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Abstract We present a high-order difference method for problems in elastodynamics in-
volving the interaction of waves with highly nonlinear frictional interfaces. We restrict our
attention to two-dimensional antiplane problems involving deformation in only one direc-
tion. Jump conditions that relate tractions on the interface, or fault, to the relative sliding ve-
locity across it are of a form closely related to those used in earthquake rupture models and
other frictional sliding problems. By using summation-by-parts (SBP) finite difference op-
erators and weak enforcement of boundary and interface conditions, a strictly stable method
is developed. Furthermore, it is shown that unless the nonlinear interface conditions are for-
mulated in terms of characteristic variables, as opposed to the physical variables in terms of
which they are more naturally stated, the semi-discretized system of equations can become
extremely stiff, preventing efficient solution using explicit time integrators.

The use of SBP operators also provides a rigorously defined energy balance for the dis-
cretized problem that, as the mesh is refined, approaches the exact energy balance in the
continuous problem. This enables one to investigate earthquake energetics, for example the
efficiency with which elastic strain energy released during rupture is converted to radiated
energy carried by seismic waves, rather than dissipated by frictional sliding of the fault.
These theoretical results are confirmed by several numerical tests in both one and two di-
mensions demonstrating the computational efficiency, the high-order convergence rate of
the method, the benefits of using strictly stable numerical methods for long time integration,
and the accuracy of the energy balance.
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1 Introduction

Problems involving frictional contacts between solids are important in many fields including
earthquake dynamics, fracture mechanics, and structural engineering and design. For many
of these problems the material can be modeled as linear elastic with frictional sliding occur-
ring on infinitesimally thin internal interfaces, or faults, governed by nonlinear friction laws.
As relative motion occurs across the interface (with the discontinuity in tangential displace-
ment referred to as slip) nonlinear relations relate the slip velocity to the tractions acting on
the fault.

In order to match the frictional behavior seen in experiments, the friction laws used in
practice must depend not only on slip velocity and tractions acting on the fault but also, for
example, on the history of sliding, frictional heat generation, and other process occurring
within the fault zone. Friction laws with this more complex structure are referred to as rate-
and-state friction laws. In this work we assume that the fault shear strength τ (resistance to
slip) depends only on the slip velocity V through the friction law τ = F(V ). Furthermore,
we consider only antiplane loading with deformation in only one direction; hence the equa-
tions of elasticity simplify to three partial differential equations (PDEs) for one component
of velocity and two components of stress.

Our primary motivation is the need for provably stable, accurate, and efficient methods
for modeling earthquake rupture propagation on faults governed by velocity-dependent fric-
tion laws. Spontaneous rupture models are becoming increasingly used to study scenario
earthquakes and to assess seismic hazard. In addition to providing predictions of ground
shaking, these models can also be employed to investigate fundamental questions of earth-
quake energetics. The elastic strain energy liberated during an earthquake by fault slip and
stress relaxation is partitioned between energy dissipated during frictional sliding and the
energy carried by radiated waves into the far-field. Radiated seismic energy is one of a very
limited set of observable global earthquake source parameters, and, together with estimates
of the change in strain energy from measurements of rupture area and total slip, can be used
to estimate the energy dissipated on the fault. This technique places valuable constraints on
the frictional properties of faults at depth.

In this work, we use summation-by-parts (SBP) finite difference methods [3, 12, 13,
16, 28] on an unstaggered grid. The advantage of these methods is that after appropriate
boundary treatment the numerical methods can be proven to mimic the energy dissipation
properties of the continuous problem, leading to what is known as strict stability [8] (see
Sect. 3); strictly stable methods are important for long time integration as the solution is
not degraded by small scale error growth. SBP methods come equipped with a rigorously
defined numerical energy balance that, with mesh refinement, converges to the exact energy
balance of the continuous problem. We demonstrate in this work how the method can be
used to accurately calculate various contributions to the global energy balance (i.e., the work
done on the elastic body by boundary tractions, the energy dissipated on the fault, and the
change in mechanical energy of the elastic body).

A field, v(y), is discretized on a uniform grid spanning the unit interval:

vi = v(yi), yi = ih, i = 0, . . . ,N, (1)

where h = 1/N is the grid spacing and y0 and yN are on the left and right boundaries,
respectively. A difference approximation to the first derivative is said to be of SBP form if it
can be written as

∂v

∂y
≈ H−1Q v, (2)
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where H is a symmetric positive definite matrix, Q is an almost skew-symmetric matrix
with QT + Q = diag[−1 0 · · · 0 1], and the vector v = (v0, v1, . . . , vN)T is the grid data.
For instance, the second order SBP operator is [12]

H = h diag
[

1
2 1 1 · · · 1 1

2

]
, Q = 1

2

⎡

⎢
⎢⎢
⎢⎢
⎣

−1 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 1

⎤

⎥
⎥⎥
⎥⎥
⎦

. (3)

Defining the continuous and discrete inner products,

(u, v) =
∫ 1

0
u(y)v(y) dy and (u,v)h = uT Hv, (4)

it becomes clear why these methods are called SBP methods as they mimic the integration-
by-parts property of the continuous problem,

(
v,

dv

dy

)
=

∫ 1

0
v

dv

dy
dy = 1

2

[
v(1)2 − v(0)2

]
, (5)

(v,H−1Qv)h = vT Q v = 1

2
vT (Q + QT ) v = 1

2
(v2

N − v2
0). (6)

SBP operators are constructed from central difference methods, with orders q =
2,4,6,8, . . . in the interior, and transition near boundaries to one-sided difference meth-
ods in a manner that maintains the SBP property. Generally, the transition to one-sided near
the boundary lowers the local accuracy of the method to r ; hence, the global accuracy of
the method is p = r + 1 [7, 29]. There are two classes of SBP operators: diagonal norm (di-
agonal H ) and block norm operators (non-diagonal H ). The diagonal norm operators have
interior accuracy q = 2s (s = 1,2, . . . ) and boundary accuracy r = s, so the global accuracy
is p = s +1, whereas block norm operators can have boundary accuracy r = 2s −1 and thus
global accuracy p = 2s. There are drawbacks to using the block norm operators, the most
prominent being difficulties in proving stability for problems which involve variable coef-
ficients and/or coordinate transforms [18, 20, 24, 30]. In this work we exclusively consider
the diagonal norm operators and methods are referred to by their global accuracy.

By using SBP methods, along with suitable boundary treatment, it is possible to design
difference schemes that mimic the energy dissipation properties of the continuous PDE,
resulting in a provably strictly stable discretization. There are numerous methods for incor-
porating boundary conditions; the two considered in this work are the injection method,
which enforces boundary conditions strongly, and the simultaneous approximation term
(SAT) method [2], which enforces boundary conditions weakly. In the injection method the
grid values at the boundary points are modified so that they strictly satisfy the boundary con-
ditions. Though this is conceptually straightforward, the method destroys the SBP property
of the operator and stability can be difficult or impossible to prove [8]. Additionally, with
the injection method corners of the computational domain in two dimensions (and edges in
three dimensions) require special handling, and it is often unclear how to treat incompatible
boundary conditions. With SAT the grid values are not directly modified, but a penalty term
is added to the semi-discrete equations so that the difference operator is penalized for not
satisfying the boundary conditions. With a carefully chosen penalty parameter, stability and
accuracy are guaranteed.
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As will be seen in Sect. 2, this work considers the equations of elasticity written in first-
order form. This allows us to leverage the well established SBP-SAT technology for the
first-order hyperbolic equations, including the use of coordinate transforms [20] and hybrid
structured-unstructured methods [22]. Mattsson et al. [17] recently extended the SBP-SAT
framework to the second-order wave equation, which reduces the number of unknowns and
typically results in more efficient time-stepping and better dispersion properties. One of the
complications with using the second-order equations is that the use of coordinate transforms
introduces mixed derivatives. Additionally, plastic deformation is easily handled with source
terms on the first-order equations, but time-stepping becomes much more difficult with the
second-order form of the equations [5].

