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Abstract15

Very long period (VLP, 2-100 s) seismic signals at basaltic volcanoes like Kilauea, Hawai‘i,16

and Mount Erebus, Antarctica, are likely from resonant oscillations of magma within the17

shallow plumbing system. The system consists of conduits connected to cracks (dikes and18

sills) or reservoirs of other shapes. A quantitative understanding of wave propagation and19

resonance in a coupled conduit-crack system is required to interpret observations. In this20

work, we idealize the system as an axisymmetric conduit coupled to a tabular crack, ac-21

counting for fluid inertia, compressibility, and viscosity, gravity, and crack wall elasticity.22

We perform time-domain simulations and eigenmode analyses of the governing equations,23

linearized about a rest state. The fundamental mode or conduit-reservoir mode reflects the24

balance of conduit magma inertia with gravity (and, for small cracks, crack wall elastic-25

ity). Magma oscillates in an effectively incompressible manner within the conduit, deflat-26

ing and inflating the crack, which couples to the surrounding solid to produce observable27

surface displacements. For sufficiently low viscosity magmas, viscous effects are confined28

to boundary layers. Shorter period modes are primarily reverberating crack waves with29

negligible coupling to the conduit. Finally, we introduce an approximate reduced model30

for the conduit-reservoir mode, which can also handle more general reservoir geometries31

(e.g., spherical chambers). The reduced model connects the observable VLP period and32

quality factor to two uniquely constrained parameters: the inviscid oscillation period T033

and the viscous diffusion time τvis across the conduit radius. Our models can be extended34

to study the seismic response of more complex magmatic systems.35

1 Introduction36

Very long period (VLP) oscillations with periods in the range of 2-100 s are widely37

observed at active basaltic volcanoes, such as Kilauea Volcano, Hawai‘i [Chouet et al.,38

2010; Dawson et al., 2010; Chouet and Dawson, 2011; Patrick et al., 2011; Carey et al.,39

2012; Chouet and Dawson, 2013; Orr et al., 2013; Patrick et al., 2013; Dawson and Chouet,40

2014] and Mount Erebus, Antarctica [Rowe et al., 2000; Mah, 2003; Aster et al., 2003,41

2008; Knox et al., 2018]. These remarkable oscillations are visible in the raw seismic data42

and can last for as long as 10 to 20 minutes before their amplitudes decay back to the43

noise level. They are thought to be triggered by the final expansion and burst of rising44

gas slugs [Chouet et al., 2010; Aster et al., 2003, 2008] and by rock falls onto the lava lake45

surface [Patrick et al., 2011; Carey et al., 2012, 2013; Orr et al., 2013]. However, some46

VLPs can occur with no obvious manifestations on the lava lake surfaces [Dawson and47

Chouet, 2014] or at volcanoes with no lava lakes [Waite, 2014].48

The VLP oscillations are commonly attributed to the resonance of waves in the49

magma plumbing system consisting of shallow conduits connected to reservoirs with vari-50

ous shapes, such as cracks or more equidimensional bodies (e.g., spheroids and ellipsoids).51

The distinct seismic signatures of VLP events, such as their periods, decay rates, and sur-52

face deformation pattern,s are crucial to inferring the geometry and fluid properties of53

the magmatic system. In a series of two papers, we investigate the resonance of waves54

in a coupled conduit-reservoir system in general (Part I, the current paper) and then ap-55

ply that to interpret the VLP observations from Kilauea Volcano (Part II). A fluid-filled56

crack supports crack waves with phase velocities much lower than the fluid sound wave57

speed [Krauklis, 1962; Staecker and Wang, 1973; Chouet, 1986; Ferrazzini and Aki, 1987;58

Korneev, 2008; Lipovsky and Dunham, 2015; Liang et al., 2017] and could interact with59

acoustic-gravity waves in the conduit [Karlstrom and Dunham, 2016]. Therefore, we de-60

vote primary efforts to investigate wave propagation in a conduit-crack system and then61

generalize to reservoirs of other shapes for the conduit-reservoir mode. The work initiated62

here marks one step toward physical models that account for wave propagation in both the63

conduit and reservoir and also connect the magma flow in a coupled conduit-reservoir sys-64

tem with seismic waves and deformation in the solid Earth.65
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To interpret the VLP observations, numerous oscillation models have been proposed.66

Aster et al. [2003] reviewed multiple possible oscillation mechanisms for Mount Erebus67

including trapped body waves, surface gravity waves, and oscillatory recharge driven by68

buoyancy in the conduit, and concluded that oscillation driven by the buoyancy in the con-69

duit is the most viable explanation. However, Aster et al. [2003] neglect the restoring force70

from the magma reservoir. In addition, internal gravity waves in a stratified conduit de-71

serve a more rigorous treatment. Chouet and Dawson [2013] proposed a lumped parameter72

model that advanced our understanding of VLP oscillations at Kilauea Volcano. In this73

model, fluid in the entire conduit oscillates, inflating and deflating a deeper reservoir. The74

VLP oscillation results from the balance of fluid inertia in the conduit and restoring force75

from the reservoir. However, the fluid compressibility and buoyancy in the conduit are ne-76

glected. Chouet et al. [2010] and Chouet and Dawson [2013] interpret the VLP source at77

Kilauea as a dual-dike system. These magma-filled cracks should support crack waves but78

their effects on VLP oscillations were not properly treated. In addition, the Poiseuille flow79

assumption in Chouet and Dawson [2013] does not account for viscous boundary layers80

that could develop near the conduit wall. Therefore, significant work remains to under-81

stand the resonant modes in a coupled conduit-crack system and the interplay between82

different restoring forces and inertia in such a system.83

In this paper, we continue to explore the physics of VLP oscillations and reevalu-84

ate various assumptions made in the simplified models previously mentioned. We model85

wave propagation and resonance in the coupled conduit-crack system shown in Figure 1.86

The crack can be a sill or dike that serves as a shallow magma reservoir. We focus on the87

linearized dynamics of the system describing small perturbations about a rest state that88

is in mechanical (i.e., magmastatic) equilibrium but with general (other than thermody-89

namically stable) stratification. We start by deriving the governing equations and energy90

balance of the coupled system, capturing acoustic-gravity waves in the conduit follow-91

ing Karlstrom and Dunham [2016] and crack waves in the crack. Viscosity is rigorously92

treated both in the conduit following Prochnow et al. [2017] and in the crack following93

O’Reilly et al. [2017] and Liang et al. [2017]. A time domain simulation of a rock fall94

event is performed to reveal the magma flow, distribution of pressure, and seismic expres-95

sions of waves in the coupled conduit-crack system. We then proceed to characterize sev-96

eral important eigenmode types of the system (the conduit-reservoir mode and two types97

of crack wave modes) by analyzing their periods, decay rates, eigenfunctions (i.e., spatial98

distribution of magma velocity and pressure perturbations), and energetics. The eigen-99

mode analysis motivates development of a reduced model for the conduit-reservoir mode100

by keeping fluid inertia, viscosity, and gravity in the conduit and elasticity from the crack,101

while neglecting other unimportant effects like fluid compressibility and wave propagation102

in the crack. We also extend the reduced model to more general reservoirs than a basal103

crack, such as spherical or ellipsoidal chambers. The validity of the reduced model and104

the sensitivity of the conduit-reservoir mode properties to various physical parameters are105

discussed in the appendix. We then connect the reduced model to observable VLP period106

and quality factor by identifying the parameter combinations that can be uniquely con-107

strained from the seismic data. Finally, we discuss how individual parameters trade off108

with one another. This work serves as the theoretical foundation for a Bayesian inversion109

of the Kilauea VLP seismic data carried out in Part II.110

2 Modeling approach117

In this section, we derive the governing equations and the energy balance of the118

coupled conduit-crack model and briefly summarize the numerical methods used to solve119

the equations. Finally, we present results from a representative time domain simulation of120

a rockfall event.121
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Figure 1. (a) Coupled conduit-crack system: a cylindrical conduit is connected to a tabular crack at the
bottom and to a lava lake at the top. z denotes the direction along the conduit. The crack can be tilted and has
its own coordinate system (x, y, and ξ). (b) Detail of coupling at the conduit top. Fluid with density ρ̄L is
exchanged with the lava lake from the conduit, which induces hydrostatic pressure change ε ρ̄LghL at the top
of the conduit. (c) Detail of coupling at the conduit bottom where mass conservation and pressure continuity
must be satisfied.
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2.1 Governing equations in the conduit122

We consider unsteady magma motions in a cylindrical conduit with constant radius123

filled with viscous stratified fluid. The bubble growth and resorption (BGR) considered124

by Karlstrom and Dunham [2016] is neglected. This implies that gas/liquid partitioning is125

in equilibrium over the time scales of interest. We also assume no relative flow between126

the gas and liquid phases. We first derive the governing equations for the unsteady mo-127

tions and then perform the linearization with respect to a background state initially at rest.128

The energy balance is then derived by combining the governing equations with boundary129

conditions. Finally, the incompressible limit of the conduit model is presented.130

