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Oscillations of magma in volcanic conduits are thought to be the source of
certain seismic and infrasonic signals observed near active volcanoes. However,
the multiphase and stratified nature of magma within the conduit complicates the
calculation of resonant modes that is required to interpret observations. Here we
present a linearized mathematical framework to describe small-amplitude oscillations
and waves in a stably stratified column of two-phase magma (liquid melt and gas
bubbles) with a traction-free upper surface (a lava lake). We explore the role of
time-dependent mass exchange between the phases, depth-varying fluid properties
and gravity on the modes of oscillation of inviscid magma within an axisymmetric,
vertical conduit. Non-equilibrium phase exchange, which we refer to as bubble
growth and resorption (BGR), is parameterized by introduction of a kinetic time
scale quantifying mass exchange between the liquid and gas phases that evolves the
mixture towards a state of thermodynamic equilibrium. Using a provably stable finite
difference method, we solve the eigenvalue problem for the resonance frequencies,
decay rates, and spatial structure of the conduit eigenmodes. The numerical method
is then extended to time-domain simulations of waves excited by internal volumetric
sources in the conduit or forces applied to the surface of the lava lake. We connect
time-dependent wave propagation simulations to the modal analysis by identifying
the primary modes that are excited by representative excitation processes. Waves
propagating through bubbly magma are dispersive, and their behaviour is determined
by three dimensionless parameters. One quantifies the importance of buoyancy
and gravitational restoring forces relative to compressibility, the second quantifies
differences between fluid properties (e.g. mixture compressibility) under equilibrium
and non-equilibrium conditions, and the third compares the wave period to the BGR
time scale. Pronounced depth variations in background fluid properties, such as the
transition from liquid melt with dissolved volatiles at the high pressures at depth
to bubbly magma above the gas exsolution depth, segment the conduit into distinct
regions. The longest-period modes, which are expressed with the largest amplitudes
for typical excitation processes, are most sensitive to the length of the bubbly region
and properties of the bubbly magma within it. While the boundary condition at
the bottom of the conduit determines whether the fundamental mode is affected by
the total conduit length, modes localized above the exsolution depth are remarkably
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insensitive to the overall conduit length. Our analysis suggests that parameters
affecting eruption style, such as total volatile content and kinetic time scales of BGR,
along with excitation source characteristics, are imprinted on long-period seismic and
infrasonic signals at active volcanoes.

Key words: gas/liquid flows, geophysical and geological flows, magma and lava flow

1. Introduction
Volcanic eruptions are transient events, in which the expansion of gas bubbles helps

drive the ascent of magma through the crust and into the atmosphere. Associated
with this transport are strong spatial and temporal changes in the properties of
multiphase, multicomponent magma, which result in a variety of eruption styles and
unsteady eruptive behaviour (e.g. Gonnermann & Manga 2013). Magma transport is
generally hidden from direct observation, but signals associated with fluid motions are
commonly observed around active volcanoes in the form of seismicity and infrasound,
which record coupling of oscillating magma to surrounding elastic host rocks and to
the atmosphere. (e.g. Chouet 1996; Mcnutt & Nishimura 2008; Johnson & Ripepe
2011).

For example, the most recent phase of eruptive activity at Kilauea Volcano, Hawaii,
is characterized by intermittent degassing bursts through a vent in Halema’uma’u
crater (Wilson et al. 2008), which are accompanied by ∼30 s oscillations (termed
very long period or VLP oscillations) recorded on nearby broadband seismometers
(Chouet & Dawson 2013). Many degassing bursts are triggered by rockfalls (Carey
et al. 2012; Dawson & Chouet 2014; Eychenne et al. 2015), which impulsively
excite oscillations that ring down over several minutes. Similar VLP oscillations
observed at Mount Erebus, Antarctica, had periods ∼10–20 s and also lasted for a
few minutes (Aster et al. 2003). The Erebus oscillations are attributed to gas slugs
bursting through the surface of the lava lake; some VLP events at Kilauea might
also be caused by gas slugs (Orr et al. 2013; Dawson & Chouet 2014). Infrasonic
signals (low-frequency acoustic-gravity waves that propagate through the atmosphere)
are also associated with these events (Fee et al. 2010), providing complementary
constraints on processes in and around the vent (e.g. Johnson & Ripepe 2011; Fee &
Matoza 2013). Both of these volcanoes erupt low-viscosity magma and feature open
vents with ∼10-m radii in which reside active lava lakes.

Various explanations for harmonic oscillations observed at volcanic systems have
been proposed. These include excitation of resonant modes (eigenmodes) of the
magma within a chamber (Shima 1958), the conduit extending down from the vent,
or cracks (e.g. Aki, Fehler & Das 1977), and flow-driven instabilities of the coupled
fluid–solid system (e.g. Julian 1994; Balmforth, Craster & Rust 2005). It has been
shown that resonant modes of magma-filled conduits are sensitive to the conduit
geometry and state of flow (e.g. Chouet 1986; Chouet & Dawson 2013) and layered
structure (Garces 2000), bubble content, and bulk rheology of the fluid within (e.g.
Kieffer 1977; Kumagai & Chouet 2000; Kurzon et al. 2011). These are not generally
independent parameters, and may covary over the length of a volcanic conduit or in
time. However, most studies to date assume constant or slowly varying fluid properties
within the magma. As a result, significant work remains to understand the resonant
modes or eigenmodes of volcanic conduits that include variations of multiphase fluid
properties and conduit geometry with depth.
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We will show that background stratification and non-equilibrium bubble growth
and resorption (BGR) of primary volatile species are both heavily imprinted on the
eigenmodes of volcanic conduits and on the excitation of these modes by internal
volumetric sources and external forces. In § 2 we present a theoretical description
of unsteady flow in an axisymmetric column of inviscid magma that accounts for
depth variations in fluid properties and conduit width as well as non-equilibrium
BGR. We linearize the equations of motion, and examine wave solutions in the
context of a WKBJ approximation where background fluid properties can be assumed
constant over several wavelengths (§ 3). This analysis, while not generally applicable
to the longest-period eigenmodes of volcanic conduits, permits identification of key
dimensionless parameters that quantify processes beyond those governing linear
acoustic waves. We then develop a numerical method to solve the more general
linearized problem in which background fluid properties vary with depth and conduit
length is finite (§ 4). Finally, we connect our analysis of conduit eigenmodes to
time-dependent excitation by numerically solving the linearized governing equations,
exploring forces applied to the top of the conduit (e.g. rockfalls on the lava lake)
and internal volumetric sources such as sudden additions of magma or collapse
of gas slugs (§ 5). Results specific to each analysis type are presented in the
respective sections, rather than at the end, for clarity. Future theoretical directions
and applicability to volcanic seismicity and infrasound are summarized in § 6.

