tube waves in the
wellbore and Krauklis waves in the fracture.

Tube-wave governing equations and wellbore-fracture
coupling

Let z be the distance along the well. The wellbore, with a constant
radius a and cross-sectional area AT ¼ πa2, is intersected by a frac-
ture at z ¼ 0 with aperture w0 at the fracture mouth. Low-frequency
tube waves are governed by the linearized momentum and mass
balance equations (and the latter is combined with linearized con-
stitutive laws for a compressible fluid and deformable elastic solid
surrounding the wellbore):

ρ

AT

∂q
∂t

þ ∂p
∂z

¼ 0; (21)

AT

M
∂p
∂t

þ ∂q
∂z

¼ −AfuðtÞδðzÞ; (22)

where qðz; tÞ is the volumetric flow rate along the wellbore, pðz; tÞ
is the pressure, uðtÞ is the velocity into the fracture at the fracture
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Figure 7. (a) Geometry of a 1 m long fracture with the tip width
varied from 1, 1∕5, 1∕20, to 1∕50 of the width at the fracture mouth
(2 mm). (b) Amplitude of the fracture transfer function with varied
fracture tip width compared with the dispersion-based approxima-
tion solution (equation 20) and the quasi-static limit (equation 19).
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mouth, ρ is the fluid density (assumed to be the same as in the frac-
ture), M is a modulus that is typically close to the fluid bulk modu-
lus (Biot, 1952), and Af is the fracture mouth area. For a fracture
intersecting the wellbore perpendicularly, as we assume in the exam-
ples presented below, Af ¼ 2πaw0. This can be generalized to ac-
count for fractures intersecting the wellbore at other angles (Hornby
et al., 1989; Derov et al., 2009). These equations describe nondisper-
sive wave propagation at the tube-wave speed cT ¼ ffiffiffiffiffiffiffiffiffiffi

M∕ρ
p

, which
we solve in the frequency domain using Fourier transforms. How-
ever, they could also be solved by a time-domain finite-difference
method (Liang et al., 2015; Karlstrom and Dunham, 2016) or by
the method of characteristics (Mondal, 2010; Carey et al., 2015), both
of which permit spatial variation of properties. In all examples shown
below, we set the wellbore diameter to 2a ¼ 0.1 m and assumeM ¼
K (and hence cT ¼ c0) for simplicity, although expressions are given
for the general case. The model can, of course, be generalized to ac-
count for permeable walls (Tang, 1990), irregularly shaped boreholes
(Tezuka et al., 1997), spatially variable properties (Chen et al., 1996;
Wang et al., 2008), and friction (Livescu et al., 2016). The source
term on the right side of the mass balance equation 22 describes
the mass exchange between the wellbore and the fracture at the frac-
ture mouth. Because the fracture aperture is much smaller than the
tube-wave wavelength, the source term is approximately a delta func-
tion at the fracture location.
Integrating equations 21 and 22 across the junction at the well-

bore-fracture intersection, we obtain the following jump conditions:

qð0þ; tÞ − qð0−; tÞ ¼ −AfuðtÞ; (23)

pð0þ; tÞ − pð0−; tÞ ¼ 0: (24)

The pressure is continuous across the junction, whereas the volu-
metric flow rate (and fluid particle velocity through the wellbore)
experiences a jump that accounts for mass exchange with the frac-
ture. The volumetric flow rate into the fracture AfuðtÞ is related to
the pressure at the fracture mouth pð0; tÞ through the fracture transfer
function using equation 15 (or, equivalently, the fracture hydraulic
impedance ZfðωÞ). Although we focus on one intersecting fracture
in this study, extension to multiple fractures is straightforward by
adding multiple jump conditions similar to equations 23 and 24.
By Fourier transforming equations 23 and 24 and using equation 15,
we obtain

q̂ð0þ;ωÞ− q̂ð0−;ωÞ¼−
AfFðωÞ
ρc0

p̂ð0;ωÞ¼−
p̂ð0;ωÞ
ZfðωÞ

: (25)