2.1.1 Unsteady magma motions131

Consider unsteady magma motions along a conduit with radius R and length L, as132

shown in Figure 1a. Derivation is first done for a vertical conduit and then generalized133

to a tilted conduit. By restricting attention to wavelengths much greater than the conduit134

radius, we treat fluid density ρ̃ = ρ̃(z, t) and pressure p̃ = p̃(z, t) as uniform in the ra-135

dial direction and velocity ṽ = ṽ(z,r, t) as being axisymmetric following Prochnow et al.136

[2017]. In this limit, the cross-sectionally averaged mass balance is137

∂ρ̃

∂t
+
∂(ρ̃ũ)
∂z

= 0, (1)

where t is time, z and r are the vertical (positive up) and radial coordinates, and138

ũ(z, t) =
1
πR2

∫ R

0
ṽ(z,r, t)2πrdr (2)

is vertical, cross-sectionally averaged fluid velocity. The vertical momentum balance is139

ρ̃

(
∂ṽ

∂t
+ ṽ

∂ṽ

∂z

)
+
∂ p̃
∂z
= µ

1
r
∂

∂r

(
r
∂ṽ

∂r

)
− ρ̃g, (3)
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where µ is viscosity and g is gravitational acceleration. The above equations generalize140

in a straightforward manner to a tilted conduit by interpreting z as axial distance along141

the conduit and replacing g with g sin(β), where β is the dip angle of the conduit (β =142

π/2 is vertical). Since we treat magma as a single phase mixture, the change in bubble143

rise regime in tilted conduits [James et al., 2004] and density wave oscillations in sub-144

horizontal conduits [Fujita et al., 2011] are not considered.145

The equation of state following a fluid parcel is146

1
ρ̃

D ρ̃
Dt
=

1
K

Dp̃
Dt

, (4)

where K is fluid bulk modulus and147
D
Dt
=
∂

∂t
+ ũ

∂

∂z
(5)

is the cross-sectionally averaged material derivative.148

2.1.2 Linearization149

To study the response to a small perturbation about a background state initially at150

rest, we write the total fields, denoted with a tilde, as the sum of the background values,151

denoted with an overbar, and perturbations:152

[ṽ, ũ, p̃, ρ̃] = [v̄, ū, p̄, ρ̄] + [v,u, p, ρ]. (6)

The static background state implies:153

v̄ = ū = 0, (7)

and154
dp̄
dz
= −ρ̄g. (8)

Substituting (6) into (1), (3), and (4) and dropping higher order terms of perturbation155

fields, we obtain the linearized governing equations with p, v, and ρ as dependent vari-156

ables:157
∂ρ

∂t
+ u

d ρ̄
dz
+ ρ̄

∂u
∂z
= 0, (9)

158

ρ̄
∂v

∂t
+
∂p
∂z
= µ

1
r
∂

∂r

(
r
∂v

∂r

)
− ρg, (10)

159

1
ρ̄

(
∂ρ

∂t
+ u

d ρ̄
dz

)
=

1
K

(
∂p
∂t
+ u

dp̄
dz

)
, (11)

where160

u =
1
πR2

∫ R

0
v2πrdr . (12)

Rewriting (9) using (11) and (8), we have161

1
K
∂p
∂t
+
∂u
∂z
=
ρ̄g

K
u. (13)

Using (8), we rewrite (11):162

∂

∂t

(
ρ

ρ̄
−

p
K

)
= Mu, (14)

where163

M = −
(

1
ρ̄

d ρ̄
dz
+
ρ̄g

K

)
. (15)

We define the fluid acoustic wave speed as164

c =
√

K/ρ̄ (16)
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and the fluid displacement h as165

∂h
∂t
= u. (17)

Substituting (17) in (14) and integrating in time, we have:166

ρ

ρ̄
−

p
K
= Mh. (18)

Using (18), we eliminate ρ in (10) and obtain167

ρ̄
∂v

∂t
+
∂p
∂z
= µ

1
r
∂

∂r

(
r
∂v

∂r

)
−

p
K
ρ̄g − M ρ̄gh. (19)

Equations (13), (17), and (19) constitute another formulation of the governing equations168

with p, v, and h as dependent variables, which is similar to the governing equations in169

Karlstrom and Dunham [2016] after removing the non-equilibrium BGR process. The170

source of buoyancy in the conduit lies in the condition171

M , 0. (20)

The physical meaning of (20) can be understood by a thought experiment involving a fluid172

parcel in a vertically stratified fluid column initially at rest. The fluid parcel is perturbed173

and reaches a new position. Equation (20) implies that the change in background pressure174

expands/contracts the fluid parcel such that its density is different from the background175

density at the new position, resulting in non-zero net buoyancy [Gill, 1982]. Fluid parcel176

stably oscillates around the unperturbed position when M > 0 and accelerates unstably177

when M < 0. In a real volcanic conduit, the background state is a result of complex con-178

vection of multiphase fluids and solids, where M = 0 in general may not hold. In Karl-179

strom and Dunham [2016], the source of buoyancy is the non-equilibrium BGR process.180

In this study, we assume that the background state initially at rest is thermodynamically181

stable, which implies M ≥ 0 but is not limited to the equality M = 0. The Brunt-Väisälä182

frequency Nb modified by compressibility is defined as183

Nb =
√

Mg, (21)

which can be expanded using (15):184

Nb =

√
−
g

ρ̄

d ρ̄
dz
−
ρ̄g2

K
. (22)

In the case M > 0, Nb is thus the angular frequency of oscillation driven by buoyancy.185

2.1.3 Boundary conditions186

The momentum balance equation is supplemented with a no-slip boundary condition187

on the conduit wall:188

v |r=R = 0, (23)

and the absence of mass source at r = 0 implies189

∂v

∂r

����
r=0
= 0. (24)

At the bottom of the conduit, we assume that the fluid density is the same as that in the190

crack. Thus, the continuity of pressure and conservation of mass require191

p|z=0 = pc, (25)
192

u|z=0 = −
qc
A
, (26)
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where A = πR2 is the conduit cross-sectional area, pc is the fluid pressure in the crack at193

the location where the conduit and crack are coupled, and qc is the volumetric flow rate194

into the crack from the conduit (with the minus sign arising from our convention that z195

and u are positive up).196

The top of the conduit is connected to a lava lake with cross-sectional area Alake,197

whose level fluctuates as lava enters or exits the lake through the conduit. In this study,198

we neglect the fluid dynamical processes within the lava lake. Instead, we assume that the199

lava lake adjusts to an equilibrium flat surface over time scales much shorter than the ones200

we are studying here and that the rate of fluid injection from the conduit is small such that201

the inertia of the fluid in the lake is negligible. The sloshing of fluid inside the lake and202

the viscous dissipation as fluid passes through the lake-conduit junction are not modeled.203

After making these assumptions, the fluctuation of the lava lake level is parameterized into204

the hydrostatic pressure change at the top of the conduit.205

We model the excitation process by an external pressure pex(t) applied at the top of206

the conduit. This pex(t) should be understood as the pressure perturbation resolved at the207

top of the conduit by a complex mixture of reaction forces inside the lava lake induced by208

the rock fall impact, bubble bursting, and the viscous drag as the rock sinks in the lake.209

Therefore, the total pressure change at the top of the conduit due to both the external exci-210

tation and the fluctuation of lava lake level is211

p = pex + ε ρ̄LghL, (27)
212

dhL

dt
= uL, (28)

where uL and hL are fluid cross-sectionally averaged velocity and displacement at the top213

of the conduit, ε = A/Alake is the cross-sectional area ratio between the conduit and lava214

lake, and ρ̄L is the fluid density at the top of the conduit. Note that for a tilted conduit215

all appearances of g are replaced by g sin(β) except in (27) because the lake walls are as-216

sumed to be vertical. When a large lava lake is present, such as the case at Kilauea, the217

area ratio ε � 1 and the pressure perturbation induced by the fluctuating lava lake level is218

negligible. When the lava drains completely into the conduit, we have ε = 1 and L is the219

length of the fluid column rather than the total length of the conduit.220

2.1.4 Energy balance221

We proceed to derive the energy balance in the conduit with the governing equations222

and boundary conditions. All the energies associated with the conduit (or the pipe) have a223

superscript pipe to differentiate with the energy terms in the crack, which are denoted with224

a superscript crack. We multiply (13) with Ap, and multiply (19) with v, integrate over225

the entire conduit and sum the two; then using (17) and boundary conditions (23)-(28), we226

have the energy balance227

dEpipe

dt
=

d
dt

(
Kpipe + P

pipe
comp + P

pipe
grav + P

pipe
lake

)
= −pcqc − pexuL A − ÛEpipe

vis , (29)

where Epipe is the total energy in the conduit, and228

Kpipe =

∫ L

0

∫ R

0

ρ̄v2

2
2πrdrdz, (30)

229

P
pipe
comp =

∫ L

0

p2

2K
Adz, (31)