2. Governing equations
We consider one-dimensional, isothermal, axisymmetric and cross-sectionally

averaged equations for the flow of two-phase bubbly magma through a conduit
of cross-sectional area A, expressed in an Eulerian description (figure 1). Relative
motion between gas and liquid phases is neglected, with V being the common vertical
particle velocity of the gas and liquid phases. As discussed in § 2.4, this is likely a
poor approximation in the description of the background state of the magma column,
for the low-viscosity magmas of interest here, but is better justified for perturbations
about the background state. We introduce the mixture density ρ and mass fraction
of exsolved gas ng; thus, the mass of exsolved gas per unit volume of the mixture
is ngρ and the mass of liquid per unit volume of the mixture is (1 − ng)ρ. Mass
conservation for gas and liquid phases is then

∂

∂t
(ngρA)+ ∂

∂z
(ngρVA)= ρṁA, (2.1)

∂

∂t
[(1− ng)ρA] + ∂

∂z
[(1− ng)ρVA] =−ρṁA, (2.2)

respectively, where z is vertical distance (positive up), t is time, and ṁ is the rate
of mass conversion per unit total mass from the liquid phase to the gas phase (i.e.
exsolution). Variables are implicitly assumed to depend on z and t unless stated
otherwise. The conduit cross-sectional area is A = πr2 for conduit radius r. In this
study, we neglect time-dependent changes in A, as arise when deformable conduit
walls are subject to pressure changes during oscillations of the magma column.
That effect has been studied under steady-state conditions by Costa, Melnik &
Sparks (2007), for example. It can also be important for determining wave speeds in
fluid-filled conduits (Biot 1956; White 1983), though conduit wall deformation can
be neglected when the fluid bulk modulus is far less than the shear modulus of the
surrounding rock. That condition is certainly met in the upper portion of volcanic
conduits, where exsolved gas substantially reduces the magma bulk modulus.
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FIGURE 1. An axisymmetric volcanic conduit of cross-sectional area A(z) under the
influence of gravity g, filled with bubbly magma with pressure P(z, t), density ρ(z, t),
vertical velocity V(z, t), and gas mass fraction ng(z, t). Volatiles are completely dissolved
below the exsolution depth z= zexsolve. The magma column extends from z= 0 to z= L in
the background state. Magma oscillations move the upper surface to z= L+ h(t), but in
our linearized model boundary conditions are enforced on z= L.

Equations (2.1) and (2.2) may equivalently be written in terms of mixture density
and gas mass fraction:

∂(ρA)
∂t
+ ∂(ρVA)

∂z
= 0, (2.3)

Dng

Dt
= ṁ, (2.4)

where D/Dt = ∂/∂t + V∂/∂z is the material derivative. This form highlights
conservation of mass of the mixture and further clarifies the interpretation of ṁ
as the gas exsolution rate.

The momentum balance of the mixture is

ρ
DV
Dt
+ ∂P
∂z
+ ρg+ f = 0, (2.5)

where P is pressure, g is gravity, and f is the drag from shear stress on the conduit
walls. In this initial study we assume inviscid magma and set f = 0.



Oscillations in bubbly magma 435

With an eye towards future work, we remark that f = 8ηV/r2 for fully developed,
laminar Newtonian flow in a cylindrical conduit with radius r and viscosity η of the
bubbly fluid. Alternative drag laws exist for turbulent or fragmented magma flows (e.g.
Wilson & Head 1981), plug flows with friction (e.g. Melnik & Sparks 1999), or drag
laws that incorporate non-Newtonian effects (e.g. Caricchi et al. 2007).

However, for the range of wave periods and conduit radii studied in this work,
viscous effects are likely to be confined to boundary layers near the walls, and a
simple parameterization in terms of the velocity V at the current time is not possible.
Flows become fully developed over time scales exceeding the momentum diffusion
time across the conduit, ∼ρr2/η. For the systems of interest here, we estimate η ∼
10–1000 Pa s, ρ ∼ 1000 kg m−3, and r ∼ 10 m, leading to time scales of 102–105 s.
Thus, VLP oscillations with periods less than ∼100 s have viscous effects confined
to boundary layers.

We anticipate that calculations of wave speeds and eigenfrequencies from an
inviscid model will be quite close to those from the viscous model, in the boundary
layer limit (e.g. Lipovsky & Dunham 2015). In this limit, the drag f can be expressed
in terms of a time convolution over the history of cross-sectionally averaged velocity
V . An alternative solution method is to solve the local, rather than cross-sectionally
averaged, momentum balance in which V depends also on radial distance. Because
the main focus of the present work is on the effects on wave propagation of
non-equilibrium BGR, stratification, and buoyancy, we neglect the effects of viscosity
hereafter. However, a rigorous treatment of viscous dissipation in the context of this
work is a logical and important next step, and one that is likely necessary to properly
quantify the decay rates or quality factors of resonant modes.