The remainder of this paper is as follows: In Sect. 2 well-posedness and the energy
dissipation rate for the continuous problem are established. The discrete method is then
discussed in Sect. 3 along with three procedures for including boundary conditions: the
injection method and two formulations of the SAT method. The SAT procedure leads to
numerical methods which dissipate energy at least as fast as the continuous solution (with
the difference in the rates vanishing as the mesh is refined), thus ensuring strict stability.
The computational benefits and drawbacks of the two SAT formulations are discussed in
Sect. 4 and in Sect. 5 computational results demonstrate the theoretical results. Conclusions
are presented in Sect. 6.

2 Continuous Problem: Well-Posedness and Energy Dissipation

Consider a homogeneous 2-D elastic medium with a frictional interface (or fault) located
at y = 0 (Fig. 1a); for simplicity we assume that the domain is rectangular with lower left
corner (x, y) = (−Lx,−Ly) and upper right corner (x, y) = (Lx,Ly). As indicated in the
figure, superscript (1) is used throughout to denote variables in the region y > 0 and (2) is
used to denote y < 0.

Considering only antiplane deformation, the governing equations in the elastic medium
(momentum conservation and the time derivative of Hooke’s law) can be written as

ρ
∂vz

∂t
= ∂σxz

∂x
+ ∂σyz

∂y
,

∂σxz

∂t
= G

∂vz

∂x
,

∂σyz

∂t
= G

∂vz

∂y
, (7)

where vz is the particle velocity in the z-direction (out of the page), σxz and σyz are com-
ponents of shear stress which induce tractions (force per unit area) in the direction of the
particle velocity on planes with unit normals x̂ and ŷ, respectively, ρ is density, and G is
shear modulus. With a change of variables the governing equations (7) can be written as a
symmetric first order hyperbolic system:

∂q

∂t
=

⎡

⎣
0 cs 0
cs 0 0
0 0 0

⎤

⎦ ∂q

∂x
+

⎡

⎣
0 0 cs

0 0 0
cs 0 0

⎤

⎦ ∂q

∂y
= Ax

∂q

∂x
+ Ay

∂q

∂y
, (8)

q =
[√

ρ

2 vz
1√
2G

σxz
1√
2G

σyz

]T

, (9)

where cs = √
G/ρ is the shear wave speed.

To fully specify the problem, boundary and interface conditions are needed. In order
to determine the number of boundary conditions required, the characteristic form of the
problem is considered; the number of boundary and interface conditions is equal to the
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Fig. 1 (a) Problem domain consisting of two elastic bodies in contact along a nonlinear frictional fault at
y = 0. The computational grid is unstaggered, i.e., velocity and stresses are collocated. q(1) and q(2) are the

solutions for y > 0 and y < 0, respectively. Along the fault each grid node has two solutions, q
(1)
i0 and q

(2)
i0 ,

in order to handle discontinuities in fields across the fault. At the boundaries and fault the unit normal n is
defined to point outward, e.g., at the fault the unit normals are n(1) = −ŷ and n(2) = ŷ, and m = [ny −nx ]T
is orthogonal to n. North, south, east, and west are used throughout to refer to the faces of the exterior domain.
(b) Sideview illustrating tractions and sign convention for unit normal vectors. Fault normal direction to side
(l) of the fault, n(l), points from side (l) to the other side. The shear traction (frictional force per unit surface

area of the interface) exerted in the z-direction on side (l) of fault by the material on the other side is n
(l)
i

σiz

number of characteristics propagating into the domain and out of the fault [11]. Since Ax and
Ay in (8) are not simultaneously diagonalizable, we must consider the characteristic form in
one direction only. Namely, the characteristic variables associated with waves propagating
in the direction of the unit vector n are the eigenvectors of the system niAi :

w± = σizni ∓ Zvz, with speeds ± cs, (10)

ẘ = σizmi, with zero speed, (11)

m = [ny −nx]T , (12)

where Z = ρcs = G/cs is the shear impedance, summation over x, y is implied by re-
peated indices, ni refers to the components of n, and m is orthogonal to n (chosen so that
n × m = ẑ). As indicated in Fig. 1a, at the exterior boundaries n is taken to be the out-
ward pointing normal. With this convention the outward propagating characteristic variable
is always w+ and the incoming characteristic variable is always w−. Thus, one boundary
condition is needed on w− at each boundary; we take these external boundary conditions to
be linear functions of the form

w− = Rw+, (13)

where R is the reflection coefficient and can vary spatially along the boundary; in general,
boundary condition (13) could also depend on the zero speed characteristic variable ẘ. The
boundary conditions can also be generalized to include a boundary data function g(t). At
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the exterior boundaries, as well as the fault, no special handling of the zero speed charac-
teristic variable is needed for either the continuous or discrete problem [19, 21]. Several
common boundary conditions can be expressed in this manner: R = 0, which is the non-
reflecting boundary condition; R = −1, which is the traction free surface boundary condi-
tion (σizni = 0); and R = 1, which is the rigid wall boundary condition (vz = 0). There has
been much work on the development of more effective non-reflecting boundary conditions,
e.g., Hagstrom et al. [9] and Appelo et al. [1], but only the simple form outlined above is
considered in this work as our primary interest is the treatment of the nonlinear frictional
interface.

The fault is governed by a nonlinear interface relationship. Across the fault some of
the fields (in particular the particle velocity) can be discontinuous, thus the characteristic
variables (10) need not be continuous across the fault. Hence, characteristic variables prop-
agating out of the fault into side (l) of the domain, w−(l), are related to the characteristic
variables propagating into the fault from side (l) of the domain, w+(l), through a nonlinear
relation of the form

w−(l) = W −(l)
(
w+(1),w+(2)

)
, (14)

where W −(l) is a nonlinear function that, in general, is different for each side of the fault;
more generally, W −(l) could also depend on ẘ(l) but this is not needed for the problems
considered below. For example, if the interface was welded, meaning that the fields were
continuous across the interface, they would take the form

w−(1) = −w+(2) and w−(2) = −w+(1), (15)

where the minus sign is due to the change in definition of outward pointing normal on either
side of the fault.

In elastodynamics it is more common for the interface conditions (14) to be formulated
in terms of the physical variables (velocity and stress) through a nonlinear friction law. We
define the slip velocity V (x, t) = v(1)

z (x,0, t) − v(2)
z (x,0, t) as the discontinuity in particle

velocity across the fault (see Fig. 2). The shear traction exerted on side (l) of the fault by
the material on the opposite side is σ

(l)
iz n

(l)
i (see Fig. 1b). Force balance [6] requires that the

tractions on opposite sides of the fault be equal in magnitude and opposite in sign. It follows
that, for the specific case of a planar fault at y = 0 (see Fig. 2),

σ (1)
yz (x,0, t) = σ (2)

yz (x,0, t). (16)

No such restriction exists for σxz, and for spatially nonuniform slip, σxz will be discontinuous
across the fault (see Fig. 2).

We consider frictional faults on which the shear stress, defined as the traction on side
(2) from side (1), is always equal to the shear strength (the frictional resistance to slid-
ing): σ

(l)
iz n

(2)
i = τ(x, t), or, for the planar fault y = 0, σ (l)

yz (x,0, t) = τ(x, t). In this work we
consider purely velocity dependent nonlinear friction laws:

τ =F(V ). (17)

Many realistic friction laws introduce a set of state variables to F that evolve according to
differential evolution equations.

The first theoretical result of this paper relates the characteristic form of the fault condi-
tions (14) to the continuity condition (16) and the friction law (17):
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Fig. 2 Example of a 2-D solution, illustrating that vz and σxz are discontinuous across the fault, whereas
σyz is continuous. The specific solution shown is used as a verification problem (see Sect. 5 for details). In
the plots for the stresses the color scale is saturated to show the detail of the solution. Velocity is shown at
time t = 2nπ and stresses at time t = (2n + 1)π/2 for integer n

Proposition 1 The interface conditions (16) and (17) (written in terms of the physical vari-
ables) can be uniquely expressed in the form of (14) (written in terms of the characteristic
variables) if F ′(V ) �= −Z/2.

Proof Without loss of generality we prove the theorem for the case of a planar fault at y = 0
(see Fig. 1a), but the proposition holds for faults of arbitrary shape and orientation.