Tube-wave reflection/transmission coefficients

We now derive the reflection and transmission coefficients of
tube waves incident on the fracture. Assuming an infinitely long
well, we seek a Fourier-domain solution of the form:

p̂ðz;ωÞ ¼
�
eikz þ Re−ikz; z < 0;
Teikz; z > 0;

(26)

where k ¼ ω∕cT is the wavenumber, the incident wave has unit am-
plitude, and R and T are the reflection and transmission coefficients,

respectively. Satisfying the governing equations 21 and 22 and the
fracture junction conditions (equations 24 and 25) yields

RðωÞ ¼ −
rðωÞ∕2

1þ rðωÞ∕2 ¼ −
1

1þ 2∕rðωÞ ; (27)

TðωÞ ¼ 1

1þ rðωÞ∕2 ¼ 2∕rðωÞ
1þ 2∕rðωÞ ; (28)
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Figure 8. (a) Graphical method to determine the fracture length and
width from frequency (red curves) and temporal quality factor Q
(black curves) of the fundamental resonant mode (i.e., from the frac-
ture transfer function from numerical simulations using the tapered
fracture geometry; see Figure 6). In the overdamped region (Q <
0.5), viscous dissipation prevents resonant oscillations and the geom-
etry cannot be determined with this method. (b) Quality factor and
(c) frequency, comparing numerical simulation results with solutions
based on the dispersion relation (equation 8).

Diagnostics with Krauklis and tube waves D179

D
ow

nl
oa

de
d 

08
/0

2/
17

 to
 1

71
.6

4.
17

1.
16

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



in which

rðωÞ ¼ ZT

ZfðωÞ
¼ ρcT∕AT

ρc0∕Af
FðωÞ (29)

is the ratio of the hydraulic impedance of tube waves in the well-
bore, ZT ≡ ρcT∕AT , to the fracture hydraulic impedance ZfðωÞ. The
factor of two in the expressions for RðωÞ and TðωÞ arises because a
pair of tube waves propagate away from the fracture.
Figure 9 explores the relation between the fracture transfer func-

tion and the reflection/transmission coefficients. The maximum re-
flection approximately coincides with the resonance peaks in the
transfer functions, corresponding to the eigenmodes of the fracture
with a constant pressure boundary condition at the fracture mouth.
At these frequencies, the hydraulic impedance of the fracture is
much smaller than that of tube waves (i.e., rðωÞ∕2 ≫ 1), and only
small pressure changes at the fracture mouth are required to induce
a large flow into or out of the fracture. The reflection coefficient
goes to −1 in this limit, so that waves at these specific frequencies
are reflected as if from a constant pressure boundary. We also note
that reducing the fracture width decreases reflection because the
fracture mouth area decreases relative to the wellbore cross-sec-
tional area AT and because the fracture resonance peak amplitude
decreases due to increased viscous dissipation in narrower fractures
(captured in F or Zf).

Response of the wellbore-fracture system

We now consider a finite-length section of the well intersected by
a single fracture, with boundary conditions prescribed at both ends
of the well section. These ends might coincide with the wellhead
and well bottom or the two ends of a sealed interval. Let h1 and
h2 be the lengths of the two sections above and below the fracture,
respectively, with the fracture at z ¼ 0 as before. We seek the pres-
sure and velocity within the wellbore, given some excitation at the
end of the upper well section.
Equations 21 and 22 are supplemented with boundary conditions

at the top and bottom of the wellbore. At the top (z ¼ −h1), we set
the volumetric flow rate into the well equal to a prescribed injection
rateQðtÞ, not to be confused with the quality factor discussed earlier:

qð−h1; tÞ ¼ QðtÞ: (30)

In Appendix B, we show that this boundary condition is mathemati-
cally equivalent to the case of a sealed end (i.e., qð−h1; tÞ ¼ 0) with a
monopole source placed within the wellbore just below the end. At
the bottom (z ¼ h2), we assume a partially reflecting condition of the
form

pðh2; tÞ − ZTqðh2; tÞ ¼ Rb½pðh2; tÞ þ ZTqðh2; tÞ�; (31)

in which Rb is the well bottom reflection coefficient (satisfying
jRbj ≤ 1). This boundary condition can be equivalently written in
terms of the hydraulic impedance Zb at the bottom of the well:

pðh2; tÞ ¼ Zbqðh2; tÞ; Zb ¼
1þ Rb

1 − Rb
ZT: (32)