We augment balance laws (2.1), (2.2) and (2.5) by an equation of state for mixture
density of the form

ρ = ρ(P, ng). (2.6)

This can be specifically stated in terms of the pressure-dependent densities of the gas
and liquid phases, ρg = ρg(P) and ρl = ρl(P), as (e.g. Wilson & Head 1981)

1
ρ
= ng

ρg
+ 1− ng

ρl
. (2.7)

Here the gas mass fraction ng is not directly linked to the current pressure P. But
over sufficiently long time scales, a mixture of liquid melt and volatiles reaches
a state in which ng reaches an equilibrium exsolved gas mass fraction, neq(P),
due to the pressure-dependent solubility of volatiles (mostly H2O and CO2) in the
melt. Equilibrium in this context is later referred to as thermodynamic equilibrium,
which we distinguish from mechanical equilibrium of a magma column initially in
a hydrostatic state (pressure gradient balancing weight). We will distinguish between
these two types of equilibrium when it is not otherwise obvious from the context.

For later use, we quantify the sensitivity of neq to P by defining

b=−dneq(P)/dP. (2.8)

As defined, b> 0 and might depend on P. In the equilibrium limit, the mixture density
is solely a function of pressure, and we define the equilibrium density as

ρeq(P)= ρ(P, neq(P)). (2.9)

In this work we consider waves and related oscillatory motions of magma in which
pressure varies cyclically over a range of time scales. Adjustment to equilibrium
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requires a finite time, and consequently may not be complete at short time scales.
This means we must consider ng as an additional field in the governing equations
and introduce another equation describing the gas exsolution process.

Upon differentiating (2.6) following a fluid parcel, we obtain

Dρ
Dt
= ρ

K
DP
Dt
− aρ

Dng

Dt
, (2.10)

where
K = ρ(∂ρ/∂P)−1 (2.11)

is the bulk modulus of the fluid for fixed gas mass fraction and

a=−ρ−1(∂ρ/∂ng) (2.12)

quantifies the decrease in density associated with an increase in gas mass fraction.
Both K and a are, in general, functions of P and ng, and we have defined the
dimensionless a such that a> 0. We can similarly define an equilibrium bulk modulus,
relevant for quantifying the pressure dependence of density under sufficiently slow
changes in pressure that ng = neq(P), as

Keq = ρeq(dρeq/dP)−1. (2.13)

Associated with K and Keq are the sound speeds

C=√K/ρ and Ceq =
√

Keq/ρeq, (2.14a,b)

for propagation of acoustic waves under conditions of constant ng and of thermo-
dynamic equilibrium, respectively.

Mass exchange between phases involves the dynamics of BGR. The effect of
bubbles on bulk fluid properties and wave propagation has a long history of study
generally (e.g. Silberman 1957; van Wijngaarden 1968; Commander & Prosperetti
1989) and in magmas specifically (e.g. Kieffer 1977; Proussevitch & Sahagian 1996;
Manga et al. 1998; Lensky, Navon & Lyakhovsky 2004; Kurzon et al. 2011). Bubble
growth in magma may be diffusively or viscously limited, depending on liquid phase
composition, ambient pressure and temperature conditions, and melt viscosity (e.g.
Proussevitch, Sahagian & Anderson 1993; Navon, Chekhmir & Lyakhovsky 1998;
Huber et al. 2014).

Although sophisticated models for the growth and dynamics of bubble populations
exist, we employ a simple, single-parameter evolution equation (Woods 1995) to
isolate the interaction between non-equilibrium BGR and other effects:

ṁ=−ng − neq(P)
τ

. (2.15)

Equation (2.15) states that ng evolves towards its equilibrium value neq(P) over the
characteristic time scale τ . Such non-equilibrium BGR behaviour is well established
in magmas (e.g. Gardner, Hilton & Carroll 1999), but τ is not well constrained
experimentally. For the low-viscosity magmas of interest here, BGR is diffusively
limited and the time scale τ measures the time for diffusive transport of volatiles
through the liquid melt immediately surrounding the bubbles. Thus, τ depends on
volatile diffusivity and also on bubble volume fraction (which sets whether spacing
between bubbles or bubble radius is the relevant concentration gradient length scale),
liquid composition (Yoshimura & Nakamura 2010), temperature, and volatile species
(Zhang et al. 2007). Given the lack of observational constraints, we assume constant
τ here to explore the basic phenomenology of non-equilibrium BGR on unsteady
magma motions.
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2.1. Linearized response of a fluid parcel
The response to small-amplitude perturbations about an equilibrium or steady-state
solution can be studied using linearized versions of the governing equations. We
thus write fluid variables velocity, pressure, density, and gas fraction as the sum of a
background value, denoted with a bar, and a perturbation:

[V, P, ρ, ng] = [v̄, p̄, ρ̄, n̄] + [v, p, ρ ′, n], (2.16)

and we linearize the governing equations around a background or base state. As
mentioned earlier, perturbations in conduit area A associated with elastic deformation
of the conduit walls by pressure changes are neglected in this study.

We begin by considering a fluid parcel initially at thermodynamic equilibrium at
pressure P = p̄, for which the initial gas mass fraction is n̄ = neq(p̄) and the initial
density is, from definition (2.9), ρ̄=ρeq(p̄). The more general problem of perturbations
about a non-equilibrium background state is left for future work.