We first rewrite σ (l)
yz and the slip velocity V using the characteristic variables (10) and

characteristic interface conditions (14):

σ (1)
yz = −1

2

(
w+(1) + W −(1)

)
, σ (2)

yz = 1

2

(
w+(2) + W −(2)

)
, (18)

V = 1

2Z

(
W −(1) − w+(1) − W −(2) − w+(2)

)
. (19)

For example, if the welded interface condition of (15) is used, then (18) and (19) imply
σ (1)

yz = σ (2)
yz and V = 0 (or v(1)

z = v(2)
z ), as expected.

Now, using (18) and (19) we rewrite the friction law (17) along with continuity of traction
components of stress (16) as a nonlinear system:

0 =
[

σ (1)
yz − σ (2)

yz

σ (2)
yz − F(V )

]

. (20)
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The Jacobian determinant of (20) with respect to the variables W −(1) and W −(2) is

J = det

[ − 1
2 − 1

2

− 1
2Z

F ′(V ) 1
2 + 1

2Z
F ′(V )

]

= − 1

4Z

[
Z + 2F ′(V )

]
. (21)

Since J �= 0 if F ′(V ) �= −Z/2, the proposition follows by the implicit function theorem. �

For the problem to be well-posed a unique solution must exist, depending continuously
on the boundary and initial data of the problem, and we must have an energy estimate [8].
A suitable energy estimate for our problem, where we have no boundary data or forcing
functions (i.e., all external boundary conditions are homogeneous, and there are no source
terms in the PDEs that would appear as nonzero body forces in the momentum equation and
nonzero plastic strain rates in Hooke’s law), is

‖q(·, t)‖ ≤ Kce
αct‖q(·,0)‖, (22)

where Kc and αc are constants independent of the solution. In this work, the norm is taken
to be the mechanical energy per unit distance in the z-direction in the solution,

‖q(·, ·, t)‖2 =
∫∫

�

qT q dx dy =
∫∫

�

(
ρ

2
v2

z + 1

2G
σizσiz

)
dx dy, (23)

where � is the problem domain. The first term is the kinetic energy and the second the
elastic strain energy. If it can be shown that energy is dissipated, i.e.,

d‖q‖2

dt
≤ 0, (24)

then by integration (22) holds with αc = 0 and Kc = 1. For problem (8) we have

d‖q‖2

dt
= 2

∫∫

�

qT ∂q

∂t
dx dy = 2

∫∫

�

qT

(
Ax

∂q

∂x
+ Ay

∂q

∂y

)
dx dy

=
∫

∂�

vzσizni ds +
∫ Lx

−Lx

[vzσizni]0−
y=0+ dx

=
∫

∂�

vzσizni ds −
∫ Lx

−Lx

V τ dx, (25)

where ∂� is the domain boundary and we have used the divergence theorem to change area
integrals to line integrals along the boundaries and fault. The first term in (25) represents
the energy flux across the exterior boundaries [14] and the last term is the rate at which me-
chanical energy flows into the fault (where it is converted to heat during frictional sliding).
It is straightforward to show that the exterior boundary terms are negative semi-definite with
boundary condition (13) if −1 ≤ R ≤ 1, namely,

vzσizni = − 1

4Z

(
1 − R2

) (
w+)2 ≤ 0. (26)

If the friction law function F(V ) in (17) takes the sign of its argument or zero, then the last
term in (25) associated with the fault is also negative semi-definite. Thus (25) is negative
semi-definite and we have an energy estimate.
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For linear problems with linear boundary conditions, energy dissipation implies unique-
ness and, assuming existence, well-posedness [8]. For problems with nonlinear boundary
conditions, energy dissipation only does not imply uniqueness due to the fact that the differ-
ence of two solutions does not satisfy the same boundary conditions as the original problem.
Here we derive one further condition on F that ensures uniqueness of the solution.

Assume that q1 and q2 are solutions to (8) with boundary condition (13), interface con-
ditions (16) and (17), and the same initial data; then � = q1 −q2 satisfies (8) with boundary
conditions (13) and the modified interface conditions

τ1 − τ2 =F(V1) − F(V2) and 	σ(1)
yz = 	σ(2)

yz . (27)

The energy dissipation rate of this problem is

d‖�‖2

dt
=

∫

∂�

	vz	σizni ds −
∫ Lx

−Lx

	V 	τ dx, (28)

where the exterior boundary terms are negative semi-definite due the energy estimate and
linearity of the exterior boundary conditions. The last term can be rewritten using the inter-
mediate value theorem for some V ∈ [V1,V2] as

	V 	τ = 	V [F(V1) − F(V2)] = 	V 2F ′(V ), (29)

and thus (28) is negative semi-definite if F ′(V ) ≥ 0 for all V ; all physically realistic fric-
tion laws satisfy this restriction [25]. Since d‖�(·, ·, t)‖2/dt ≤ 0 for all t and initially
‖�(·, ·,0)‖2 = 0, the solution is unique (q1 = q2).

The above results can now be summarized in the following proposition:

Proposition 2 The continuous problem (8) with boundary conditions (13) and fault inter-
face conditions (16) and (17) is well-posed if |R| ≤ 1 in the exterior boundary condition
(13) and

V F(V ) ≥ 0 and F ′(V ) ≥ 0 (30)

for all V ∈ R.

3 Discrete Formulation: Stability and Energy Dissipation

We discretize the governing equations (8) using (Nx + 1) × (Ny + 1) grids on both sides of
the fault with collocated grid nodes at the interface (see Fig. 1a). In the x-direction the grid
indices are i = 0, . . . ,Nx and in the y-direction for y > 0 the grid indices are j = 0, . . . ,Ny

and for y < 0 they are j = −Ny , . . . , 0. A method of lines discretization using SBP operators
is then

dq(l)

dt
= Dxq

(l) + Dyq
(l), (31)

Dx = H−1
x Qx ⊗ I y ⊗ Ax, Dy = I x ⊗ H−1

y Qy ⊗ Ay, (32)

q(l) =
⎡

⎢
⎣

q
(l)

0
...

q
(l)
Nx

⎤

⎥
⎦ , q

(1)
i =

⎡

⎢⎢
⎣

q
(1)

i0
...

q
(1)
iNy

⎤

⎥⎥
⎦ , q

(2)
i =

⎡

⎢⎢
⎣

q
(2)
i,−Ny

...

q
(2)

i0

⎤

⎥⎥
⎦ , (33)



350 J Sci Comput (2012) 50:341–367

where q
(l)
ij is the grid data at grid point (ij), H−1

x Qx is the 1-D SBP operator for an (Nx +1)

grid, I x is the (Nx + 1) × (Nx + 1) identity matrix (and similarly for H y , Qy , and I y ), and
⊗ is the Kronecker product of two matrices defined as

A ⊗ B =
⎡

⎢
⎣

A11B · · · A1NB
...

. . .
...

AM1B · · · AMNB

⎤

⎥
⎦ . (34)

Two Kronecker product identities are needed for the analysis that follows:

(A ⊗ B)T = AT ⊗ BT and (A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD) . (35)

Here we only consider a homogeneous elastic medium thus allowing the use of a Kronecker
product in the discretization, for heterogeneous mediums this more compact notation is not
possible.

The discrete energy norm is defined in an analogous manner to the continuous energy
norm (23):

‖q‖2
h =

2∑

l=1

(
q(l)

)T
(H x ⊗ H y ⊗ I 3)q

(l)

=
2∑

l=1

[
ρ

2

(
v(l)

z

)T
(H x ⊗ H y)v

(l)
z + 1

2G

(
σ

(l)
iz

)T
(H x ⊗ H y)σ

(l)
iz

]
, (36)

where the first term is the kinetic energy, the second the elastic strain energy, and I 3 =
diag[1 1 1]. The difference operator is said to be strictly stable [8] if

‖q(t)‖2
h ≤ Kde

αd t‖q(0)‖2
h, αd ≤ αc + O(h), (37)

where αd and Kd are constants independent of the initial conditions and αc is the growth
rate for the continuous problem in (22). If it can be shown that the discrete solution dissi-
pates energy at least as fast as the continuous solution, and that the energy dissipation rate
converges to the true rate under refinement, then (37) follows.