We assume constant, real Rb (and hence Zb), although it is possible
to use a frequency-dependent, complex-valued Rb if desired. For
Rb ¼ 0, there is no reflection from the bottom, Rb ¼ 1 corresponds
to qðh2; tÞ ¼ 0, and Rb ¼ −1 corresponds to pðh2; tÞ ¼ 0.
The solution to the stated problem is

p̂ðz;ωÞ¼
�
a1 sinðkzÞþa2 cosðkzÞ; −h1<z<0;
b1eikzþb2e−ikz; 0<z<h2;

(33)

ZTq̂ðz;ωÞ ¼
�
−ia1 cosðkzÞ þ ia2 sinðkzÞ; −h1 < z < 0;

b1eikz − b2e−ikz; 0 < z < h2;

(34)

where k ¼ ω∕cT and the coefficients a1, a2, b1, and b2 are deter-
mined by the top boundary condition (equation 30), bottom boundary
condition (equation 31), and fracture junction conditions (equa-
tions 24 and 25):

a1 ¼
iZTQ̂ðωÞ
DðωÞ ; (35)

a2 ¼
ZTQ̂ðωÞ

½rðωÞ þ ΛðωÞ�DðωÞ ; (36)
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Figure 9. (a) Amplitude of the fracture transfer functions jFj for
two 10 m long fractures with different widths (1 and 5 mm). (b) Am-
plitude of the tube-wave reflection and transmission coefficients,
jRj and jTj, across the fracture (equations 27 and 28) for the well-
bore diameter 2a ¼ 0.1 m. Maximum reflection occurs at the res-
onance frequencies of the fracture.
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b1 ¼
ZTQ̂ðωÞ

ð1þ Rbe2ikh2Þ½rðωÞ þ ΛðωÞ�DðωÞ ; (37)

b2 ¼
Rbe2ikh2ZTQ̂ðωÞ

ð1þ Rbe2ikh2Þ½rðωÞ þ ΛðωÞ�DðωÞ ; (38)

where

DðωÞ ¼ cosðkh1Þ −
i sinðkh1Þ

rðωÞ þ ΛðωÞ ; (39)

ΛðωÞ ¼ 1 − Rbe2ikh2

1þ Rbe2ikh2
; (40)

and rðωÞ is the hydraulic impedance ratio defined as before (equa-
tion 29). Solutions in the time domain are obtained by inverting the
Fourier transform.

Excitation at the wellhead

Here, we use the solution derived above to demonstrate how frac-
ture growth might be monitored using tube waves or water-hammer
signals generated by excitation at the wellhead. The wellbore has a
total length of 3 km, a diameter of 2a ¼ 0.1 m, and a partially
sealed bottom with reflection coefficient Rb ¼ 0.8. A single fracture
is placed 2 km from the wellhead and 1 km from the well bottom
(i.e., h1 ¼ 2 km and h2 ¼ 1 km). At the well-
head, we prescribe a broadband chirp (up to ap-
proximately 500 Hz) in velocity, as shown in
Figure 10. As mentioned earlier and detailed
in Appendix B, this is equivalent to placing a mo-
nopole source a short distance below the sealed
wellhead. Pressure perturbations could be gener-
ated by abruptly shutting in the well, as is done in
hydraulic impedance testing (Holzhausen and
Egan, 1986; Carey et al., 2015). However, an en-
gineered source would provide better control over
the source spectrum. To account for dissipation
during tube-wave propagation along the wellbore,
we add a small imaginary part to the tube-wave
speed: cT ¼ ð1 − 10−3iÞ ffiffiffiffiffiffiffiffiffiffi

M∕ρ
p

. Figure 11 shows
a schematic of this system and the synthetic bore-
hole record section. The interplay between tube
waves in the wellbore and dispersive Krauklis
waves within the fracture is evident.