Linearizing the equation of state (2.6) yields

ρ ′ = ∂ρ

∂P
(P− p̄)+ ∂ρ

∂ng
(ng − n̄)

= ρ̄(p/K − an), (2.17)

using the definitions of the bulk modulus K in (2.11) and a in (2.12). These and
all subsequent coefficients are understood to be evaluated in the base state. The
equilibrium gas mass fraction is similarly linearized,

neq(P) = n̄+ ∂n
∂P
(P− p̄)

= n̄− bp, (2.18)

using (2.8) to define b. In the context of this linearization, and assumption of
perturbations about a state of thermodynamic equilibrium, the evolution equation
(2.15) is

ṁ=−n+ bp
τ

. (2.19)

Similarly, the equilibrium density (2.9) is linearized:

ρeq(P) = ρ̄ + dρeq

dP
(P− p̄)

= ρ̄ + ρ̄
K
(1+ abK)p= ρ̄

(
1+ p

Keq

)
, (2.20)

using (2.13) and the identity
1

Keq
= 1

K
+ ab. (2.21)

Taking the total time derivative of (2.17), and making use of the equilibrium
variables and the linearized evolution equation in (2.18)–(2.21), we eliminate n and
obtain a single equation describing the evolution of density under conditions of
changing pressure:

Dρ
Dt
= ρ̄

K
DP
Dt
− ρ − ρeq(P)

τ
, (2.22)
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FIGURE 2. Response of gas mass fraction n and density ρ to a step increase in pressure
from (2.4) and (2.22). Gas fraction relaxes to a new equilibrium value over time scale τ ,
while density changes include both the instantaneous response due to fluid compression
and slower relaxation response from mass exchange between phases.

or in terms of density and pressure perturbations,

Dρ ′

Dt
= ρ̄

K
Dp
Dt
− ρ

′ − ρ̄p/Keq

τ
. (2.23)

The significance of the two terms on the right-hand side of (2.22) or (2.23) can
be understood by considering the response of the fluid parcel to a step increase in
pressure (figure 2). That increase in pressure compresses both the gas and liquid
phases, leading to an instantaneous increase in density described by the first term
and quantified via the bulk modulus K. Mass exchange between the phases is
negligible during this initial compression. However, the increase in pressure alters the
equilibrium solubility and drives volatiles back into the melt over the time scale τ .
The second term captures this mass transfer and the associated reduction in mixture
density towards the new, larger, equilibrium density.
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2.2. Energetics of a fluid parcel
Introduction of a finite adjustment time τ necessarily implies energy dissipation. To
illustrate this, and to prepare ourselves for later discussion of the energy balance for
waves in magmatic conduits, we first consider the energetics of a fluid parcel. In the
context of our linearized model, the rate of work per unit reference volume of fluid
done by the pressure change p is

− p
1/ρ̄

D(1/ρ)
Dt

= p
ρ̄

Dρ ′

Dt
, (2.24)

where 1/ρ is the specific volume. With no addition of heat, the first law of
thermodynamics states that the work done on the fluid parcel is equal to the
change in internal energy. Here we show that the internal energy change consists
of a recoverable part, the free energy associated with compression of the fluid,
and dissipation from non-equilibrium BGR. We anticipate that the free energy per
unit reference volume will be p2/2K under non-equilibrium conditions (when mass
exchange is negligible) and p2/2Keq under equilibrium conditions.

Substituting the linearized evolution equation (2.23) into (2.24) and using the
identity (2.21), we obtain

p
ρ̄

Dρ ′

Dt
= D

Dt

[
p2

2K
+ (ρ

′ − ρ̄p/K)2

2abρ̄2

]
+ (ρ

′ − ρ̄p/Keq)
2

abρ̄2τ
. (2.25)

The quantity in brackets is the total free energy density associated with compression
of the fluid. The first part, p2/2K, is the non-equilibrium free energy density, which
is the only contribution in the absence of mass exchange (in which case ρ ′ = ρ̄p/K).
The second part thus corresponds to an additional contribution to the free energy
that arises as mass transfer lowers the fluid bulk modulus from K towards Keq and
additional work is done by pressure acting on the fluid parcel. The last term on the
right-hand side of (2.25) is the rate of energy dissipation per unit reference volume.
It is evident that dissipation occurs only when conditions depart from equilibrium.
During equilibrium, ρ ′= ρ̄p/Keq and dissipation vanishes. When BGR is limited by the
ability of bubbles to expand or contract in a viscous melt, this energy loss is the usual
viscous dissipation. Dissipation can also arise from diffusive processes (e.g. Landau &
Lifshitz 1959, Ch. VI), such as when unequal chemical potentials drive transport of
volatiles through the melt towards or away from the bubble walls.

We can also rewrite (2.25) by eliminating the density perturbation ρ ′ in favour of
the gas mass fraction perturbation n using (2.17):

p
ρ̄

Dρ ′

Dt
= D

Dt

(
p2

2K
+ an2

2b

)
+ a(n+ bp)2

bτ
. (2.26)

The terms have the same interpretation, as n = 0 in the absence of mass exchange
and n=−bp under equilibrium conditions. Furthermore, it is straightforward to verify
that under equilibrium conditions the two free energy terms combine to p2/2Keq, the
equilibrium free energy density, as anticipated.

2.3. Perturbations about magmastatic base state
Having examined the response of an isolated fluid parcel, we now turn our
attention to the response of the magma column. For all subsequent analysis we
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consider perturbations around a specific base state in which the magma is in both
thermodynamic and mechanical equilibrium in the presence of a gravitational field.
We refer to this as the magmastatic base state, for which

v̄ = 0, (2.27)
dp̄
dz
=−ρ̄g, (2.28)

n̄= neq(p̄), (2.29)

and hence from (2.29), with the definition (2.9),

ρ̄ = ρeq(p̄). (2.30)

The magmastatic state implies a vertical density stratification that can be obtained by
differentiating (2.30) with respect to z and using (2.13), (2.14) and (2.28):

dρ̄
dz
=− ρ̄g

C2
eq

. (2.31)

Similarly, differentiating (2.29) with respect to z and using (2.8) and (2.28) yields

dn̄
dz
= ρ̄gb. (2.32)

Stratified fluids exhibit oscillations for which the restoring force is gravity,
especially at length scales exceeding the scale height for stratification, C2

eq/g (Lighthill
1978). To quantify these oscillations, we define the buoyancy or Brunt–Väisälä
frequency

Nb =
√
− g
ρ̄

dρ̄
dz
= g

Ceq
. (2.33)

This definition of the buoyancy frequency is valid when fluid compressibility is
negligible. As we later show, this is an appropriate approximation in our problem at
wavelengths that are much greater than the scale height.