For the discrete method to be fully specified, the boundary and interface conditions must
be included. In this work two methods are considered: the injection method (strong enforce-
ment) and the SAT method (weak enforcement).

3.1 SBP + Injection Method

In the injection method, boundary conditions are enforced strongly so that the boundary
values strictly satisfy the boundary conditions. This can be done by modifying the char-
acteristic variables associated with waves propagating from the boundary or fault into the
medium [11, 23, 31, 32]; we assume that the boundary and interface conditions are in char-
acteristic form, (13) and (14). Given grid data q

(l)
ij , we define a new variable q̂

(l)
ij which in

the interior of the domain (i �= 0,Nx and j �= 0,±Ny ) is the original grid data q̂
(l)
ij = q

(l)
ij but

on the boundary and fault is modified to satisfy these conditions. For example, at the fault
q̂

(l)

i0 is defined as

q̂
(l)

i0 = 1

2
√

2ρ

⎡

⎢
⎣

W −(l)

i0 − w
+(l)

i0

ẘ
(l)

i0

n(l)
y (W −(l)

i0 + w
+(l)

i0 )

⎤

⎥
⎦ , (38)
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W −(l)

i0 ≡ W −(l)
(
w

+(1)

i0 ,w
+(2)

i0

)
, (39)

where w
+(l)
ij is the characteristic variable propagating into the fault defined from the grid

data q
(l)
ij . The exterior boundary nodes are modified in an analogous manner. It is clear that

in (38) only the inward propagating characteristic variable w
−(l)
ij is modified and that, by

construction, q̂
(l) now strictly satisfies the boundary and interface conditions.

The injection method can now be stated as

dq(l)

dt
= Dx q̂

(l) + Dy q̂
(l)

, (40)

with Dx and Dy given in (32). Since the injection method amounts to modifying the differ-
ence operator, the SBP property of the operator is lost and, in general, it is not possible to
prove that the resulting method satisfies the stability condition (37) [8, 15]. This can lead
to unbounded energy growth in the numerical solution, as will be seen in the computational
results below.

3.2 SBP + SAT (Simultaneous Approximation Term) Method

In the SAT method, boundary conditions are weakly enforced through penalty terms added
directly to the semi-discretized system:

dq(1)

dt
= Dxq

(1) + Dyq
(1) + BT

(1)
N + FT (1) + BT

(1)
E + BT

(1)
W , (41)

dq(2)

dt
= Dxq

(2) + Dyq
(2) + FT (2) + BT

(2)
S + BT

(2)
E + BT

(2)
W , (42)

BT
(l)
W = (

H−1
x ⊗ I y ⊗ �

(l)
W

)[
eW ⊗ (

w
−(l)
W − R

(l)
W w

+(l)
W

) ⊗ e3
]
, (43)

FT (1) = (
I x ⊗ H−1

y ⊗ �(1)
) [

B(1)
(
q(1),q(2)

) ⊗ eS ⊗ e3

]
, (44)

FT (2) = (
I x ⊗ H−1

y ⊗ �(2)
) [

B(2)
(
q(1),q(2)

) ⊗ eN ⊗ e3

]
. (45)

The other exterior boundary penalty terms are defined in a similar manner to BT
(l)
W ; e3 =

[1 1 1]T , vectors eS = [1 0 · · · 0]T and eN = [0 . . . 0 1] are of size (Ny + 1) × 1 (similarly
for eE and eW except that they are of size (Nx + 1) × 1). In the penalty terms w

±(l)
W is

the (Ny + 1) × 1 vector of characteristic variables defined from the grid data at the west
boundary, that is, from the data

qW =(
eT

W ⊗ I y

)
q. (46)

A similar definition applies to variables w
±(l)
N/S/E . In the exterior boundary term we define

R
(1)
W =diag

[
R

(1)
W (y = 0) · · · R

(1)
W (y = Ly)

]
, (47)

R
(2)
W =diag

[
R

(2)
W (y = −Ly) · · · R

(2)
W (y = 0)

]
, (48)

with similar definitions applying to the other reflection coefficient matrices. For the fault
interface condition we consider two different formulations for the fault interface conditions,
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B(l), based on (17) and (14), respectively. The first is the non-characteristic formulation:

B(l)
nc =

⎡

⎢
⎣

(
σ (l)

yz

)
00

− F
((

v(1)
z

)
00

− (
v(2)

z

)
00

)

...(
σ (l)

yz

)
Nx0

− F
((

v(1)
z

)
Nx0

− (
v(2)

z

)
Nx0

)

⎤

⎥
⎦ = (σ yz)

(l)
F − F (V ), (49)

and the second is the characteristic formulation:

B(l)
c =

⎡

⎢
⎣

w
−(l)

00 − W −(l)

00
...

w
−(l)

Nx0 − W −(l)

Nx0

⎤

⎥
⎦ = w

−(l)
F − W−(l)

F , (50)

where the subscript F refers data at the fault nodes stacked as a vector and W−(l)
F is the

interface relation (14) evaluated at each of the fault nodes in a similar vector form. Due
to the fact that there is only one boundary condition per direction at each boundary node,
the penalty matrices � can be taken to be diagonal matrices, i.e., for the fault terms �(l) =
diag[
(l)

1 

(l)

2 

(l)

3 ] and similarly for the other penalty matrices. Note that the penalty terms
are identically zero if the grid data exactly satisfies the boundary conditions or friction law.

The energy dissipation rate of the method is

d

dt
‖q(t)‖2

h =
2∑

l=1

[
d(q(l))T

dt

(
H x ⊗ H y ⊗ I 3

)
q(l)

+ (
q(l)

)T (
H x ⊗ H y ⊗ I 3

) dq(l)

dt

]

=
2∑

l=1

(
BT

(l)
E + BT

(l)
W

)
+ BT

(1)
N + BT

(2)
S + FT (1) + FT (2), (51)

where the west boundary term is obtained using the SBP property (6) as

BT
(l)
W = −(

q(l)
)T (

EW ⊗ H y ⊗ Ax

)
q(l)

+ 2
(
q(l)

)T (
EW ⊗ H y ⊗ �

(l)
W

)[
eW ⊗ (

w
−(l)
W − R

(l)
W w

+(l)
W

) ⊗ e3

]

= − (
v(l)

z

)T

W
H y

(
σ (l)

xz

)
W

+ 2
(
q

(l)
W

)T [
H y

(
w

−(l)
W − R

(l)
W w

+(l)
W

) ⊗ �
(l)
W e3

]
, (52)

with EW = diag(eW). Analogous expressions exist for the other boundary terms BT
(l)
E ,

BT
(1)
N , and BT

(2)
S . The fault terms are

FT (1) = − (
v(1)

z

)T

F
H x

(
σ (1)

yz

)
F

+ 2
(
q

(1)
F

)T (
H xB

(1) ⊗ �(1)e3

)
, (53)

FT (2) = (
v(2)

z

)T

F
H x

(
σ (2)

yz

)
F

+ 2
(
q

(2)
F

)T (
H xB

(2) ⊗ �(2)e3

)
. (54)



J Sci Comput (2012) 50:341–367 353

We will now discuss the choice of the penalty matrix for the west boundary term. Re-
placing the physical variables with the characteristic variables in (52), we have

BT
(l)
W = − 1

4Z

[(
w

+(l)
W

)T
H yw

+(l)
W − (

w
−(l)
W

)T
H yw

−(l)
W

]

+ 2
(
q

(l)
W

)T [
H y

(
w

−(l)
W − R

(l)
W w

+(l)
W

) ⊗ �
(l)
W e3

]
. (55)

Making the choice of 

(l)
W = −(1/2

√
2ρ) diag[1 − 1 0] such that

(
q(l)

)T

ij
�

(l)
W e3 = − 1

4Z

(
w

−(l)
W

)
ij
, (56)

the west boundary term becomes

BT
(l)
W = − 1

4Z

(
w

+(l)
W

)T (
H y − RWH yRW

)
w

+(l)
W

− 1

4Z

(
w−(l) − R

(l)
W w

+(l)
W

)T
H y

(
w−(l) − R

(l)
W w

+(l)
W

)
. (57)

This is negative semi-definite if H y − RWH yRW is positive semi-definite. For the diagonal
norm (i.e., when H y is a diagonal matrix), which we exclusively use in this paper, there are
no new restrictions on the reflection coefficients.