230

P
pipe
grav =

∫ L

0

ρ̄g

2
Mh2 Adz, (32)

231

P
pipe
lake

=
1
2
ε ρ̄Lgt Ah2

L, (33)

–7–



Confidential manuscript submitted to JGR-Solid Earth

232

ÛEpipe
vis =

∫ L

0

∫ R

0
µ

(
∂v

∂r

)2
2πrdrdz (34)

are the fluid kinetic energy, potential energy from fluid compressibility, gravitational po-233

tential energy from buoyancy, gravitational potential energy associated with the fluctuation234

of the top of the magma column, and rate of energy dissipation due to viscosity, respec-235

tively. The first two terms on the right hand side of (29) are the work rate done by the236

crack on the conduit as fluid is forced into or out of the conduit and the work rate from237

external pressure excitation, respectively. Equation (32) indicates that the condition M = 0238

eliminates buoyancy.239

2.1.5 Incompressible limit240

In the limit where the fluid responds to perturbations in an effectively incompress-241

ible manner (c and K →∞), we have242

M = −
1
ρ̄

d ρ̄
dz
, (35)

243

ρ = −
d ρ̄
dz

h. (36)

The governing equations (9), (10), and (11) reduce to244

∂u
∂z
= 0, (37)

245

ρ̄
∂v

∂t
+
∂p
∂z
= µ

1
r
∂

∂r

(
r
∂v

∂r

)
− ρg, (38)

246
∂ρ

∂t
+ u

d ρ̄
dz
= 0. (39)

In the incompressible limit, the cross-sectionally averaged fluid velocity u and displace-247

ment h are uniform along the conduit. Density change is solely a result of advection of248

the background density gradient. Substituting equation (36) into equation (38) and elimi-249

nating ρ, we have250

ρ̄
∂v

∂t
+
∂p
∂z
= µ

1
r
∂

∂r

(
r
∂v

∂r

)
+

d ρ̄
dz

hg, (40)
251

dh
dt
= u. (41)

Using (35) and (18), the energy balance is simplified:252

P
pipe
comp = 0, (42)

253

P
pipe
grav =

∫ L

0

ρ̄g

2
Mh2 Adz =

g

2
h2 A

∫ L

0
−

d ρ̄
dz

dz =
g

2
h2 A (ρ̄0 − ρ̄L) . (43)

Note that in the incompressible limit, Ppipe
grav only depends on the density contrast between254

the conduit bottom and top, not on the details of stratification. As we shall see, this limit255

turns out to be appropriate for the conduit-reservoir oscillation mode because fluid com-256

pressibility is negligible compared to gravity and the restoring force from the crack.257

2.2 Governing equations in the crack258

In the crack, we solve a simplified version of the linearized Navier-Stokes equa-259

tions in 3D valid at wavelengths greater than the fracture width [Lipovsky and Dunham,260

2015; O’Reilly et al., 2017; Liang et al., 2017], that accounts for fluid viscosity, inertia,261

compressibility. We assume quasi-static elastic response of the fracture walls. Quasi-262

static elasticity is justified as we are interested in the long-wavelength limit where crack263
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wave phase velocity is much smaller than elastic wave speeds in the solid [Krauklis, 1962;264

Staecker and Wang, 1973; Ferrazzini and Aki, 1987; Korneev, 2008; Lipovsky and Dunham,265

2015], making seismic wave radiation and elastodynamic stress transfer negligible. Fluid266

properties are assumed to be homogeneous in the crack.267

2.2.1 Linearized equations268

We consider a tabular crack with strike φ, dip θ, length along dip Lx , length along269

strike Ly , and centroid at east Xc , north Yc , and depth Zc with the origin defined at the270

lava lake position. The local coordinate system for computation is defined in x, y, and271

ξ, which are the coordinates along the dip, strike, and width directions, respectively. The272

origin of local coordinate system is defined at one corner such that x, y, and ξ of every273

point within the crack are non-negative, as shown in Figure 1a. We extend the governing274

equations in Lipovsky and Dunham [2015] by adding another crack length dimension:275

1
K0

∂p
∂t
+

1
w0

∂w

∂t
+
∂ux

∂x
+
∂uy
∂y
=

qc
w0
δ(x − xc)δ(y − yc), (44)

276

ρ̄0
∂vx
∂t
+
∂p
∂x
= µ0

∂2vx

∂ξ2 , (45)

277

ρ̄0
∂vy

∂t
+
∂p
∂y
= µ0

∂2vy

∂ξ2 , (46)

where K0, ρ̄0, and µ0 are fluid bulk modulus, density, and viscosity in the crack, w0 is the278

unperturbed crack width, w is the crack width perturbation, ξ is position perpendicular to279

the fracture plane, qc is the volumetric flow rate of fluid injected from the conduit into the280

crack, δ(x − xc) and δ(y − yc) are the delta functions that restrict the mass injection from281

the conduit to a coupling point at (xc, yc), and282

ux(x, y, t) =
1
w0

∫ w0

0
vx(x, y, ξ, t)dξ, (47)

283

uy(x, y, t) =
1
w0

∫ w0

0
vy(x, y, ξ, t)dξ, (48)

are the width-averaged velocities. Due to long wavelengths relative to crack width, pres-284

sure is effectively uniform across the crack width and viscous dissipation is only due to285

shear within the velocity profile across the crack width (ξ) direction. The system of equa-286

tions are closed by bringing in one additional linear nonlocal equation (a discrete version287

given in the Appendix) relating pressure p and opening w from quasi-static elasticity for a288

homogeneous elastic half-space Okada [1992]. The elastic solid is specified by the shear289

modulus G and Poisson ratio νs .290

2.2.2 Boundary conditions291

We neglect the work done by the shear traction at the crack walls between the solid292

and the fluid. The shear traction on crack walls is neglected in calculating the solid re-293

sponse and the solid wall motion parallel to the crack plane is neglected in writing the294

no-slip condition for the fluid following Lipovsky and Dunham [2015]:295

vx(x, y,0) = vx(x, y,w0) = vy(x, y,0) = vy(x, y,w0) = 0. (49)

Both approximations are required for a self-consistent energy balance for the approximate296

equations. No flow is allowed in or out of the crack edge, which requires297

ux(0, y) = ux(Lx, y) = uy(x,0) = uy(x, Ly) = 0. (50)
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2.2.3 Energy balance298

We multiply (44) with pw0, multiply (45) with vx , multiply (46) with vy , integrate299

and sum the three equations, and apply boundary conditions (49) and (50):300

dEcrack

dt
=

d
dt

(
Kcrack + Pcrack

comp + P
crack
elas

)
= pcqc − ÛEcrack

vis , (51)

where pc = p(xc, yc) is the pressure at the coupling location (xc, yc), and301

Kcrack =

∫ Lx

0

∫ Ly

0

∫ w0

0

1
2
ρ̄0

(
v2
x + v

2
x

)
dξdydx, (52)

302

Pcrack
comp =

∫ Lx

0

∫ Ly

0

1
2K0

p2w0dydx, (53)

303

Pcrack
elas =

∫ t

0

∫ Lx

0

∫ Ly

0
p
∂w

∂t
dydx, (54)

304

ÛEcrack
vis =

∫ Lx

0

∫ Ly

0

∫ w0

0
µ0

[(
∂vx
∂ξ

)2
+

(
∂vy

∂ξ

)2
]

dξdydx, (55)

are the fluid kinetic energy, potential energy associated with fluid compressibility, work305

done by the fluid on the solid, and rate of energy dissipation due to viscosity, respectively.306

For an elastic solid with either traction-free or rigid exterior boundaries, the stress work307

can be identified as the elastic strain energy Pcrack
elas

[Jaeger et al., 2009]. The first term308

on the right hand side of equation (51) is the work rate done by the injection from the309

conduit.310

2.3 Total energy balance311

Summing (29) and (51), we obtain the total energy balance of the coupled conduit-312

crack system:313

dE
dt
=

d
dt
(K + P) = −pexuL A − ÛEpipe

vis −
ÛEcrack
vis , (56)

where E is total energy and314

K = Kpipe +Kcrack, (57)
315

P = Ppipe + Pcrack = P
pipe
comp + P

pipe
grav + P

pipe
lake
+ Pcrack

comp + P
crack
elas (58)

are the total kinetic energy and total potential energy. The change of total energy is driven316

by the work done by the external excitation and dissipation due to viscosity in the conduit317

and crack. The interplay of different restoring forces and inertia at different frequencies318

results in a rich spectrum of resonant modes.319

2.4 Surface displacements320

We assume quasi-static elasticity to calculate solid Earth surface displacement from321

the pressure perturbations and tractions in the plumbing system. This assumption is jus-322

tified at sufficiently long periods T � d/ce, where d is source-station distance and ce is323

solid elastic wave speed [Aki and Richards, 2009]. At VLP periods and ∼1-10 km source-324

station distance, the quasi-static terms in the elastic Green’s function dominate. At shorter325

periods or larger source-station distances, the dynamic Green’s function must be used. In326

addition, we only account for the opening dislocations on the crack in calculating surface327

displacements, neglecting contributions from pressures and shear tractions acting on the328

conduit and lava lake walls.329
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llll
Table 1. Material properties of a time domain simulation340