Introducing the magmastatic base state into the linearized governing equations
reveals that there are only three linearly independent variables. This can be seen by
taking the linearized material derivative of (2.17):

1
ρ̄

(
∂ρ ′

∂t
+ v dρ̄

dz

)
= 1

K

(
∂p
∂t
+ v dp̄

dz

)
− a

(
∂n
∂t
+ v dn̄

dz

)
. (2.34)

From (2.28), (2.31) and (2.32), and the identity (2.21),

1
ρ̄

dρ̄
dz
= 1

K
dp̄
dz
− a

dn̄
dz
, (2.35)

so all the advection terms (those involving v) in (2.34) cancel. We can then integrate
(2.34) in time at fixed z to find

ρ ′ = ρ̄(p/K − an). (2.36)

This identity does not hold for more general base states in which a background flow
is present.
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Linearizing the momentum balance equation (2.5), mass balance equation (2.3), and
BGR equation (2.4) yields

ρ̄
∂v

∂t
+ ∂p
∂z
+ ρ ′g= 0, (2.37)

1
ρ̄

(
∂ρ ′

∂t
+ v dρ̄

dz

)
+ 1

A
∂(Av)
∂z
= 0, (2.38)

∂n
∂t
+ v dn̄

dz
+ n+ bp

τ
= 0, (2.39)

respectively. The following steps then simplify the governing equations: use (2.36) to
eliminate ρ ′ in (2.37). Use (2.34) to replace the material derivative of ρ ′ in (2.38) with
material derivatives of p and n; then use (2.28) to eliminate dp̄/dz, and use (2.39) to
eliminate the material derivative of n. Finally use (2.32) to eliminate dn̄/dz in (2.39).
What remains are three governing equations for v, p, and n:

ρ̄
∂v

∂t
+ ∂p
∂z
+ ρ̄g

K
p− ρ̄gan= 0, (2.40)

1
K
∂p
∂t
+ 1

A
∂(Av)
∂z
− ρ̄g

K
v + a

τ
(n+ bp)= 0, (2.41)

∂n
∂t
+ ρ̄gbv + n+ bp

τ
= 0. (2.42)

In the limit of thermodynamic equilibrium (τ → 0), often taken in quasi-steady
volcanic conduit flow studies (e.g. Wilson & Head 1981; Melnik & Sparks 1999;
Mastin 2002; Koyaguchi 2005; Gonnermann & Manga 2006), these equations may be
simplified (by utilizing the identities n=−bp and (2.21)) to

ρ̄
∂v

∂t
+ ∂p
∂z
+ ρ̄g

Keq
p= 0, (2.43)

1
Keq

∂p
∂t
+ 1

A
∂(Av)
∂z
− ρ̄g

Keq
v = 0. (2.44)

2.4. Relative motion between gas and liquid
Having derived the linearized equations governing perturbations about the magmastatic
state, we now discuss a basic assumption of this model, that of negligible relative
motion between the gas and liquid phases. A full discussion and justification of this
assumption is beyond the scope of this paper, but here we point out a few relevant
issues. Relative motion is likely most important for the background state. Buoyancy
drives upward motion of gas bubbles through the liquid melt, and out through the
open vent and permeable conduit walls. Bubble dynamics plays a primary role in
bulk magma motion, and may govern eruption style in low-viscosity settings such
as we are studying (Houghton & Gonnermann 2008). Gas loss will increase density,
bulk modulus, and sound speed relative to the magmastatic state used in this study,
especially in the shallow part of the conduit. Rise of gas bubbles will also cause
departures from the hydrostatic balance condition (2.28). Furthermore, in some cases
the gas volume fraction might increase to the point where interconnected pathways
between bubbles develop to form a permeable bubble network (Kozono & Koyaguchi
2009), even in low-viscosity magmas (Rust & Cashman 2011).
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Relative motion might also be important when considering perturbations about a
base state. When that base state features upward gas flow, there will be advection
terms in the governing equations. We suspect these terms will be negligible, given that
the rise distance of even large bubbles or Darcian gas flow in a permeable network
over VLP periods is small compared to vertical wavelengths of interest. Additionally,
we can estimate the time scale over which perturbations in gas and liquid velocities
equilibrate in response to interaction forces in the momentum balance equations.
Assuming Stokes drag for the bubbles (providing an interaction force proportional
to the difference in gas and liquid velocities), that adjustment time scale is of the
order of r2

Bρl/ηl, where rB is the bubble radius, ρl is liquid density, and ηl is liquid
viscosity (e.g. Landau & Lifshitz 1959). Even for large bubbles (rB∼ 10−2 m) in very
low viscosity melt (ηl/ρl ∼ 10−2 m2 s−1), the adjustment time scale is only ∼1 s,
still less than the ∼30 s periods of the VLP events of interest. For more typical
parameters, the adjustment time scale is many orders of magnitude smaller than
periods of interest.

In any case, a rigorous examination of the role of relative motion, particularly in
the base state, is warranted.