Thus, all the exterior boundary terms are negative semi-definite, dissipating energy
slightly faster than the continuous problem (26) and leading to a strictly stable scheme if
the penalty matrices for the fault terms can be appropriately chosen as well.

Remark If the block norm operators are used, then the requirement that H y − RWH yRW

is positive semi-definite places restrictions on the spatial variability of the reflection co-
efficients near grid corners. This restriction on R is independent of the choice of the
penalty matrix since if in (55) the grid data satisfies the boundary condition exactly, i.e.,
w

−(l)
W = R

(l)
W w

+(l)
W , then

BT
(l)
W = − 1

4Z

(
w

+(l)
W

)T (
H y − R

(l)
W H yR

(l)
W

)
w

+(l)
W , (58)

regardless of the choice of the penalty matrix 

(l)
W .

3.2.1 Non-characteristic Fault Treatment

Summing (53) and (54) and dropping the subscript F , i.e., all grid data refers to grid data at
the fault, we have

FT (1) + FT (2)

= − (
v(1)

z

)T
H xσ

(1)
yz + (

v(2)
z

)T
H xσ

(2)
yz

+ 2
2∑

l=1

(√
ρ

2
v(l)

z 

(l)

1 + σ (l)
xz√
2G



(l)

2 + σ (l)
yz√
2G



(l)

3

)T

H x

(
σ (l)

yz − F (V )
)
. (59)
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Picking 

(1)

1 = −

(2)

1 = 1/
√

2ρ and 

(l)

2 = 

(l)

3 = 0 this becomes

FT (1) + FT (2) = − V T H xF (V ) , (60)

which, if V T H xF (V ) ≥ 0, is nonpositive. For diagonal H x this requirement is satisfied if
V F(V ) ≥ 0 at every point.

Interpreting the slip velocity as V and the fault strength as τ = F(V ), the method dissi-
pates energy at the same rate as the continuous problem (25) and is strictly stable (there is
no additional damping with this method).

Remark If one uses the block norm SBP operators the restriction that V T H xF (V ) ≥ 0
needs to be verified. As is the case for the exterior boundaries, this additional requirement
on the spatial variation of F (V ) is not a result of the choice of the penalty matrices.

In a completely analogous manner to the continuous problem, we can summarize the
results for the non-characteristic fault treatment in the following proposition:

Proposition 3 The semi-discrete problem (41) with non-characteristic fault treatment (49)
is strictly stable if V T H xF (V ) ≥ 0 for all V .

3.2.2 Characteristic Fault Treatment

A similar calculation can be performed for the characteristic boundary formulation (50) and
the energy dissipation rate at the fault is

FT (1) + FT (2)

=
2∑

l=1

[
1

4Z

(
w−(l) − w+(l)

)T
H x

(
w−(l) + w+(l)

)

+ 2

(√
ρ

2
v(l)

z 

(l)

1 + σ (l)
xz√
2G



(l)

2 + σ (l)
yz√
2G



(l)

3

)T

H x

(
w−(l) − W−(l)

)
]

. (61)

Picking 

(l)

1 = −

(1)

3 = 

(2)

3 = −1/(2
√

2ρ) and 

(l)

2 = 0, this becomes

FT (1) + FT (2) = − 1

4Z

2∑

l=1

[(
w+(l)

)T
H xw

+(l) − (
W−(l)

)T
H xW−(l)

+ (
w−(l) − W−(l)

)T
H x

(
w−(l) − W−(l)

)]

= − 1

4Z

2∑

l=1

[(
w+(l) − W−(l)

)T
H x

(
w+(l) + W−(l)

)

+ (
w−(l) − W−(l)

)T
H x

(
w−(l) − W−(l)

)]
. (62)

Defining

v̂
(l)
z = 1

2Z

(
w+(l) − W−(l)

)
, V̂ = v̂

(1)
z − v̂

(2)
z , (63)
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σ̂
(1)
yz = −1

2

(
w+(1) + W−(1)

)
, σ̂

(2)
yz = 1

2

(
w+(2) + W−(2)

)
, (64)

we have that τ̂ = σ̂
(l)
yz = F (V̂ ) due to the fact that W −(l) is derived from the friction law

(17) and continuity of traction components of stress (16); see (18) and (19). Using these
definitions in (62) gives

FT (1) + FT (2) = −V̂
T
H xF

(
V̂

) − 1

4Z

2∑

l=1

(
w+(l) − W−(l)

)T
H x

(
w+(l) − W−(l)

)
. (65)

If V̂
T
H xF (V̂ ) ≥ 0 (the same requirement as was needed for the non-characteristic bound-

ary treatment), the method dissipates energy at the same rate as the continuous problem (25)
plus a small numerical damping term and is strictly stable.

We thus have the following proposition:

Proposition 4 The semi-discrete problem (41) with characteristic fault treatment (50) is

strictly stable if V̂
T
H xF (V̂ ) ≥ 0 for all V̂ .

In the Appendix we discuss the implementation and interpretation of the difference
method with characteristic fault treatment and diagonal norm operators.

3.3 Reduction of the Method to 1-D

Here we briefly present how the above methods can be reduced to 1-D. We do this because it
is easier to analyze the computational efficiency differences between the characteristic and
non-characteristic SAT methods for the 1-D equations. Additionally, the effect of the lack
of strict stability for the injection method is easily seen for the 1-D problem where analytic
solutions are easily derived and time-scales over which instabilities will be manifest can be
computed. The difference operator (31) is reduced to 1-D by setting Dx = 0 and I x = 1.
Similarly, the injection method still takes the form of (40) with q̂ = q except at the fault,
north, and south boundaries where it is defined by (38).

For the SAT method (41), BT
(l)
W = BT

(l)
E = 0 and the other exterior boundary and fault

terms become

BT
(1)
N = (

H−1
y ⊗ �

(1)
N

)
(eS ⊗ e3)

(
w

−(1)
N − RNw

+(1)
N

)
, (66)

BT
(2)
S = (

H−1
y ⊗ �

(2)
S

)
(eN ⊗ e3)

(
w

−(2)
S − RSw

+(2)
S

)
, (67)

FT (1) = (
H−1

y ⊗ �(1)
)
(eS ⊗ e3)B(1)

(
q(1),q(2)

)
, (68)

FT (2) = (
H−1

y ⊗ �(2)
)
(eN ⊗ e3)B(2)

(
q(1),q(2)

)
. (69)

Since these 1-D methods are a subset of the previously presented 2-D methods, all of the
previously derived well-posedness and stability properties apply and the method is strictly
stable with the given penalty matrices.

4 Stiffness and Efficiency

Two different SAT formulations have been presented; here we look at the computational ad-
vantages and disadvantages of each. The first difference is the nature of the boundary term.
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Fig. 3 Eigenvalues for the non-characteristic (nc) and characteristic (c) boundary treatments with the linear
friction law (70). For these plots, we use Ny = 50 and the fourth order diagonal norm SBP operator; the
overall trends are independent of Ny and the order of the operator. The spectrum λc(ᾱ) is largely independent
of ᾱ, and for all values of ᾱ the plot is visually the same. The purely real eigenvalue of λnc(100) is shifted to
the location indicated by the arrow and value

For the non-characteristic formulation the only computational expense associated with form-
ing the boundary term (49) is the cost of evaluating the friction law, F(V ). On the other hand,
the characteristic boundary formulation (50) requires solving a nonlinear system in order to
calculate W −(w+(1),w+(2)), at least when W − is not expressible in closed form, which in-
volves several evaluations of the friction law. In (18)–(20) the interface conditions W −(1)

and W −(2) are defined implicitly and can be efficiently found with a bracketed Newton’s
method. In our experience, the net computational cost of the method is dominated by the
difference approximation in the interior and the nonlinear solve is negligible in comparison.