Property Symbol Value Unit
Conduit
Conduit length L 300 m
Conduit radius R 5 m
Conduit dip β π/2 radian
Magma density at conduit top ρ̄L 800 kg/m3

Magma density at conduit bottom ρ̄0 2000 kg/m3

Scale height α 327.41 m
Gravitational acceleration g 10 m/s2

Magma acoustic wave speed c 1000 m/s
Magma viscosity µ 50 Pa s
Area ratio ε 0 –

Crack
Coupling position in crack local coordinates (xc, yc) (1000, 1000) m
Crack length in x direction Lx 2000 m
Crack length in y direction Ly 2000 m
Crack width w0 4 m
Magma acoustic wave speed c0 1000 m/s
Magma viscosity µ0 50 Pa s
Magma density ρ̄0 2000 kg/m3

Centroid locations (east, north, depth) (Xc , Yc , Zc) (0, 0, 1000) m
strike φ 0 radian
dip θ 0 radian

Solid
Shear modulus G 22 GPa
Poisson ratio νs 0.3 -

Observation point
Observation location (east, north, depth) (Xobs , Yobs , Zobs) (0, 1000, 0) m
a unit "–" means it is non-dimensional.

2.5 Simulation of a rock fall event330

In this section, we perform a time domain simulation of a rockfall event. Numerical331

methods for solving the governing equations are discussed in Appendix A: . We demon-332

strate how different waves are excited and propagate within the coupled conduit-crack sys-333

tem, and how the resonant modes are manifested in the displacements of the solid Earth334

surface. The simulation reveals the distribution of pressure and magma movement that335

corresponds to the VLP oscillations. The conduit and crack geometries used in the sim-336

ulation are inspired by the inversion results of Chouet and Dawson [2011, 2013] for the337

Kilauea VLPs. We first introduce the parametrization of the source excitation and conduit338

background properties, and then discuss the results.339

The source time function of the pressure excitation is parametrized as a Gaussian:341

pex(t) = Ap exp

(
−(t − tc)2

2T2
d

)
, (59)

where Ap is amplitude, tc is the time when the source time function reaches the peak,342

and Td quantifies the source duration. Td also controls the frequency content of the source343
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time function. Smaller Td results in a narrower Gaussian peak in the time domain and a344

wider spectrum in the frequency domain. A pressure excitation with much shorter dura-345

tion that the VLP oscillation period is effectively an impulse:346

pex(t) ≈ Pexδ(t − tc), (60)

where Pex =
√

2πApTd . Since we deal with a linear system, the system response is pro-347

portional to the spectral amplitude of the source excitation at a particular frequency. There-348

fore, what really determines the system’s free oscillation response to impulsive excitation349

is Pex , not Ap or Td individually. In our simulation, we set Td = 0.25 s, Ap = 0.2 MPa,350

and tc = 5 s. Note that although we use a Gaussian to mimic a rockfall event, the source351

time function can be completely general.352

Although more general background properties in the conduit can be used [Karlstrom353

and Dunham, 2016], we parametrize the density and wave speed in the following way:354

ρ̄(z) = ρ̄L exp[(L − z)/α], (61)
355

c(z) = c0, (62)

where c0 is constant and356

α =
L

ln ρ̄0 − ln ρ̄L
(63)

is the density scale height. The advantage of this parametrization is obvious by rewriting357

(15) using (16),358

M =
1
α
−

g

c2
0
, (64)

which shows constant M over the depth. α and c0 need to be chosen such that M ≥ 0 to359

guarantee thermodynamic stability. This parametrization gives great simplicity in control-360

ling buoyancy. In addition, magma viscosity in the conduit is treated as constant and is361

the same as that in the crack. Magma density in the crack is assumed to be ρ̄0, the same362

as that at the bottom of the conduit. Key parameters used in the simulation are summa-363

rized in Table 1.364

The simulation is performed for 200 seconds. In this demonstration, we set ε = 0377

to simulate the case where the cross-sectional area of the lava lake is much larger than378

that of the conduit. In Figures 2-4, we observe the superposition of multiple resonant379

modes, including the conduit-reservoir mode, crack wave modes, and conduit acoustic380

wave modes. The superposition obscures the observation of the crack wave modes but381

the conduit-reservoir mode and conduit acoustic wave modes are clearly observed.382

Counter-propagating acoustic waves in the conduit form resonant standing waves.383

The fundamental acoustic resonance corresponds to the one with the longest wavelength384

(2L = 600 m) and period (2L/c = 0.6 s), which dominates pressure perturbation inside385

the conduit during the first 50 seconds, as shown in Figure 2c. This is confirmed by the386

conduit pressure distribution at t = 10 s when the crack behaves approximately as a zero-387

pressure perturbation boundary, as shown in Figure 3a-4. Despite the large amplitudes of388

pressure perturbations induced by acoustic waves, the velocity perturbation in the conduit389

is dominated by the conduit-reservoir mode with a period of 38.8 s, as shown in Figure390

2b. In the conduit-reservoir mode, magma in the entire conduit moves up and down ap-391

proximately uniformly, deflating and inflating the bottom crack, which effectively transfers392

the pressure perturbation in the crack to surface displacements, as shown in Figure 2. The393

conduit-reservoir mode is also manifested as the dominant peak of the displacement am-394

plitude spectrum, as shown in Figure 4b. The uniformity of cross-sectionally averaged ve-395

locity in the conduit over depth indicates that the fluid compressibility is negligible during396

the VLP oscillation given the parameters explored here. However, the conduit-reservoir397

mode in this case is not driven primarily by the restoring force from the bottom crack398

reservoir, as argued by Chouet and Dawson [2013], but instead by buoyancy, as we shall399
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Figure 2. (a) Vertical surface displacement at an observational point 1 km north of the centroid of the
crack. (b) Space-time plot of cross-sectionally averaged velocity in the conduit. Note that z = 0 denotes
the bottom of the conduit. (c) Pressure at the middle point of the conduit. (d) Same as (c) with y-axis limit
capped to reveal the VLP oscillation. (e) Space-time plot for crack pressure along x axis through the center of
the crack.

365

366

367

368

369

see in the next section. As shown in Figures 3a-3 and 3b-3, narrow viscous boundary lay-400

ers develop in both the conduit and crack, which highlights the importance of treating vis-401

cosity rigorously as opposed to simply assuming Poiseuille flow.402

The pressure perturbations in the conduit induced by the conduit-reservoir mode are
small and they are only visible after the resonating acoustic waves are gradually damped
out by viscosity (after about 60 seconds), as shown in Figure 2d. Since the fluid com-
pressibility is negligible for the conduit-reservoir mode, the pressure perturbations in the
conduit are controlled by two factors: the dominant balance between buoyancy and inertia
of magma in the conduit and the viscous drag on magma by the conduit wall. This can be
understood by rewriting the incompressible limit of the conduit momentum balance (38)
using (36) and integrating in the radial direction,

∂p
∂z
=

(
−ρ̄

∂u
∂t
+

d ρ̄
dz

gh
)
+

2µ
R

∂v

∂r

����
r=R

.

The pressure distribution with depth can be reconstructed using the solutions of h and v407

with the boundary condition p|z=L = 0. The good match between the reconstructed pres-408

sure distribution using (red dashed line) and the numerical simulation (black solid line) at409
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the later time. (a-3) and (b-3) Velocity distribution in the conduit. Viscous boundary layers develop near the
conduit wall. (a-4) and (b-4) Pressure distribution along the conduit. The black solid lines are results from the
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370

371

372

373
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375

376

t = 100 s shown in Figure 3b-4 indicates that the incompressible limit is a good approxi-410

mation.411

Acoustic waves in the conduit excite waves of varied wavelengths in the crack through412

the coupling point. Short-wavelength crack waves initially dominate the pressure perturba-413

tions in the crack and decay over time due to viscous dissipation, as shown in Figures 2e414

and 3a-2. However, similar to the conduit, the magma movement in the crack is domi-415

nated by long-wavelength crack wave modes and the conduit-reservoir mode, as shown in416

Figure 3a-1. Near the end of the simulation, waves along the crack are damped out and417

the conduit-reservoir mode dominates the pressure perturbation, which is approximately418

uniform except near the coupling location. Although various crack wave modes are super-419

imposed in the time domain, the spectral amplitude of the surface displacement shown in420

Figure 4b reveals these resonances. Since the conduit is not capable of generating acous-421

tic resonant modes with periods longer than 0.6 s, the spectral peaks with periods shorter422

than the conduit-reservoir mode but longer than 1 s shown in Figure 4b must be associ-423

ated with crack waves, although only one mode (6.1 s) has sufficiently large amplitude to424

be visible in Figure 4a.425
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403