2.5. Boundary conditions
We now consider a conduit of length L, extending between z = 0 at depth to z =
L (prior to perturbations) at the surface. One boundary condition is required at each
end of the conduit. Motivated by our interest in open-vent systems with lava lakes
(such as Kilauea and Erebus), the top surface is assumed to be at constant atmospheric
pressure:

P(L+ h(t), t)= Pa. (2.45)

While the surface position varies in time, the amplitude of its motions, h(t), is small
compared to the height of the column L. Thus, we expand the pressure at the surface
in a Taylor series to first order:

P(L+ h(t), t)≈ P(L, t)+ h(t)
∂P
∂z

∣∣∣∣
z=L

. (2.46)

It suffices to evaluate the pressure gradient in the magmastatic state using (2.28),
yielding the linearized boundary condition

P(L, t)− ρ̄(L)gh(t)= Pa. (2.47)

The evolution of the surface position h(t) follows from the kinematic condition

dh/dt= v(L+ h(t), t), (2.48)

which is similarly linearized to

dh/dt= v(L, t). (2.49)

The base of the conduit is connected to a magma reservoir. In this initial study we
idealize such connection in terms of either constant-pressure or zero-velocity (no-flow)
boundary conditions at the bottom of the conduit: p(0, t)=0 or v(0, t)=0, respectively.
In § 5.4 we introduce a simple model for the magma reservoir, and establish conditions
under which the coupled model reduces to one of the simpler boundary conditions
used in this work. We discuss possible more sophisticated models of the coupled
system in § 6. In the examples that follow, except when stated otherwise, we use the
constant-pressure condition.
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To summarize, the linearized boundary conditions are

p(0, t)= 0, (2.50)
p(L, t)− ρ̄(L)gh(t)= 0, (2.51)

and we must add (2.49) to governing equations (2.40)–(2.42).

2.6. Energy balance
In this section, we derive the balance of mechanical energy E for a finite length
column of fluid, in anticipation of the application to magmatic conduits. The
energy balance is obtained by multiplying the momentum balance (2.40) by Av and
integrating over the conduit. After utilizing the other governing equations, properties
of the base state, and boundary conditions, we obtain

E=
∫ L

0

(
ρ̄v2

2
+ p2

2K
+ an2

2b

)
A dz+ A(L)ρ̄(L)gh2

2
, (2.52)

which evolves in time according to

dE
dt
=−

∫ L

0

a(n+ bp)2

bτ
A dz. (2.53)

The total energy is the sum of kinetic energy and several potential energy terms that
appeared in our discussion of the energetics of a fluid parcel (2.25) and (2.26). The
last term in (2.52) is the gravitational potential energy associated with motions of the
free surface. As before, we refer to p2/2K as the non-equilibrium free energy density
and p2/2K + an2/2b as the total free energy density. The latter is always less than or
equal to the equilibrium free energy density p2/2Keq. The right-hand side of (2.53) is
the energy dissipation rate from non-equilibrium BGR.

In the case of equilibrium BGR, the energy simplifies to

E=
∫ L

0

(
ρ̄v2

2
+ p2

2Keq

)
A dz+ A(L)ρ̄(L)gh2

2
, (2.54)

and is conserved, dE/dt= 0.
Equation (2.53) establishes that perturbations to the magmastatic base state

uniformly decay in time. Energy loss is due to non-equilibrium effects (the last
term on the right-hand side of (2.53)). Although we assume inviscid flow here, had
we included viscous effects and wall drag there would be an additional dissipation
term appearing in the energy balance.

2.7. Magmatic application
We must specify an appropriate mixture equation of state and a gas solubility law to
close our problem. For the magmatic systems of interest, the gas phase will follow
an ideal gas law to a good approximation, and a linearized model for a compressible
liquid is appropriate. Density is given by the mixture equation (2.7), with

ρg(P)= P
RT

and ρl(P)= ρliq

(
1+ P− P0

Kliq

)
, (2.55a,b)
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with R = 462 J kg−1 K the ideal gas constant and T = 1273 K a temperature
representative of basaltic magma, ρliq = 3000 kg m−3 a reference magma liquid
density, Kliq = 10 GPa the liquid bulk modulus, and P0 is a reference pressure about
which the liquid density is linearized. In what follows we deal with a linearized form
of this equation of state as in (2.17).

We assume at first that water is the only volatile species present, in which case
equilibrium solubility neq(P) approximately follows from Henry’s law,

neq(P)= nt − Sw

√
P, (2.56)

with nt the total water mass fraction. Equation (2.56) can be modified to include
nucleation and supersaturation effects (Woods 1995). Sw ≈ 4 × 10−6 Pa−1/2 is an
empirical constant, which is an approximation to the equilibrium solubility of
water in silicate melts. In general there are multiple volatile species present in
magma, but water is nearly always the dominant volatile by at least an order of
magnitude (Wallace 2005). Volatile exsolution is dominantly pressure-dependent, with
single-phase fluid (no gas bubbles) above a critical pressure Pexsolve. For Henry’s law
and water the only volatile species, Pexsolve = (nt/Sw)

2.
Figure 3 illustrates the variation of background variables with depth for the case

of total water content nt = 0.01. Spatial gradients in gas content, and therefore
density and pressure, are most pronounced just above the depth of exsolution, defined
as the value of z for which p̄(z) = Pexsolve. Differences between equilibrium and
non-equilibrium sound speeds are also largest at this transition. The scale height for
background stratification (the length scale at and above which effects of gravity are
non-negligible) is C2

eq/g ∼ 25–500 m between the depth of gas exsolution and the
surface.