Matched resonance

The example shown in Figure 11 illustrates the
response when the entire long wellbore is hy-
draulically connected to the fracture. Distinct re-
flections can be seen, and interference between
different reflections is confined to short time in-
tervals. We next examine the more complex re-
sponse that arises when a much smaller section

of the well around the fracture is sealed at both ends and a source
is placed at one end. The solution given in equations 33–40 still
applies, but we select a smaller length h1. There is now complex
interference between multiply reflected waves; whether this inter-
ference is constructive or destructive depends on the well section
lengths h1 and h2 and the fracture reflection/transmission coeffi-
cients (and hence frequency). As we demonstrate, the signals in
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Figure 10. Chirp used for examples shown in Figures 11 and 12:
(a) time series and (b) spectrum.
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Figure 11. Response of the wellbore-fracture system to chirp excitation (Figure 10) at
the wellhead. (a) Schematic of the system, with one fracture 2 km below the wellhead
and 1 km above the well bottom. Sensor TP is 500 m above the fracture, and sensor BT is
250 m below the fracture. (b) Record section of pressure along the wellbore (every
250 m) with a fracture that is 10 m long and 2 mm wide at the fracture mouth. Multiple
reflections from the fracture, well bottom, and wellhead are observed. Dashed boxes
mark the time window (1.5–2.2 s) examined in panels (c and d) for sensors TP and
BT. (c) Comparison of pressure at sensors TP and BT for fractures with the same width
but different lengths. (d) Same as panel (c) but for fractures with the same length but
different widths. In panels (c and d), sensor TP shows waves reflected from the fracture;
first arriving are direct tube-wave reflections from the fracture mouth, followed by tube
waves generated by Krauklis waves in the fracture that have reflected from the fracture
tip. Sensor BT shows transmitted waves, which have similar arrivals. Longer fractures
show a more dispersed set of Krauklis-wave arrivals. Reflections are smaller from nar-
rower fractures.
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the upper well section that contains the source can be selectively
amplified when a resonance frequency of the upper well section
is tuned to one of the resonance frequencies of the fracture. We refer
to this phenomenon as matched resonance.
Reflection of waves from the fracture is most pronounced at

frequencies that permit maximum exchange of fluid between the
wellbore and fracture. These frequencies correspond approximately
to the resonance frequencies of the fracture with a constant pressure
boundary condition at the fracture mouth (i.e., corresponding to the
peaks of the fracture transfer function; see Figure 9). The resonance
frequencies of the upper wellbore section with a sealed top end

(q ¼ 0) and constant pressure condition (p ¼ 0) at the fracture
satisfy cosðωh1∕cTÞ ¼ 0. For example, the lowest resonance fre-
quency is f ¼ ω∕2π ¼ cT∕4h1. Matched resonance occurs when
one of these frequencies matches a fracture resonance frequency.
To justify this more rigorously, and explain some possible com-

plications, we note that the tube-wave eigenfunctions associated
with this resonant wellbore response are sinðωz∕cTÞ, corresponding
to the first term on the right side of equation 33. The amplitude of
this term is given in equation 35, which is largest when the denom-
inatorDðωÞ, given in equation 39, is smallest. The hydraulic imped-
ance ratio is quite large (ideally, jrðωÞj ≫ 1) around the fracture
resonance frequencies. A further requirement is that jΛðωÞj be suf-
ficiently small compared with jrðωÞj, at least around the targeted
fracture resonance frequency. When these conditions are satisfied,
DðωÞ ≈ cosðkh1Þ with k ¼ ω∕cT . Setting DðωÞ ¼ 0 then yields the
wellbore section resonance condition cosðωh1∕cTÞ ¼ 0 stated
above. Of course, this resonance condition is only an approxima-
tion, especially when jrðωÞj does not greatly exceed unity or when
jΛðωÞj is not small. In these cases, the matched resonance condition
can be more precisely determined by finding the frequencies ω that
minimize the exact DðωÞ in equation 39. However, ΛðωÞ can be
made arbitrarily small by sealing the bottom end of the lower well
section (Rb ¼ 1 and hence ΛðωÞ ¼ −i tanðωh2∕cTÞ) and decreas-
ing h2, such that ωh2∕cT ≪ 1.
Figure 12a and 12b illustrates matched resonance. The frequency