A more important concern is related to the stiffness of the ODE system, which influ-
ences the maximum time step that can be used with explicit time integration methods. To
understand this, we consider the methods in 1-D. Using the linear friction law

F(V ) = α V ⇒ W −(w+) = α/Z − 1

α/Z + 1
w+ (70)

in the two SAT formulations, with a non-reflecting exterior boundary conditions (R = 0),
the semi-discretization is a linear system in q . From (70) we see that the friction law has
introduced a single nondimensional parameter ᾱ = α/Z. Let λnc(ᾱ) and λc(ᾱ) be the eigen-
value spectra for the non-characteristic and characteristic schemes, respectively, which are
functions of ᾱ. In Fig. 3a we show λnc(0.1), λnc(100), and λc(ᾱ) (for λc(ᾱ) the spectrum
is virtually the same for all ᾱ). For both formulations the whole spectrum satisfies Re λ ≤ 0
(a consequence of strict stability) and for large ᾱ the non-characteristic formulation has a
large magnitude, purely real, negative eigenvalue which leads to stiffness. We can character-
ize stiffness by considering the maximum magnitude eigenvalue of each spectrum, shown
in Fig. 3b. Stiffness increases roughly linearly with ᾱ (for ᾱ > 1) for the non-characteristic
formulation and is roughly constant for the characteristic formulation; the dip in the plot
for the non-characteristic formulation is associated with a decrease in magnitude of the two
“isolated” eigenvalues (seen in the spectrum of λnc(0.1) in Fig. 3a) and the increase is asso-
ciated with the increase in magnitude of the single purely real, negative eigenvalue (seen in
spectrum of λnc(100) in Fig. 3a).
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The implication of this for nonlinear friction laws can be seen by linearizing a nonlinear
friction law, F(V ), around a value V ∗,

F(V ) ≈ F(V ∗) + (V − V ∗) F ′(V ∗), (71)

which leads to an effective value of ᾱ = F ′(V ∗)/Z. During a single rupture simulation it
is possible for the effective ᾱ to range from 10−5 to 1040. Thus, since the effective value
of ᾱ can be quite large or small, the non-characteristic formulation can be arbitrarily stiff,
preventing efficient solution using explicit time-stepping routines. In other words, for wave
propagation problems one would like 	t ∼ h/cs , that is, a time step restriction that de-
pends predominantly on the wave propagation properties of the method and not the boundary
treatment. Since the spectral radius of the non-characteristic fault treatment is unbounded,
efficient explicit time integration is not possible with this formulation. For the character-
istic formulation the spectral radius is bounded (and of order one) and thus it is possible
to use 	t ∼ h/cs . The benefits of the characteristic formulation significantly outweigh the
drawbacks and, for this reason, the rest of this work exclusively uses characteristic fault
treatment.

Remark If the friction law is invertible, one could imagine instead using the boundary con-
dition F−1(τ ) = V in the non-characteristic formulation. In this case, the maximum mag-
nitude real eigenvalue of the difference operator scales roughly linearly with 1/ᾱ where
ᾱ = F ′(V ∗)/Z as in (71); hence, stiffness again results but now for small, instead of large, ᾱ.

5 Computational Results

We begin by testing the method with the previously mentioned 1-D problem configuration
before proceeding to the 2-D test problem. In all of the tests the nonlinear friction law is of
the form

F(V ) = β arcsinh(γ V ), (72)

where β > 0 and γ > 0; thus F(V ) satisfies the previously required assumptions for well-
posedness. This particular functional form is widely used in earthquake mechanics and other
frictional sliding problems, and has a sound theoretical basis related to how sliding is accom-
modated by thermally activated defect motion at microscopic contacts bridging the frictional
interface [25].

Before proceeding to the results, we first present the nondimensionalization for the prob-
lems. All of the tests will have some fundamental wavenumber k = 2π/λ (where λ is the
fundamental wavelength) which must be resolved; this along with the wave speed cs gives
the nondimensionalized space and time variables

ȳ = ky, x̄ = kx, t̄ = kcst. (73)

Similarly, the domain sizes can be nondimensionalized as L̄x = kLx and L̄y = kLy , and in
all our tests L̄y = 50 (and in 2-D L̄x = L̄y ), i.e., the domain is 50λ/2π . From the friction law
(72) we note that β has units of stress, and thus we nondimensionalize stress and velocity as

σ̄iz = σiz

β
, v̄z = Zvz

β
. (74)
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The governing equations become

∂ q̄

∂t̄
=

⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ ∂ q̄

∂x̄
+

⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦ ∂ q̄

∂ȳ
, (75)

and the friction law (72) becomes

F̄ (V̄ ) = arcsinh

(
γβ

Z
V̄

)
, (76)

where γβ/Z is a single nondimensional parameter governing the behavior of the solution.
In all of the 1-D tests presented here γβ/Z = 104. For the 2-D test γβ/Z ranges between
107 and 1020, which is typical for earthquake rupture simulations.

For all the test problems, error is measured with the nondimensional energy norm

error(Ny) = ‖q̄(·, tend) − q̄(tend)‖h̄, (77)

where h̄ = kh. The convergence rate is estimated using

p(Ny) = log

(
error(Ny)

error(2 Ny)

)/
log

(
h̄(Ny)

h̄(2 Ny)

)
, (78)

where h̄(Ny) = L̄y/Ny . Note that 2πh̄−1 is the number of grid points per wavelength λ.

5.1 1-D Test Problems: Accuracy and the Importance of Strict Stability

For both of the 1-D test problems, the initial condition is

σ̄yz(±ȳ,0) = ∓v̄z(±ȳ,0) = 10 sin (ȳ) exp

(

−128

(
ȳ

L̄y

− 1

2

)2
)

, (79)

and since σ̄xz is constant for this 1-D problem we do not include it in the calculation. This
initial condition corresponds to a wave packet moving into the fault. We test the 2nd, 3rd,
and 4th order accurate diagonal norm SBP operators (as determined by Strand [28]), where
the accuracy refers to their global accuracy and the interior accuracy of the methods is 2,
4, and 6, respectively. Time integration is performed with a 4th order, low memory Runge-
Kutta method of Carpenter and Kennedy [4] (5[4] method with solution 3) using a time step
	t̄ = 0.8h̄.

For this first test, time is truncated at t̄end = L̄y such that the wave packet propagates into
the fault and is reflected once. The exterior boundary condition is non-reflecting (R = 0).
Figure 4 shows the results of this test; for the 1-D problems the exact solution can be con-
structed using the method of characteristics. Both the injection and SAT methods perform
well for this test. The fact that the injection method does well suggests that the integration
time is too short for erroneous energy growth, if it exists, to affect the solution. Note that
the injection method is being used to enforce both the fault interface and outer boundary
conditions.

The energy and error growth in the solution with time can be explored by replacing the
non-reflecting boundary condition with a traction-free surface (σyz = 0 or R = −1) and
integrating the solution until time t̄end = 801L̄y . The wave packet interacts with the fault on
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Fig. 4 Error and convergence rate estimates for the injection and SAT methods for short time integration

the left and is reflected by the right boundary 400 times (one time for each boundary). Note
that t̄/L̄y is the number of times that the pulse has interacted with a boundary (either the fault
or the exterior boundary). Similar boundary interactions over long times are likely to arise
in practical calculations involving multiple faults, Earth’s surface, and other topographic
features such as sedimentary basins. This test is performed for the 3rd and 4th order SBP
operators with Ny = 800, i.e., h̄y = 0.0625 or 32π grid points per wavelength λ. Figure 5
shows the error (see (77)) and energy (see (36)) versus time for the methods, as well as
v̄z(y, t) solution profiles at select times for the 4th order methods. These plots clearly show
that the energy and error grow for the injection method, whereas for the SAT method the
error is bounded and energy decays at a slightly faster rate than in the exact solution, as
expected.