3. Eigenmodes: frozen coefficient analysis
Our next objective is to study the nature of waves and eigenmodes of vibration

for perturbations about the magmastatic base state. The full problem, which involves
substantial depth variations in properties, prohibits analytic analysis. We therefore first
examine a simpler system by utilizing a short-wavelength, WKBJ-type approximation
in which background fluid properties (the coefficients in the linearized governing
equations) are frozen by evaluation at a reference pressure p̄. This is valid for
perturbation wavelengths that are much shorter than the scale height characterizing
variations in background coefficients, such as ρ̄/|dρ̄/dz|. While it is unlikely that this
approximation will be of much utility in describing actual wave motions at the long
periods of interest, this analysis provides substantial insight into the physics of waves
in this system.

The governing equations (2.40)–(2.42) are non-dimensionalized using a wavenumber
k to provide the characteristic length scale and scalings appropriate for sound waves in
the absence of gravity and mass exchange between the phases. The non-dimensional
variables, denoted with an asterisk, are related to the dimensional variables via

Uv∗ = v, ρ̄CUp∗ = p,
U
Ca

n∗ = n, z∗ = kz, t∗ =Ckt, (3.1a−e)

with U being a characteristic particle velocity. Note that U simply sets the overall
amplitude in this linearized problem, and consequently will not appear in any
dimensionless parameter groups.
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FIGURE 3. Depth dependence of background fluid properties in the magmastatic state,
assuming total gas mass fraction nt = 0.01. (a) Pressure P, (b) density ρ and gas mass
fraction ng, (c) equilibrium and non-equilibrium sound speeds Ceq and C, and (d) depth
distribution of the dimensionless parameters γ , α, and σ (3.5)–(3.7) for two representative
wavenumbers and τ = 1 s. While σ and α are not defined below the exsolution depth (at
≈1420 m),γ takes a small but finite value below exsolution (γ = 3× 10−5, 3× 10−4 for
k= 0.1, 0.01 m−1, respectively).

The dimensionless governing equations are

∂v∗

∂t∗
+ ∂p∗

∂z∗
+ γ (p∗ − n∗)= 0, (3.2)

∂p∗

∂t∗
+ ∂v

∗

∂z∗
− γ v∗ + n∗ + αp∗

σ
= 0, (3.3)

∂n∗

∂t∗
+ γαv∗ + n∗ + αp∗

σ
= 0. (3.4)

The three dimensionless groups are

γ = g
C2k

, (3.5)

α = abK = K
Keq
− 1= N2

b C2

g2
− 1, (3.6)

σ =Ckτ . (3.7)
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They have the following interpretation. The first, γ , compares gravity and compressi-
bility and appears in similar problems involving wave propagation in a compressible
fluid in a gravitational field (e.g. Sells 1965; Gill 1982). When γ � 1, gravity
is negligible. The second, α, quantifies the difference between (thermodynamic)
non-equilibrium and equilibrium fluid properties, with larger values of α signifying
more substantial differences. The third, σ , is the product of the angular frequency of a
sound wave, Ck, and the time scale τ governing bubble growth and resorption. When
σ � 1, bubble growth and resorption occur much faster than the cyclic changes in
pressure and the gas and liquid phases are effectively in thermodynamic equilibrium.
In the opposite, σ � 1 limit, there is negligible mass transfer between the phases.

The ranges of these dimensionless groups for a gas-poor magma are shown in
figure 3(d) for several wavenumbers. It might be important to consider a larger range
in σ than plotted in figure 3, given the currently poor constraints on τ . Further
discussion of τ appears in § 6.

We note here that the linear operator in this problem is non-normal except in special
limits. This means that eigenmodes are not necessarily orthogonal, and raises the
possibility of transient growth and other effects associated with non-normal operators
(Trefethen et al. 1993; Trefethen & Embree 2005). However, later calculations
show that the longest-period eigenmodes are very close to orthogonal, and our
limited set of time-domain simulations for representative excitation processes has not
revealed transient growth effects. Therefore, we defer a comprehensive investigation
of non-normality to future work.

The homogeneous, constant-coefficient governing equations can now be reduced to
a set of algebraic equations by seeking modal solutions with eikz+st dependence, or in
dimensionless form

[v∗, p∗, n∗] = [V ,P,N ] exp (iz∗ + s∗t∗), (3.8)

where s∗= s/Ck. The imaginary part of s∗ is the phase velocity normalized by C; the
real part of s∗, which is non-positive, is the decay rate normalized by Ck, the angular
frequency of a sound wave propagating at speed C.

Taking the determinant of the coefficient matrix of this system yields a characteristic
equation for eigenvalues s∗:

1+ γ 2(1+ α)2 + σ [γ 2(1+ α)+ 1]s∗ + (1+ α)s∗2 + σ s∗3 = 0. (3.9)

We explore the solutions to this characteristic equation for the parameter space defined
by γ , α, and σ by first focusing on three important limits. Wave propagation in the
absence of gravity, stratification, and non-equilibrium BGR occurs at speed C, or
equivalently s∗ = ∓i (with the ∓ referring to wave propagation in the ±z direction
for positive k). Similarly, wave propagation in the absence of gravity and stratification,
but under equilibrium conditions occurs at speed Ceq, or s∗ =∓i/

√
1+ α. In both of

these limits, propagation is non-dispersive. Finally, oscillations at the Brunt–Väisälä
frequency Nb defined in (2.33) correspond to s∗=∓iγ

√
1+ α. Note that the oscillation

frequency is independent of the wavenumber k in this case, so that while it is possible
to define a phase velocity (which diverges as k→ 0), the group velocity is zero.

The cubic characteristic equation (3.9) has three solutions. The energy analysis in
§ 2.6 guarantees stability; that is, Re[s∗]6 0. One solution is always purely real and
less than or equal to zero. This solution is consequently non-oscillatory (i.e. non-
propagating) and is associated with the adjustment of the system towards equilibrium
through BGR. The other two solutions generally take the form of propagating waves
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with Im[s∗] 6= 0, though, as we later show, energy dissipation from non-equilibrium
effects can cause these waves to become overdamped and non-propagating. We begin
our study of the effects of gravity and non-equilibrium BGR by taking two limits,
before turning to the full problem.