of the fundamental mode of the fracture (the 10 m long, 5 mm wide
example shown in Figures 5 and 9) is f ≈ 3.8 Hz, so the upper well-
bore section is chosen to be h1 ¼ 100 m ≈cT∕4f long to satisfy the
matched resonance condition. The system is excited by a broadband
chirp at the upper end of this wellbore section. The 3.8 Hz reso-
nance frequency clearly dominates the system response. The re-
sponse is shown for two bottom boundary conditions. The first is
the relatively simple case of a well with a nonreflecting bottom boun-
dary (Rb ¼ 0, for which Λ ¼ 1 regardless of h2). This eliminates the
possibility of resonance within the lower wellbore section and pre-
vents bottom reflections from then transmitting through the fracture
to return to the upper well section. The second case has h2 ¼ 10 m

and Rb ¼ 0.9, corresponding to a partially sealed end a short distance
below the fracture. Although the initial response in the second case
contains a complex set of high-frequency reverberations associated
with reflections within the lower well section, these are eventually
damped out to leave only the prominent 3.8 Hz resonance. This il-
lustrates a rather remarkable insensitivity to characteristics of the
lower well section because similar results (not shown) were found
even for a wide range of lower well section lengths h2.
We next demonstrate how changing the length of the upper well

section h1 alters the resonant response of the system. Figure 12c and
12d shows the responses for values of h1 that are larger and smaller
than the matched resonance length. The fundamental mode reso-
nance peak shifts to a lower frequency when h1 increases and to
a higher frequency when h1 decreases. Many resonant modes are
excited for the large h1 case, leading to a rather complex pressure
response. The situation is simpler for the small h1 case, but as h1
continues to decrease, the amplitude of the fundamental mode peak
continues to decrease and might be difficult to observe in noisy data.

Possible measuring techniques

Although it is easy to implement different excitation sources and
receiver configurations in our theoretical calculations, it is not trivial
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Figure 12. Matched resonance: The length of the upper wellbore
section containing the source is chosen so that the resonance fre-
quency of tube waves in this wellbore section matches the fundamen-
tal mode resonance frequency of the fracture (3.8 Hz). (a) Pressure
response at a receiver in the center of the upper wellbore section (at
z ¼ −h1∕2) to the chirp excitation shown in Figure 10. The 3.8 Hz
resonance is selectively amplified, regardless of the length of the
lower wellbore section and the bottom boundary condition: Compare
the case with a nonreflecting well bottom (red, Rb ¼ 0) to partially
sealed (blue, Rb ¼ 0.9 and h2 ¼ 10 m). (b) Fourier amplitude spec-
trum of pressure time series shown in (a), with prominent peak at the
3.8 Hz matched resonance frequency. Although additional spectral
peaks appear for the sealed bottom case, the matched resonance peak
is nearly identical to the nonreflecting bottom case. Also, shown is
the reflection coefficient of tube waves from the fracture, which has
peaks at the fracture resonance frequencies. (c) Same as panel (a) but
for h1 ¼ 200 and 50 m (with Rb ¼ 0.9 and h2 ¼ 10 m). The
system does not satisfy the matched resonance condition and the
spectrum, shown in panel (d), is more complicated and lacks the pro-
nounced peak at the fundamental resonance mode.
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to make downhole pressure measurements in practice. In general,
pressure is measured at the pump or in the pipe connecting the
pump to the wellhead during hydraulic fracturing treatments. In-
stalling downhole pressure transducers or hydrophones with com-
plex pumping and treatment equipment in place during hydraulic
fracturing would be challenging. In addition, downhole sensors
can occupy a significant volume of the borehole and create complex
tool effects on measured tube waves (Pardo et al., 2013). Quantify-
ing such effects is beyond the scope of this study. A possible alter-
native approach would be to install geophones or pressure gauges in
nearby monitoring wells. The model presented in this study would
need to be extended to predict the signals in the monitoring wells,
and it is uncertain if these signals would have as much useful in-
formation regarding the fracture geometry. Another technology that
reduces the influence of the tool on tube-wave propagation is fiber-
optic distributed acoustic sensing (DAS) (MacPhail et al., 2012;
Molenaar et al., 2012; Boone et al., 2015). DAS cables can run
through grooves across swellable packers along the casing in the
sealing elements in uncemented packer and sleeve completion, and
they can be buried in the cement in cemented plug-and-perf com-
pletions (Boone et al., 2015). This technology not only avoids any
interaction with tube waves, but it can also provide continuous mea-
surements along the full length of the wellbore.