404

405

406

In summary, we investigated the waves in a representative coupled conduit-crack426

system excited by a rock fall impact using time domain simulation. The surface displace-427

ment is dominated by the conduit-reservoir mode and a weaker crack wave mode. In the428

conduit-reservoir mode, the magma oscillates uniformly in the entire conduit, deflating and429

inflating the bottom crack. Short-wavelength crack waves are observed in the beginning of430

the simulation and decay in time. However, it is still unclear what is the primary restoring431

force for the conduit-reservoir mode and the percentage of inertia and viscous dissipation432

contributed by the crack. The superposition of different wave modes on the crack prevent433

the clear observations of individual modes in the time domain simulation. An eigenmode434

analysis is thus necessary to uncover the energy balance and fluid motion in each mode.435

3 Eigenmode analysis436

To gain a deeper physical understanding of each mode, we study the eigenmodes437

of the coupled conduit-crack system. Due to spatially varying properties in the conduit438

and finiteness of the crack, the eigenvalue problem must be solved numerically. We in-439

tend to demonstrate the types of eigenmodes that exist in the coupled conduit-crack sys-440

tem, rather than to obtain an exhaustive catalog of all the eigenmodes. Modes generally441

come in three families: conduit acoustic modes, crack wave modes, and the single-member442

conduit-reservoir mode. We focus on the conduit-reservoir mode but also briefly discuss443

the crack wave modes. Analysis in this section reveals the distinct energetics and spatial444

distributions of pressures and velocities of different eigenmodes in the coupled system,445

which also helps us further interpret the observed wave motions in the time domain simu-446

lation.447

3.1 Method448

We briefly summarize the method to solve the eigenvalue problem. After spatial dis-449

cretization, the governing equations (13), (17), (19), (44), (45), and (46) without external450

forcing are reduced to a system of ordinary differential equations of the following form:451

dU
dt
= BU, (65)

where matrix B contains the spatial discretization and enforcement of boundary condi-452

tions, and vector U contains the grid values of all the dependent variables (p, v, and h in453
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the conduit and p, vx , and vy in the crack). The Laplace transform is defined as454

F̂(s) =
∫ +∞

0
f (t)e−stdt . (66)

Taking the Laplace transform of equation 65, we have:455

sÛ = BÛ, (67)

where s is the eigenvalue of matrix B and Û is the eigenvector. The complex eigenvalue s456

determines the resonant period457

T =
2π
|Im s |

, (68)

and quality factor458

Q =
|Im s |

2| Re s |
, (69)

which is defined as the number of oscillations required for a free oscillating system’s en-459

ergy to fall off to e−2π or about 0.2% of its original energy [Green, 1955]. The quality460

factor is a metric of damping and the system is said to be overdamped when Q < 0.5461

[Hayek, 2003].462

We are only interested in oscillatory modes with nonzero Im s. As a consequence of463

energy stability, we have Re s < 0, which indicates energy dissipation. The eigenvector464

Û determines spatial distribution of various fields, such as pressure, velocity, etc. Using465

the solution for Û, different energy terms can be calculated using (30), (31), (32), (52),466

(53), and (A.2). The rates of energy dissipation in the conduit and crack are calculated467

using (34) and (55). Analyzing the energetics reveals the sources of inertia and restoring468

forces that drive the oscillation, and the relative magnitude of viscous dissipation rates469

from the conduit and crack. Since the size of the matrix B increases dramatically when470

refining the mesh, we focus on analyzing the conduit-reservoir mode and a sample of long471

period crack wave modes using iterative methods with sufficient spatial resolution. We use472

the eigs function in Matlab to search for oscillatory modes with period longer than 1 s.473

Degenerate modes that share the same eigenvalue but have different eigenfunctions can474

exist. For example, if the crack has the same dimension in both the x and y directions and475

the conduit coupling location lies on a symmetry axis, the symmetry in x and y leads to476

degenerate modes. In this study, we search for solutions by specifying an initial guess of477

the eigenvalue/eigenfunction and examine just one of the degenerate modes, although one478

could overcome this limitation by starting with different initial guesses of eigenfunctions.479

3.2 Eigenmodes490

The energetics and eigenfunctions of the conduit-reservoir mode and two crack wave491

modes are shown in Figures 5, 7, and 9, respectively, with the surface displacement pat-492

terns shown in Figures 6, 8, and 10. The same parameters are used (Table 1) as the time493

domain simulation. The eigenfunctions are defined up a constant but the relative ampli-494

tudes of the different fields are uniquely defined. We normalize the real parts of simi-495

lar fields in the conduit and crack with the same constant (the global maximum absolute496

value of real parts) so that we can compare the relative amplitudes. For example, we nor-497

malize the real parts of velocities with respect to the maximum absolute real values of all498

velocity fields (v, u, vx , and vy). Similar normalization is done for pressures in the con-499

duit and crack.500

3.2.1 The conduit-reservoir mode501

The conduit-reservoir mode exemplified in Figure 5 is the mode with the longest502

period T and lowest quality factor Q, for the chosen model parameters. For the conduit-503

reservoir mode, oscillation of the entire magma column in the conduit is primarily driven504
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480

481

482

483

484

485

by buoyancy with a small contribution from crack elasticity. This can be understood by re-505

alizing that the gravitational potential energy dominates among all potential energies, such506

as fluid compressibility and crack wall elasticity. However, the restoring force from crack507

wall elasticity can be substantial when the crack size is sufficiently small (Appendix B: ).508

The kinetic energy primarily comes from the magma in the conduit. Most energy dissi-509

pation also occurs in the conduit, though more energy dissipation can occur in the crack510

as the crack width becomes sufficiently narrow (Appendix B: ). Viscous boundary layers511

form near the walls of both the conduit and the crack, and the cross-sectionally averaged512

velocity in the conduit is approximately uniform along the depth direction as shown in513

figure 5-(e-f), which is consistent with the time domain simulation. Note that the eigen-514

functions (Figure 5) and the snapshots of fields in the time domain simulation (Figure 3b)515

are not supposed to match exactly. The eigenfunctions have both real and imaginary parts,516

while we only plot the real parts. Also, the time domain simulation features the superpo-517

sition of several modes. The analysis here together with the parametric study in Appendix518

B: motivates us to develop a reduced model for the conduit-reservoir mode in the next519

section, including conduit fluid inertia, gravity, and crack wall elasticity, but neglecting520

fluid compressibility and fluid inertia and dissipation in the crack.521

3.2.2 Crack wave modes529

Distinct from the conduit-reservoir mode, crack wave modes have energy confined530

primarily within the crack with negligible involvement of the conduit, as shown in Fig-531

ures 7a and 7b. Fluid inertia in the crack is balanced by crack wall elasticity and also to a532

small extent by fluid compressibility, all of which are the defining features of crack waves.533

The contribution from fluid compressibility increases as the resonant frequency increases.534
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487

488

489

The confinement of energy within the crack is caused by the large hydraulic impedance535

contrast between the conduit and crack at the coupling point. At frequencies where the536

impedances of the conduit and crack match, energy is efficiently exchanged through the537

coupling junction, which permits the entire conduit and crack system to resonate [Liang538

et al., 2017].539

Depending on whether the conduit’s coupling location is on a pressure nodal curve540

(zero pressure), two types of crack wave modes exist. In the first type, the coupling loca-541

tion is on a pressure nodal curve, locking all the energy and dissipation in the crack. An542

example of this type is shown in Figure 7 and has a period of 14.36 s. However, external543

forcing applied in the conduit necessarily induces pressure perturbation at the coupling lo-544

cation. As a result, this mode is not excited in the time domain simulation and no spectral545

peak is observed at 14.36 s in Figure 4b. In the other type, the coupling location is not546

on a pressure nodal curve and, in contrast to the 14.36 s period crack wave mode, a small547

amount of energy exists in the conduit. An example of this type is shown in Figure 9 and548

has a period of 6.1 s. The presence of a spectral peak at 6.1 s in Figure 4b indicates that549

this mode is excited in the time domain simulation though with a much smaller ampli-550

tude than the conduit-reservoir mode. Similar crack wave modes with higher frequencies,551

not explored in detail here, are also excited but the displacements induced by these higher552

modes are negligible at the observation point. This is because crack waves are interface553

waves and their disturbances to the solid decay exponentially with distance from the crack554

over a distance of order the crack wave wavelength. Therefore, crack wave modes with555

shorter wavelengths (or higher frequencies) induce much smaller surface displacements556

compared to long-wavelength modes.557

3.2.3 Surface displacement pattern564

As shown in Figures 6, 8, and 10, different eigenmodes exhibit distinct surface dis-565

placement patterns. For a horizontal crack, the conduit-reservoir mode generates vertical566

uplift/depression everywhere and horizontal expansion/contraction from the crack centroid567

due to the approximately uniform pressure distribution in the crack, as shown in Figure568

6. However, crack wave modes can produce uplift at some locations and depression oth-569

ers. Large horizontal displacements can be generated at the boundary where the polarity570

of vertical displacements changes, as shown in Figure 8 and 10. Although crack orienta-571

tion will modify the surface displacement pattern, the distinction of displacement patterns572
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Figure 8. Same as Figure 6 but for a crack wave mode with period T = 14.36 s and quality factor Q =
10.66. Note the distinct displacement pattern compared to the conduit-reservoir mode shown in Figure 6.