To understand the energy growth we consider eigenvalues of the Jacobian of the injection
method. We linearize the nonlinear friction law to the form (70), with effective values of ᾱ

calculated as in (71). For the test problem, ᾱ varies between 10−1 and 104. In Fig. 6a we
show the eigenvalue spectrum for both the 4th order SAT and injection methods with ᾱ = 10.
The real portion of the spectrum is mostly negative with a large number of almost purely
imaginary eigenvalues. In order to investigate the instability seen in the simulation results,
Fig. 6b shows the maximum real part of the spectrum as a function of ᾱ for both the 3rd and
4th order injection methods. As this plot clearly shows there is a portion of the spectrum
that has a small positive real part, which is leading to the time growth in the solution energy
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Fig. 5 (Color online) Comparison of long time integration using the injection and SAT methods. Shown are
the error (a), energy (b), and v̄z(y, t) at several times (c)–(d). INJ3 and INJ4 refer to the 3rd and 4th order
injection methods and SAT3 and SAT4 the 3rd and 4th order SAT methods. In (c) and (d) the black dashed
line is the exact solution and the solid red and blue lines are the computed solutions for the injection and SAT
methods, respectively, at the given time

and error. A similar plot for the SAT method would show a purely negative real eigenvalue
spectrum, as guaranteed by strict stability of the method.

From this analysis, the spurious energy growth in the solution occurs over a time interval

t̄g

L̄y

∼ h̄y

L̄2
y max Re λ (ᾱ) /k cs

= 1

NyL̄y max Re λ (ᾱ) /k cs

, (80)

which, from inspection of Fig. 6b, gives t̄g/L̄y ∼ 50 for the 4th order injection method and
t̄g/L̄y ∼ 250 for the 3rd order method. These estimates are comparable with the instability
times seen in Fig. 5b.

5.2 2-D Test Problem: Accuracy and Convergence

As a final test we consider a 2-D problem with the 4th order SAT method. First, note that
if the material is prestressed, meaning that there are nonzero background particle velocities
and stresses, then governing equations (8) can be used to model perturbations propagating
on top of these background values. In this test, for y > 0 the background velocity is v̄(1)

z = v̄0

and for y < 0 the background velocity is v̄(2)
z = −v̄0; hence, there is an initial slip velocity of
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Fig. 6 (a) Comparison of the eigenvalue spectrum for the 4th order SAT and injection methods with a linear
friction law (ᾱ = 10) and a traction free exterior boundary. The spectrum has a large number of almost purely
imaginary eigenvalues (compare with Fig. 3a for a non-reflecting boundary condition). (b) The maximum
real portion of the spectrum of the injection method. The existence of positive real eigenvalues explains the
instability seen with long time integration (for SAT the real portion of the spectrum is strictly negative). For
both plots Ny = 800

Fig. 7 Error and convergence rate estimates for the 2-D test problems with L̄x = L̄y = 50 using the 4th
order SAT method

V̄ = v̄(1)
z − v̄(2)

z = 2v̄0. We take v̄0 = Zv0/β = 1. The background stress values are σ̄ (l)
xz = 0

and σ̄ (l)
yz = σ̄0 = 20 where the friction law is defined in (76). With these background values if

the initial data is identically zero, then the problem stays in steady state with the fault sliding
continuously with the slip velocity V̄ = 2.

In 2-D the construction of exact solutions to general problems is more difficult, and thus
we use the method of manufactured solutions (MMS) to test the method [26]. In MMS
boundary data (forcing functions) and source terms are added to the problem in such a way
that the exact solution is known a priori. In our case, we let the exact solution be

ū(1)
z = −ū(2)

z = (v̄0 − ε/2)J0(r̄) sin
(
t̄
) + v̄0 t̄ + σ̄0ȳ, r̄ =

√
x̄2 + ȳ2, (81)

v̄(l)
z = ∂ū(l)

z

∂ t̄
, σ̄xz = ∂ū(l)

z

∂x̄
, σ̄yz = ∂ū(l)

z

∂ȳ
, (82)



362 J Sci Comput (2012) 50:341–367

where ū(l)
z is the nondimensional displacement in the z-direction and J0 is the Bessel func-

tion of the first kind. Displacement is measured with respect to a reference configuration in
which there is no discontinuity in displacement across the fault (i.e., the initial slip is zero).
The slip velocity at the origin oscillates between V̄ = ε and V̄ = 4v̄0 − ε. We take ε = 10−12

to render the problem highly nonlinear. With this solution, only the exterior boundary con-
ditions and friction law need to be modified, that is, no forcing functions are needed in the
interior of the domain. We do this by imposing the exact solution via a boundary condition
on v̄z at the exterior boundaries. The friction law (72) is modified to have γ ≡ γ (t), where
γ (t) can be easily derived from (81)–(82) using τ̄ (x, t) = σ̄yz(x,0, t).

The exact solution (with L̄x = L̄y = 25) is shown in Fig. 2, and as the figure shows there
are background values on top of which perturbations are propagating.

Error and convergence rate estimates are also given in Fig. 7 where a uniform grid has
been used (h̄x = h̄y = L̄y/Ny ) along with the 4th order SAT method and the simulation is
run until t̄end = 30 with a time step 	̄t = t̄end/Ny = 0.3h̄y . As these results show, after the
solution is properly resolved, i.e., h̄y = h̄x � 1 or several grid points per wavelength, the
expected rate of convergence is seen.

5.3 Energy Balance: Mechanical Energy Changes from Boundary Work and Frictional
Dissipation

Of great interest to seismologists is the energy balance in earthquakes. The elastic strain
energy liberated by fault slip and the accompanying relaxation of stresses in the medium is
partitioned between radiated energy carried by seismic waves propagating into the far-field
and energy dissipated during frictional sliding and by other inelastic processes within the
fault zone [10, 27]. The radiated energy can be calculated in models like these as the work
done on the material outside the domain by tractions on the exterior boundaries, provided
that the boundaries are sufficiently far removed from the source. The energy dissipated in the
fault zone is the work done on the fault. An appealing property of the SBP methods used in
this work is the existence of a rigorously defined energy balance for the discretized problem
that, as the mesh is refined, approaches the exact energy balance in the continuous problem.
In this section we test two things: (1) that the numerical energy balance in the method is
satisfied up to the accuracy of the scheme, and (2) that the terms in the numerical energy
balance (i.e., the change in mechanical energy of the elastic body, the energy dissipated on
the fault, and the work done on the body by tractions at the exterior boundaries) converge to
the corresponding terms in the continuous problem.

First, we define the change in the continuous and discrete mechanical energy from (23)
and (36) as

	E(t) =
∫ t

0

d

dt ′
‖q(·, t ′)‖2 dt ′ = ‖q(·, t)‖2 − ‖q(·,0)‖2, (83)

	Eh(t) =
∫ t

0

d

dt ′
‖q(t ′)‖2

h dt ′ = ‖q(t)‖2
h − ‖q(0)‖2

h. (84)

For the exact solution the change in mechanical energy is due to energy dissipation at the
fault and work done at the external boundaries, which follows from (25):

	E(t) =
∫ t

0
Ėb(t

′) dt ′ −
∫ t

0
Ėf (t ′) dt ′ = Eb(t) − Ef (t), (85)
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Ėb(t) =
∫

∂�

vzσizni ds, Ėf (t) =
∫ Lx

−Lx

V τ dx, (86)

where Ėb is the energy flux through the exterior boundaries into the model domain (such
that Eb is the total work done on the body) and Ef is the total energy dissipated along the
fault. For the numerical solution the change in mechanical energy is of the form (85) with
(86) replaced by

Ėhb(t) =
2∑

l=1

(
BT

(l)
W + BT

(l)
E

) + BT
(1)
N + BT

(2)
S , (87)

Ėhf (t) = −FT (1) − FT (2); (88)

see (51). The discrete terms Ėhb and Ėhf differ from the continuous terms Ėb and Ėf in that
there are grid dependent numerical dissipation terms (since we use the characteristic SAT
formulation for both the fault and exterior boundaries) that go to zero as the grid is refined.
Additionally, there are truncation errors associated with both the spatial discretization and
time integration errors due the Runge-Kutta method.

In Fig. 8(a) we plot the terms in the energy balance for the Ny = 3200 numerical solution;
energy is always flowing in through the exterior boundaries and being dissipated at the
fault. The difference between the energy flux across the exterior boundaries and the energy
dissipation rate at the fault causes the interior energy to oscillate.