CONCLUSION

We have investigated the interaction of tube waves with fractures.
Although this problem has received much attention in the literature,
previous work has been restricted to relatively idealized analytical
or semianalytical models of the fracture response. In contrast, we
advocate the use of numerical simulations to more accurately de-
scribe the fracture. These simulations account for variable fracture
width, narrow viscous boundary layers adjacent to the fracture walls,
and dissipation from viscosity and from seismic radiation. The sim-
ulations feature Krauklis waves propagating along the fracture; coun-
terpropagating pairs of Krauklis waves form the eigenmodes of the
fracture. As many authors note, the frequency and attenuation of
these modes can be used to constrain fracture geometry.
Although this initial study uses a 2D plane strain fracture model,

the overall methodology can be applied when 3D models of the
fracture are available. Such models would permit investigation of
fractures that have bounded height, a commonly arising situation in
the industry, and one for which the 2D model presented here is not
well-justified.
We then showed how to distill the simulation results into a single,

complex-valued function that quantifies the fracture response, spe-
cifically its hydraulic impedance (or the normalized reciprocal of
the impedance, the fracture transfer function). The fracture transfer
function can then be used to determine how tube waves within a
wellbore reflect and transmit from fractures intersecting the well,
and to solve for the response of the wellbore-fracture system to
excitation at the wellhead or within the wellbore.
The coupled wellbore-fracture system has a particularly complex

response, potentially involving resonance within wellbore sections
adjacent to the fracture or within the fracture itself. We found that it
is possible to selectively amplify tube waves at the eigenfrequencies
of the fracture by properly choosing the length of the well section
containing the source and intersecting the fracture. This phenome-
non, which we call matched resonance, could prove useful to excite

and measure fracture eigenmodes, which can then be used to infer
the fracture geometry.
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APPENDIX A

DISPERSION-BASED FRACTURE TRANSFER
FUNCTION

In this appendix, we use the Krauklis-wave dispersion relation to
derive an approximate expression for the fracture transfer function.
Let x be the distance into the fracture measured from the fracture
mouth at x ¼ 0. The fracture has length L and uniform aperture w0.
Solutions in the frequency domain are written as a superposition of
plane waves propagating in the þx and −x directions:

p̂ðx;ωÞ ¼ Aeikx þ Be−ikx; (A-1)

ρcûðx;ωÞ ¼ Aeikx − Be−ikx; (A-2)

where k ¼ kðωÞ and c ¼ ω∕kðωÞ are the wavenumber and phase
velocity determined by the Krauklis-wave dispersion relation (equa-
tion 8, solved for real ω and possibly complex k), and A and B are
the coefficients determined by boundary conditions at the ends of
the fracture. At the fracture tip, the fluid velocity is set to zero:

ρcûðL;ωÞ ¼ AeikL − Be−ikL ¼ 0: (A-3)

The fracture transfer function, defined in equation 15, is obtained by
combining equations A-1–A-3:

FðωÞ ¼ −ikðωÞc0 tan½kðωÞL�
ω

: (A-4)

Peaks in FðωÞ correspond to the resonance frequencies of the
fracture with a constant pressure condition at the fracture mouth.
Therefore, besides equation A-3, we have

p̂ð0;ωÞ ¼ Aþ B ¼ 0: (A-5)

Combining equations A-3 and A-5, we obtain the resonance con-
dition

cos kL ¼ 0; (A-6)

or knL ¼ ðn − 1∕2Þπ for positive integers n ¼ 1; 2; : : : . This can
be solved, assuming a real k and a complex ω, for the resonance
frequencies and (temporal) decay rates of the eigenmodes.
We next derive the resonance frequencies for the case of negli-

gible dissipation (i.e., for an inviscid fluid). In this case, k and ω are
real, and we have (Krauklis, 1962)
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cðωÞ ¼ ðG�w0ω∕2ρÞ1∕3 ¼ ðG�w0πf∕ρÞ1∕3: (A-7)

It follows that the resonance frequencies are

fn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπG�w0∕ρÞ½ðn − 1∕2Þ∕2L�3

q
: (A-8)

This expression provides a reasonably accurate prediction of the
resonance frequencies for the examples shown in this work, pro-
vided that w0 in equation A-8 is interpreted as average width.