527

528

among different eigenmodes should still exist. Thus, the surface displacement pattern of573

long period modes can help to constrain crack geometry.574

4 Reduced model for the conduit-reservoir mode575

Motivated by the eigenmode analysis in the previous section, we derive a reduced576

model for the conduit-reservoir mode, which includes conduit fluid inertia, gravity, and577

crack wall elasticity. Fluid inertia and viscous dissipation in the crack are neglected. The578

applicability of this reduced model is discussed in Appendix B: . Without viscous dissipa-579

tion and fluid inertia inside the crack, the pressure perturbation inside the crack adjusts580

toward a uniform distribution over time scales much shorter than the conduit-reservoir581
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Figure 9. Same as Figure 5 but for a crack wave mode with period T = 6.09 s and quality factor Q = 17.
In contrast to the crack wave mode shown in Figures 7 and 8, this crack wave mode couples to the conduit
because the coupling point is located away from a nodal curve of crack pressure.
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Figure 10. Same as Figure 6 but for a crack wave mode with period T = 6.09 s and quality factor Q = 17.
Note the distinct displacement pattern compared to the conduit-reservoir mode shown in Figure 6 and the
other crack wave mode shown in Figure 8.

561

562

563

mode period. In fact, this property also holds for magma reservoirs of other shapes, such582

as spherical or ellipsoidal chambers, as long as fluid inertia and viscous dissipation inside583

the magma reservoir can be neglected. With these approximations, the response of the en-584

tire magma reservoir can be lumped into a single restoring force quantified in terms of the585

overall stiffness of the reservoir. We first derive the governing equations for the reduced586

model in dimensional form, then cast them into nondimensional form. Finally, we connect587

key model parameters to observables (period and quality factor) and demonstrate how this588

model can be used to interpret VLP observations.589
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4.1 Governing equations590

We now derive the governing equations for the reduced model. The equations to591

follow are stated explicitly for a conduit that dips at angle β. In the incompressible limit,592

we integrate (40) in z direction and rearrange terms, giving593

ρ̄m
∂v

∂t
= −

ρ̄0 − ρ̄L
L

g sin(β)h −
1
L
[p]Lz=0 + µ

1
r
∂

∂r

(
r
∂v

∂r

)
, (70)

where594

ρ̄m =
1
L

∫ L

0
ρ̄dz (71)

is the depth-averaged background density in the conduit. The fluid motion is driven by the595

change in weight of the entire conduit induced by advection of the density stratification596

and by the difference in pressure perturbation between the conduit top and bottom, and597

damped by viscosity. With fluid inertia and viscous dissipation neglected in the reservoir,598

the reservoir pressure change p0 and conduit fluid displacement h are related by599

p0 = −C−1
t Ah, (72)

where Ct is the total storativity, injected volume per unit pressure increase of the reservoir.600

In general, Ct is expressed as601

Ct = (βm + βc)V, (73)

where βm = ρ−1dρ/dp is magma compressibility, βc = V−1dV/dp is the compressibil-602

ity of the elastic reservoir, and V = V(p) is reservoir volume. The compressibility for603

basaltic magma at reservoir depth ranges from 10−10 Pa−1 to 10−9 Pa−1 [e.g. Rivalta and604

Segall, 2008; Anderson et al., 2015; Mizuno et al., 2015]. The reservoir compressibility βc605

depends on the shape of reservoir and solid rigidity G, which ranges from 1 to 30 GPa for606

volcanic areas [e.g. Rivalta and Segall, 2008].607

For a penny-shaped crack [Sneddon, 1946],608

V =
π

6
w0d2

c, (74)
609

βc =
2
πG∗

dc
w0
, (75)

where G∗ = G/(1 − νs), dc is the crack diameter, and w0 is the crack width at the center.610

Given a crack with dc/w0 ∼ 100−1000, we estimate βc to be 2×10−9−1×10−6 Pa−1, which611

is much larger than βm except for very stiff host rock (G ∼ 30 GPa). We thus neglect612

magma compressibility in a crack-shaped reservoir and obtain613

Ct =
d3
c

3G∗
(76)

for a penny-shaped crack. Note that the crack width w0 does not affect Ct , which means614

the VLP oscillation is not sensitive to the crack width unless the viscous dissipation is615

dominant in the crack, as shown in Figure B.6. For a rectangular crack, similar scaling616

between Ct and crack length (Lx) exists:617

Ct = κ
L3
x

G∗
, (77)

where the dimensionless coefficient κ depends on the aspect ratio of the crack and has to618

be calculated numerically.619

For comparison, βc of a spherical reservoir [e.g. McTigue, 1987] is 3/(4G), which620

is in the similar range as βm. With a volume of V = πd3
c/6 for a spherical chamber, we621

obtain622

Ct =
πd3

c

8G
(1 + 4βmG/3), (78)
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accounting for both βm and βc .623

Substituting the boundary conditions (27), (28), and (72) into (70), we have624

∂v

∂t
= −g′

h
L
+ νm

1
r
∂

∂r

(
r
∂v

∂r

)
−

pex
ρ̄mL

, (79)

where νm = µ/ρ̄m is kinematic viscosity,625

g′ = (1 + γ)
∆ρ̄

ρ̄m
g (80)

is reduced gravity modified by reservoir elasticity,626

∆ρ̄ = (ρ̄0 − ρ̄L) sin(β) + ε ρ̄L (81)

quantifies the density contrast driving gravitational restoring forces, and627

γ =
A

Ct∆ρ̄g
(82)

is the dimensionless parameter that measures the relative magnitude of the restoring forces628

from the reservoir and gravity. When the lava lake area is large compared to the conduit629

cross-sectional area (ε � 1) and the conduit is vertical, ∆ρ̄ ≈ (ρ̄0 − ρ̄L) is simply the630

density contrast between the bottom and top of the conduit. When the lava lake is drained631

completely into the conduit (ε = 1), the top of the magma column in the conduit is in632

direct contact with air, which gives ∆ρ̄ = ρ̄0 for a vertical conduit. When γ � 1 the633

restoring force from the reservoir dominates the oscillation, and when γ � 1 gravity is634

the dominant restoring force. Since the reservoir is represented by Ct in the oscillation635

model, it is insufficient to determine the shape of the reservoir solely from the period and636

quality factor. To differentiate the reservoir shape, additional constraints from the surface637

displacement pattern, as discussed in the previous section, are required.638

In the inviscid limit (νm = 0), equation (79) is reduced to an undamped harmonic639

oscillator after setting external forcing pex to zero:640

d2h
dt2 + g

′ h
L
= 0, (83)

which gives the inviscid natural frequency ω0 and period T0:641

ω0 =
√
g′/L, (84)

642

T0 = 2π
√

L/g′. (85)

Figure 11 shows γ and T0 at different reservoir dimension dc and G for both crack-643

shaped and spherical reservoirs. Both increasing dc and decreasing G can reduce γ and644

bring the resonant period closer to that of the purely gravity-driven oscillation (γ = 0).645

The Ct and γ of sufficiently small spherical chambers are influenced by magma compress-646

ibility βm (assumed to be 10−9 Pa−1 in Figure 11).647

4.2 Nondimensionalization652

We nondimensionalise (79) and (17) by introducing the following dimensionless653

quantities:654

t∗ = t/
√

L/g′, h∗ = h/L, r∗ = r/R, (86)
v∗ = v/

√
Lg′, u∗ = u/

√
Lg′, p∗ex = pex/(ρ̄mg′L). (87)

The nondimensionalised equations are655

∂v∗

∂t∗
= −h∗ + χ

1
r∗

∂

∂r∗

(
r∗
∂v∗

∂r∗

)
− p∗ex, (88)
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648

649

650

651

656

dh∗

dt∗
= u∗, (89)

657

u∗ = 2
∫ 1

0
v∗r∗dr∗ (90)

where658

χ =

√
L/g′

R2/νm
=

T0/2π
τvis

(91)

is a ratio between two time scales: the period of inviscid oscillation T0 and the diffusion659

time across the conduit radius660

τvis = R2/νm. (92)