The table in Fig. 8(b) shows the errors and estimated convergence rates (78) for the nondi-
mensionalized change in mechanical energy 	Ēh(t̄end) and the nondimensionalized energy

dissipation rate at the fault and exterior boundaries, ˙̄Ehb(t̄end) − ˙̄Ehf (t̄end), at time t̄end . Due
to the absence of a pointwise error estimate (for hyperbolic equations) we cannot theoreti-
cally state how fast these terms should approach the exact values, but computationally they
are seen to do so at slightly higher rates than the global accuracy of the scheme.

In the absence of time integration errors both sides of (85) would be equal, that is, the
change in the energy in the solution would only be due to energy flowing across the exterior
boundaries and being dissipated at the fault. The effect of the time integration errors can be
quantified by integrating Ėhb(t) − Ėhf throughout the simulation (using the same Runge-
Kutta method used for the interior solution) and calculating

	ĒRK = 	Ēh

(
t̄end

) − [
Ēhb

(
t̄end

) − Ēhf

(
t̄end

)] ; (89)

the calculated 	ĒRK contains time integration errors from integrating the discrete equations
(41) and from calculating Ēhb(t̄end) − Ēhf (t̄end). These errors and their estimated conver-
gence rates are given in Fig. 8(b). As can be seen the error is decreasing at a rate comparable
to the global estimated accuracy.

6 Conclusions

In this paper we have considered three ways of enforcing nonlinear boundary conditions in
elastodynamics problems discretized with SBP difference operators: the injection method
and two forms (non-characteristic and characteristic) of the SAT method. The injection
method, though conceptually straightforward, leads to a method with a minor time insta-
bility that causes error and energy growth for problems with long time integration. On the
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Fig. 8 (a) Comparison of the change in mechanical energy 	Ēh , the energy flux across the external bound-

aries ˙̄Ehb , and the rate of energy dissipation across the fault ˙̄Ehf versus time. (b) Error and estimated
convergence rate at time t̄end in the total mechanical energy 	Ēh(t̄end ), the total energy dissipation rate
˙̄Ehb(t̄end ) − ˙̄Ehf (t̄end ), and the estimated time integration error 	ĒRK

other hand, both SAT methods are strictly stable, leading to numerical methods that dissi-
pate energy at least as fast as the continuous problem (additional energy dissipation goes to
zero as the mesh is refined).

The characteristic SAT method uses the boundary conditions formulated in terms of the
characteristic variables in the penalty term, whereas the non-characteristic SAT method uses
the boundary conditions formulated in terms of the physical variables. Though the non-
characteristic method is slightly more straightforward to implement (no nonlinear solve is
necessary), it leads to an arbitrarily stiff semi-discretized system, whereas the characteristic
method does not. The nonlinear solve required for the characteristic method is of minimal
computational cost compared to the application of the difference methods in the interior,
and therefore the ability to use explicit time integration with time steps 	t ∼ h/cs greatly
outweighs this difficulty.

Three numerical tests confirm these theoretical results. The first two 1-D tests compared
the characteristic SAT method to the injection method. In the first test, involving short time
integration, both methods performed at their designed order of accuracy, with comparable
error levels and convergence rates. The second test, involving much longer integration times,
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revealed that the injection method is not strictly stable (evidenced by unphysical energy
growth), whereas the SAT method is strictly stable and dissipates energy at a slightly faster
rate than the continuous problem. Finally, the 2-D method was tested using the method of
manufactured solutions and it displayed the expected high-order convergence rate.

For the 2-D test we also demonstrated how the seismologically important energy bal-
ance terms could be computed using SBP operators. Although no theoretical estimates exist
about the expected rates at which these terms should converge for hyperbolic equations, it
was demonstrated for our test problem these terms converged at roughly the scheme’s global
order of accuracy. The rigorously defined energy balance of our method provides a unique
tool for investigating earthquake energetics. Seismologists routinely estimate both the over-
all change in strain energy and the radiated seismic energy. According to the energy balance
equation, the difference in these two quantities is the energy dissipated on the fault. The
numerical method we have developed can be used, together with seismic observations, to
place unique constraints on the frictional properties of faults and the efficiency with which
earthquakes convert strain energy into radiated energy.

In future work we will generalize the characteristic SAT method to full elastodynamics
(involving multidirectional deformation carried by a dilatational and two shear waves with
orthogonal polarizations) and faults that are governed by rate-and-state friction laws (as
opposed to purely velocity dependent friction laws). We will also consider coordinate trans-
forms which will enable the methods to be used for problems involving nonplanar faults,
free surface topography, and faults which branch at various angles.
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Appendix: Implementation and Interpretation with Diagonal H

In this appendix we briefly discuss the interpretation of the developed characteristic SAT
method, (41) and (50), when H is diagonal. The method at an individual grid node (ij) is

d(vz)ij

dt
= 1

ρ

Nx∑

k=0

(
H−1

x Qx

)
ik

(σxz)kj + 1

ρ

Ny∑

l=0

(
H−1

y Qy

)
j l

(σyz)il

− 1

2ρ

[
H−1

x

]
00

[(
w−

W

)
ij

− (
W−

W

)
ij

]
δi0

− 1

2ρ

[
H−1

x

]
NxNx

[(
w−

E

)
ij

− (
W−

E

)
ij

]
δiNx

− 1

2ρ

[
H−1

y

]
00

[(
w−

S

)
ij

− (
W−

S

)
ij

]
δj0

− 1

2ρ

[
H−1

y

]
NyNy

[(
w−

N

)
ij

− (
W−

N

)
ij

]
δjNy , (90)

where, for simplicity, we have dropped the notation (l) indicating side of fault, δkl is the
Kronecker delta, [A]kl denotes the kl element of the matrix A, and W− refers to the enforced
boundary condition, i.e., if ij is on the fault then W− = W −. The stresses are handled
similarly with cs/2 instead of 1/2ρ multiplying the penalty terms. In this form is it clear
that the penalty terms are nonzero only for grid nodes on the boundary.
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For each of the penalty terms in (90) we can add and subtract w+ to get, for instance on
the south edge,

1

2

(
w−

S − W−
S

) = 1

2

(
w−

S + w+
S − w+

S − W−
S

) = Z
(
vz − v̂S

z

)
, (91)

where v̂S
z ≡ (W−

S − w+
S )/2Z. With this procedure we can write (90) as

d(vz)ij

dt
= 1

ρ

Nx∑

k=0

(
H−1

x Qx

)
ik

(σxz)kj + 1

ρ

Ny∑

l=0

(
H−1

y Qy

)
j l

(σyz)il

− 1

TW

[
(vz)ij − (

v̂W
z

)
ij

]
δi0 − 1

TE

[
(vz)ij − (

v̂E
z

)
ij

]
δiNx

− 1

TS

[
(vz)ij − (

v̂S
z

)
ij

]
δj0 − 1

TN

[
(vz)ij − (

v̂N
z

)
ij

]
δjNy , (92)

where TS = [H y]00/cs and similarly for the other T values. In this form, the penalty terms
can be interpreted as inducing a relaxation of the grid value vz toward a target value v̂z over
the relaxation time T . Similar expressions hold for the stresses with the same relaxation
times:

d(σxz)ij

dt
= G

Nx∑

k=0

(
H−1

x Qx

)
ik

(σxz)kj

− 1

TW

[
(σxz)ij − (

σ̂ W
xz

)
ij

]
δi0 − 1

TE

[
(σxz)ij − (

σ̂ E
xz

)
ij

]
δiNx , (93)

d(σyz)ij

dt
= G

Ny∑

l=0

(
H−1

y Qy

)
j l

(σxz)il

− 1

TS

[(
σyz

)
ij

− (
σ̂ S

yz

)
ij

]
δj0 − 1

TN

[(
σyz

)
ij

− (
σ̂ N

yz

)
ij

]
δjNy . (94)

Note that the injection method (40) emerges in the limit of vanishing relaxation time. The
developed SAT method can thus be interpreted as choosing a proper relaxation time so that
the scheme is strictly stable.
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