APPENDIX B

EQUIVALENCE OF MONOPOLE SOURCE AND
FLOW RATE BOUNDARY CONDITION

In this appendix, we establish the equivalence, for sufficiently
low frequencies, between a monopole source placed just below the
sealed end of a wellbore section and a prescribed flow rate boundary
condition at that end. For convenience, we take z ¼ 0 to coincide
with the end. The tube-wave equations with a monopole source
mðtÞ at z ¼ s are

ρ

AT

∂q
∂t

þ ∂p
∂z

¼ 0; (B-1)

AT

M
∂p
∂t

þ ∂q
∂z

¼ mðtÞδðz − sÞ: (B-2)

For the sealed end, qð0; tÞ ¼ 0, whereas the prescribed flow rate
boundary condition is

qð0; tÞ ¼ QðtÞ: (B-3)

We now show equivalence of these two problems, in the sense that
QðtÞ ≈mðtÞ, for frequencies satisfying

sω∕cT ≪ 1: (B-4)

This is done by requiring that the outgoing waves below the source
(z > s) are identical for the two problems.
The solution to equations B-1 and B-2 in a semi-infinite wellbore

with a sealed end at z ¼ 0 is

p̂ðz;ωÞ ¼
�
a cosðωz∕cTÞ; 0 < z < s;
beiωðz−sÞ∕cT ; z > s;

(B-5)

ZTq̂ðz;ωÞ ¼
�
ia sinðωz∕cTÞ; 0 < z < s
beiωðz−sÞ∕cT ; z > s;

(B-6)

where a and b are the constants to be determined.
Fourier transforming equations B-1 and B-2 and integrating

across the source yields the jump conditions across the source:

p̂ðsþ;ωÞ − p̂ðs−;ωÞ ¼ 0; (B-7)

q̂ðsþ;ωÞ − q̂ðs−;ωÞ ¼ m̂ðωÞ: (B-8)

Constants a and b are determined by substituting equations B-5
and B-6 into equations B-7 and B-8:

a ¼ ZTm̂ðωÞeisω∕cT ; (B-9)

b ¼ ZTm̂ðωÞ cosðsω∕cTÞeisω∕cT : (B-10)

Substituting equations B-9 and B-10 into equations B-5 and B-6,
we obtain the solution below the source (z > s):

p̂ðz;ωÞ ¼ ZTm̂ðωÞ cosðsω∕cTÞeiωz∕cT ; (B-11)

q̂ðz;ωÞ ¼ m̂ðωÞ cosðsω∕cTÞeiωz∕cT : (B-12)

Similarly, we obtain the solution to the tube-wave problem with
no internal source but with the top boundary condition being
qð0; tÞ ¼ QðtÞ:

p̂ðz;ωÞ ¼ ZTQ̂ðωÞeiωz∕c; (B-13)

q̂ðz;ωÞ ¼ Q̂ðωÞeiωz∕c: (B-14)

We now determine the condition for which the wavefield below
the source (z > s) is identical between the two problems. Specifi-
cally, we require the equivalence of equations B-11 and B-13 and
similarly for equations B-12 and B-14. The necessary condition is

Q̂ðωÞ ¼ m̂ðωÞ cosðsω∕cTÞ: (B-15)

Moreover, for sources placed just below the sealed end, or equiva-
lently at sufficiently low frequencies, sω∕cT ≪ 1 and cosðsω∕cTÞ≈
1. Thus, Q̂ðωÞ ≈ m̂ðωÞ or QðtÞ ≈mðtÞ, as claimed.
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