4.3 Results661

Here, we present the theoretical results from solving the dimensionless model equa-662

tions (88), (89), and (90). We identify the two parameter combinations that can be uniquely663

constrained by the observations of VLP periods and quality factors and discuss the trade-664

offs between individual parameters.665

Being the only dimensionless parameter in (88), χ determines the dynamics of the670

free oscillation system, as shown in Figure 12. When χ ≈ 1, the oscillation time scale671

is long enough that the viscous boundary layer is able to fully develop across the con-672

duit radius, achieving the Poiseuille flow. In fact, even when χ = 0.1, the quality factor673

is only 1.3 and the velocity profile to close to parabolic. When χ � 1, shear strain is674

confined in a narrow boundary layer close to the conduit wall. Greater χ signifies more675

viscous damping and, as a result, leads to lower quality factor and slightly longer pe-676

riod. The viscous oscillation period T deviates less than 10% from the inviscid oscilla-677

tion period T0 when Q is larger than 5, and this deviation increases substantially as χ678

approaches the limit of being overdamped. At Kilauea, the observed Q for the conduit-679

reservoir mode ranges from 5 to 40 [Dawson and Chouet, 2014], which reveals the range680

of χ to be 0.003-0.01. Therefore, a proper treatment of viscous boundary layers in the681

conduit is crucial for correctly capturing the decay characteristics of the VLP oscillation in682

that system.683
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mensional period T∗ at different values of χ. Greater χ signifies more viscous damping, resulting in lower Q

and longer T∗. The dark gray region marks the overdamped region (Q < 0.5).
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667

668

669

During a forced oscillation, the system response is amplified at the resonant fre-684

quency. To visualize this effect, we solve for the spectrum of h∗ given unit input of p∗ex685

for a range of χ. The results are shown in Figure 13. Amplification is observed as spec-686

tral peaks at resonant frequencies (ω/ω0 ≈ 1) in Figure 13a. A higher quality factor Q687

(smaller χ) corresponds to a sharper spectral peak. Figure 13b shows the peak spectral688

amplitudes of h∗ as a function of χ at the resonant frequency, which also indicates the689

suppression of amplification effect at a higher χ.690
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Figure 13. (a) Spectral amplitude of h∗ as a function of ω/ω0 given unit p∗ex . The spectral peak indicates
the amplification at the resonance; the higher the quality factor Q (the lower the χ), the sharper the spec-
tral peak. (b) Peak spectral amplitude of h∗ at resonant frequency as a function of χ. A higher χ indicates
stronger damping and less amplification. The dark gray region marks the overdamped region (Q < 0.5).

691

692

693

694

What can we uniquely constrain given observations of period T and quality factor695

Q of a conduit-reservoir mode VLP event? Given two observations, only two parameters696

can be constrained in principal. Solutions in Figure 12b directly link the observed Q to697

the value of the nondimensional parameter χ. χ is then used to constrain T∗ = T/T0.698

Given T and T∗, T0 is then uniquely constrained. Therefore, the two parameters uniquely699
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constrained by the observation of T and Q are T0 and τvis . This also means the individual700

parameters that constitute the expression of T0 in equation 85 and τvis in (92) must have701

trade-offs given the limited observation.702

When seismic displacements are available, they provide additional constraints. In703

the quasi-static limit, the surface displacement spectra Û (not to be confused with the de-704

pendent variable vector U in (65) and with caret now denoting Fourier transform instead705

of Laplace transform) are proportional to the volume change in the reservoir [e.g. Mogi,706

1958; Okada, 1985]:707

Û = neAĥ = neAĥ∗L = ne
ĥ∗

p̂∗ex
Ap̂∗exL = ne

ĥ∗

p̂∗ex

Ap̂ex
ρ̄mLω2

0
, (93)

where ne is a function of the reservoir location, station location, reservoir shape, relative708

magma and reservoir compressibilities, and elastic properties of the solid. Since ω0 can709

be calculated from T0 and h∗/p∗ex is known from χ (see Figure 13), surface displacements710

thus constrain Ap̂ex/(ρ̄mL) if ne is known.711

According to (92), there is trade-off between the conduit radius R and the kinematic712

viscosity νm. Figure 14a shows this trade-off for T0 = 40 s and different values of Q. If713

we have independent constraints on kinematic viscosity, we can put tighter constraints on714

the conduit radius, as indicated by the two dashed lines in Figure 14-(a) for a range of dy-715

namic viscosity (1-100 Pa s) and background density (1000-2500 kg/m3). However, it is716

not possible in general to uniquely constrain R and νm just from observations of T and Q.717

At Kilauea Volcano, forward looking infrared (FLIR) imagery in late 2008 to early 2009718

reveals that the conduit radius is about 5 m on the floor of the Overlook crater at Kilauea719

Volcano [Fee et al., 2010]. If we assume the measurement at the lake bottom is represen-720

tative for the deeper conduit, we take R = 5 m. By using (92) and making reasonable as-721

sumptions of average background density (ρ̄m ranges from 1000 to 2500 kg/m3), we map722

out the relation between dynamic viscosity µm and Q given different observations of T0,723

shown in Figure 14b. Given T0 and ρ̄m, observing a greater Q indicates lower dynamic724

viscosity in the magma. With the observation of T0 and Q, the viscosity can be bounded725

considering a range of density, which can be useful for monitoring the magma viscosity in726

the conduit. Higher quality factor provides a narrower bound on viscosity. For example,727

given T0 = 40 s and Q = 10, the range of viscosity is bounded to 18-40 Pa s given the728

range of density (1000 to 2500 kg/m3).729

Similarly, a trade-off between conduit length L and reduced gravity g′ also exists on735

observing the same T0. To uncover the trade-offs between more physical parameters, we736

expand (85) using (80) and (82):737

T0 = 2π

√
L ρ̄m

∆ρ̄g + AC−1
t

, (94)

which clearly reveals the balance between the conduit fluid inertia (L ρ̄m) with two sources738

of restoring forces, one from gravity (∆ρ̄g) and the other from reservoir (Ct ).739

To visualize the trade-off, we consider two limiting cases: one with zero density746

contrast ∆ρ̄ = 0 and a crack-shaped reservoir considered by Chouet and Dawson [2011,747

2013] (Figure 15a), and the other with infinite reservoir storativity Ct → +∞ (Figure748

15b). In the first case, shown in Figure 15a, there exists a direct trade-off between the749

conduit length and crack radius. To sustain the same resonant period T0, a shorter con-750

duit is required for a larger crack. If the crack size is indeed as large as 3 km as reported751

by Chouet and Dawson [2011, 2013], the conduit would have to be less than 10 m long752

regardless of different average density and T0 if no gravity is considered, which seems753

very unlikely. If the conduit is longer than 100 m, the crack diameter would have to be754

less than ∼800 m given T0 = 20 s and ρ̄m = 1000 kg/m3. A larger density would require755

an even smaller crack. In this calculation, we assume G = 20 GPa and νs = 0.25. A more756
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between density contrast ∆ρ̄ and average density ρ̄m is required to produce the same period T0 for a longer
conduit.

740

741

742

743

744

745

compliant solid will also require a smaller crack. Therefore, if the crack size is as large757

as reported by Chouet and Dawson [2011], gravity must play the dominant role. In the758

second case, shown in Figure 15b, the oscillation is completely driven by gravity and759

the trade-off exists between ∆ρ̄/ρ̄m and L. For the same period T0, a larger density ra-760

tio ∆ρ̄/ρ̄m is required for a longer conduit. Without the restoring force from the magma761

reservoir, the fact that we observe periods as short as 15-20 s requires the length of the762

conduit to be shorter than 300 meters assuming the density ratio ∆ρ̄/ρ̄m is less than 5.763

The reality is probably somewhere in between the two limiting cases, as we explore in764

Part II.765
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5 Conclusion766

We have investigated waves and resonant magma oscillations in a coupled conduit-767

crack system. Stratification and compressibility in the conduit support acoustic-gravity768

waves. Along the fluid-filled crack, solid wall elasticity and fluid inertia produce crack769

waves. Viscous boundary layers in both the conduit and crack are properly captured. Eigen-770

mode analysis of the coupled model reveals distinct energy balance of a variety of reso-771

nant modes. The conduit-reservoir mode is characterized by the dominant balance of con-772

duit fluid inertia, gravity, and crack wall elasticity. In this mode, the entire fluid column in773

the conduit moves up and down, inflating and deflating the bottom reservoir. Fluid com-774

pressibility is negligible and the contribution from the crack wall elasticity diminishes as775

the size of the crack gets larger. Unless the crack width is too narrow compared to the776

conduit radius, most energy is dissipated in the conduit. Due to the negligible magma777

compressibility as compared to buoyancy in the conduit, the conduit-reservoir mode is778

only sensitive to the average magma density and density contrast, not to the detailed den-779

sity profile in conduit. Higher frequency modes are resonating crack waves with most en-780

ergy confined in the crack. Depending on where the conduit couples to the crack, crack781

wave modes can be selectively excited by the external excitation in the conduit. Crack782

wave modes are visible in the surface displacement but their amplitudes are smaller than783

the conduit-reservoir mode. Distinct displacement patterns of crack wave modes may help784

to constrain the crack geometry.785

The coupled model also led us to a reduced model that retains the key physics of786

the conduit-reservoir mode, which may explain certain VLP events at basaltic volcanoes.787

The advantage of our approach compared to previous ones is that we started from a very788

general model, which provides the reduced model with rigorous theoretical justifications.789

Since the conduit-reservoir mode senses the magma reservoir as a whole, its period and790

quality factor lose sensitivity to the shape of the reservoir except when that shape affects791

the storativity Ct . The reduced model led us to identify the key nondimensional parameter792

χ governing the oscillation and two parameters (T0 and τvis) that can be uniquely con-793

strained by observation of the VLP period T and quality factor Q. Trade-offs thus exist794

among the individual parameters that constitute T0 and τvis . For example, direct trade-offs795

exist between kinematic viscosity and conduit radius, and between conduit length and den-796

sity contrast. Our analysis also demonstrates that gravity is likely the dominant restoring797

force for conduit-reservoir mode VLP oscillations at Kilauea, rather than reservoir elas-798

ticity, as suggested by Chouet and Dawson [2013]. The sensitivity of T and Q to the in-799

trinsic properties of the magmatic system complement the interpretation of the commonly800

obtained VLP seismic moment tensor in the literature [e.g. Ohminato et al., 1998; Chouet801

et al., 2010].802

While the full model developed in this paper is general, the reduced model of the803

conduit-reservoir mode does have its range of application. In this study, we focus on the804

parameter values where there exists a clear separation of resonant frequencies among805

the conduit-reservoir mode, crack wave modes, and conduit acoustic wave modes. There806

might be cases where these modes’ frequencies are comparable, which may complicate807

the interpretation. Future work might explore the impact of other processes not considered808

in this study, such as irregular conduit geometry [e.g. Garces, 2000], bubble growth and809

resorption [e.g. Karlstrom and Dunham, 2016], and background flow in the conduit [e.g.810

Fowler and Robinson, 2018] on the observables from seismograms. The conduit-reservoir811

model introduced in this work can furthermore serve as one component of more complex812

models of magma plumbing systems. Some extensions include coupling the conduit to813

multiple cracks, modeling gas rising and bursting in the lava lake, and treating the slosh-814

ing dynamics of the lava lake. These more complex models would give deeper physical815

insights on the resonances of the entire plumbing system and be more capable in assimi-816

lating diverse datasets, such as the seismic observations of higher modes, degassing obser-817

vations, and infrasound signals.818
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A: Numerical methods826

We solve (13), (18), and (19) in the conduit with p, v, and h as dependent vari-827

ables and (44), (45), and (46) in the crack with p, vx , vy as dependent variables. We use828

summation-by-parts (SBP) finite difference methods for spatial discretization with weak829

enforcement of boundary conditions and coupling conditions via simultaneous approxima-830

tion terms (SAT) [Kreiss and Scherer, 1974; Strand, 1994; Olsson, 1995]. The advantage831

of the SBP-SAT method is that it enables us to construct numerical energy balance that832

mimics the continuous energy balance and to prove the energy stability and accuracy of833

the numerical scheme. The SBP-SAT treatment of the conduit is explained in Karlstrom834

and Dunham [2016] (with no viscosity) and Prochnow et al. [2017] (with viscosity). The835

numerical treatment of the crack is identical to that in O’Reilly et al. [2017] except re-836

placing elastodynamics in the solid with static elasticity and extending the crack to 3D.837

Specifically, we capture the static elasticity using the displacement discontinuity method838

(DDM) for an elastic half space [Crouch et al., 1983; Okada, 1985, 1992] and the grid839

values of crack pressure p and opening w on a mesh are related by840

p = KGw, (A.1)

where KG is a symmetric positive-definite matrix due to reciprocity for linear elasticity.841

Thus, a discrete version of elastic potential energy (54) is:842

Pcrack
elas =

1
2

pT HK−1
G p, (A.2)

where H is the positive-definite diagonal SBP quadrature rule for integration in the x and843

y directions. After spatial discretization, we obtain a system of ordinary differential equa-844

tions (ODE), which are integrated in time using a fourth-order implicit-explicit (IMEX)845

Runge-Kutta method following O’Reilly et al. [2017]. The stiffness induced by viscosity846

is handled implicitly so that the entire system of equations can be advanced in time with847

high order accuracy using the maximum time step determined by the standard Courant-848

Friedrichs-Lewy (CFL) condition for wave propagation.849

B: Sensitivity analysis for the conduit-reservoir mode850

In this section, we consider the special case of a rectangular crack with equal side854

lengths Lx = Ly and discuss the sensitivity of period T , quality factor Q, and partition of855

energy of the VLP mode to conduit length L, conduit radius R, conduit density contrast856

ρ̄0 − ρ̄L , crack dimension Lx , crack width w0, and viscosity µ. Fluid wave speed is not857

varied in this section because we expect the fluid compressibility to be negligible com-858

pared to gravity at very long periods. Due to the high dimension of the parametric space,859

an exhaustive study of each combination of parameters is impractical. Therefore, we vary860

one parameter at a time while holding other parameters fixed at the values of the reference861

model, tabulated in Table 1.862

The results are shown in Figures B.1-B.6. We calculate T and Q for the full model863

without reduction, the reduced model with crack wall elasticity, and the reduced model864

without crack wall elasticity, which allows us to evaluate applicability of the reduced865

model. With the eigenfunctions obtained for the full model, we calculate the fractions of866
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Figure B.1. (a) Conduit-reservoir mode period T (blue lines) and quality factor Q (red lines), (b) parti-
tion of energies, and (c) partition of energy dissipations as a function of conduit length. In (c), PE denotes
potential energy and KE denotes kinetic energy.

851

852

853

total energy for all energy terms in the conduit and crack: fluid kinetic energy (30), poten-867

tial energy due to fluid compressibility (31), and gravitational potential energy (32) in the868

conduit and fluid kinetic energy (52), potential energy due to fluid compressibility (53),869

and elastic potential energy (A.2) in the crack. We also calculate the fractions of total en-870

ergy dissipation in the conduit (34) and the crack (55).871

The most pronounced feature of the conduit-reservoir mode is the balance between877

fluid kinetic energy, the gravitational potential energy in the conduit, and crack wall elastic878

potential energy, which is important only when the crack dimension is sufficiently small.879

The period increases with conduit length and decreases with density contrast, as shown880

in Figures B.1 and B.2. Additional restoring force added by the crack wall elasticity fur-881

ther reduces the period, which becomes evident as the crack dimension is less than several882

hundred meters as shown in Figure B.3a. In the short crack limit, potential energy due883

to crack wall elasticity accounts for a substantial percentage in the total potential energy884

shown in Figure B.3c. Viscous dissipation tends to increase the period as shown in Figure885

B.4. However, this effect is modest until the system is close to being overdamped, such886

as when the conduit radius and crack width become too narrow, as shown in Figures B.5a887

and B.6a.888

Higher viscosity, narrower conduit radius and crack width all contribute to a lower889

quality factor, according to Figures B.4, B.5, and B.6. The quality factor is not sensitive890

to the crack width when the crack width is sufficiently large and most energy is dissipated891

in the conduit. However when the crack width is sufficiently narrow that it becomes the892

limiting factor for the viscous dissipation; decreasing the crack width can dramatically de-893

crease the quality factor, eventually approaching the limit of being over-damped, as shown894

in Figure B.6a.895

In most cases, the period and quality factor are well approximated by the solutions896

from the reduced model (equation (79)). The reduced model accounting for crack wall897

elasticity slightly and consistently underestimates the period. This is because this solution898

includes the restoring force from elasticity but neglects the fluid inertia in the crack. This899

treatment is analogous to having a stiffer spring but a smaller mass, which consistently900
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Figure B.2. Same as Figure B.1 but varying density contrast.872
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Figure B.3. Same as Figure B.1 but varying crack dimension.873

gives a lower period. The reduced model with a zero pressure boundary condition (with-901

out including crack wall elasticity) neglects both crack wall elasticity and fluid inertia in902

the crack. In the case where the crack elasticity is approximately balancing the fluid iner-903

tia in the crack, this treatment gives a better approximation to the period and quality, as904

shown in Figures B.1, B.5, and B.4. However, neglecting the crack wall elasticity when905

it contributes a substantial part of the restoring force can induce large error, as shown906

in Figure B.3. Since reduced models neglect viscous dissipation in the crack, they break907

down when substantial viscous dissipation occurs in the crack, such as the cases where the908

conduit radius becomes sufficiently large or the crack width becomes sufficiently narrow,909

as shown in Figure B.5 and B.6.910

To summarize, we have shown that the conduit-reservoir mode is dominated by the911

balance of conduit fluid inertia with the gravity and crack wall elasticity. The strength of912
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Figure B.4. Same as Figure B.1 but varying viscosity.874
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Figure B.5. Same as Figure B.1 but varying conduit radius875

the crack wall elasticity diminishes as the crack size becomes sufficiently large. The fluid913

compressibility in both the conduit and crack is negligible. Most fluid inertia and viscous914

dissipation are concentrated in the conduit unless the crack width is sufficiently narrow,915

which justifies our decision to neglect the fluid inertia and viscosity in the crack in our916

reduced model for the conduit-reservoir mode.917
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