3.1. Zero-gravity limit
If γ = 0, gravitational restoring force in the momentum balance (3.2) is eliminated, as
is stratification in the magmastatic state. Stratification enters through advection terms
in (3.3) and (3.4). This limit is obtained by taking g→ 0 for finite wavenumber k (for
example by considering a horizontal instead of vertical conduit) such that σ remains
finite. Non-equilibrium BGR provides the only deviation from standard acoustics,
where the solutions are well known (undamped waves propagating up and down the
conduit at speed C, equipartition between kinetic and non-equilibrium free energy,
Lighthill 1978). The characteristic equation reduces to

1+ σ s∗ + (1+ α)s∗2 + σ s∗3 = 0. (3.10)

This cubic equation has three roots, one of which is always real and non-positive. This
root quantifies the rate of mass exchange between the phases. The other two solutions
correspond to waves, and there are two limits of interest. In the high-frequency limit
there is not time for mass exchange over a wave period, so σ →∞, (3.10) reduces
to s∗(1 + s∗2) = 0 and the wave modes are s∗ = ∓i. These waves are undamped
and propagate at the non-equilibrium sound speed C without dispersion. In the low-
frequency limit, σ → 0 and thermodynamic equilibrium is maintained over a wave
period. Equation (3.10) reduces to 1 + (1 + α)s∗2 = 0 and propagation occurs at the
equilibrium sound speed Ceq with s∗ =∓i/

√
1+ α.

The differences between equilibrium and non-equilibrium fluid properties, as
measured by α, become most significant as the gas exsolution pressure is approached
(figure 3). Although wavelike solutions for most of the parameter space come in
complex conjugate pairs, there are parameters for which all roots of (3.10) are
purely real and negative. This overdamped regime of perturbations coincides with
the transition between equilibrium and non-equilibrium wave propagation, and occurs
where the discriminant of (3.10) is positive, or where

−4σ 4 + σ 2(α(20+ α)− 8)− 4(1+ α)3 > 0. (3.11)

The quadratic equation in σ 2 may only be satisfied for α > 8, which for realistic
parameters is generally restricted to a narrow region above the exsolution depth. We
note that similar overdamped behaviour is found in other two-phase models that
consider relative motion between phases (e.g. Bercovici & Michaut 2010).

3.2. Long-wavelength limit
We now take γ → ∞ (by taking k → 0 with finite g), which corresponds to a
long-wavelength limit in which the effects of gravity and stratification dominate.
The pressure gradient term is negligible in the momentum balance and the velocity
divergence term is negligible in the mass balance equation. Instead, terms involving
g become important. These describe the gravitational restoring force associated with
density perturbation in the momentum balance, and the change in density arising
from advection through a stratified background state. Compressibility is negligible.
The purely real root approaches s∗=−(1+α)/σ , which moves off towards −∞ in the
σ → 0 thermodynamic equilibrium limit (corresponding to instantaneous adjustment
to equilibrium).
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FIGURE 4. (Colour online) (a) Dimensionless phase velocity Im[s∗] in the zero-gravity
limit (γ = 0) described by (3.10), as a function of α and σ . Within the dashed white
contour, solutions are overdamped and non-propagating. The contour is defined by (3.11).
The phase velocity is determined primarily by α, which quantifies differences between
the equilibrium and non-equilibrium sound speeds Ceq and C. (b) Regime diagram for
fixed α = 10 as a function of γ and σ , showing the parameter dependence of the
three propagation regimes. The red curve is the trajectory through parameter space as
wavenumber in decreased with all other properties fixed; solutions along this curve are
plotted in figure 5.

For the two wavelike solutions, we anticipate (and can verify a posteriori) that s∗
is O(γ ). Removing the purely real root and dropping all but the highest-order terms
in γ , the dispersion relation reduces to

γ 2(1+ α)+ s∗2 = 0, (3.12)

irrespective of the value of σ . The solutions, s∗ = ∓iγ
√

1+ α, describe undamped
oscillations at the Brunt–Väisälä frequency Nb defined in (2.33).

3.3. General case
We now return to the general case. Figure 4 presents the wavelike solutions to the
dispersion relation (3.9). In the γ = 0 limit, σ� 1 is the non-equilibrium BGR regime,
while σ � 1 is the equilibrium BGR regime (figure 4a). The value α determines
the extent to which equilibrium and non-equilibrium regimes are distinct, and as well
whether there is an overdamped regime (dashed white contour). Figure 4(b) examines
another slice through this parameter space, at α= 10 for non-zero γ , and we see that
for large γ , phase velocity follows the gravity wave limit, independent of σ .

In figure 5 we explore these three propagation regimes as wavenumber is varied.
Changing k alters both σ and γ , while leaving α and σ/γ fixed. These three
regimes are plotted explicitly for several choices of α in figure 5(a), with thin lines
corresponding to the phase velocity limits discussed above.

Even when there are no overdamped modes, the transitional regime around
σ/(2π) ∼ 1, where the wave period is similar to τ , represents the most damped
part of parameter space. As figure 5(a,b) shows with a family of curves, if we define
a quality factor (damping over one oscillation cycle) for propagating modes as

Q= Im(s)
2Re(s)

, (3.13)
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FIGURE 5. Effect of varying wavenumber while holding all other properties fixed. This
changes both σ and γ with their ratio held fixed, as shown in figure 4 (and see text).
(a) Phase velocity s∗ of eigenmodes as a function of σ/(2π), for several choices of α.
Thin lines outline the three wave propagation regimes: non-equilibrium BGR, equilibrium
BGR, and gravity wave limits. For α = 100 we see a region of overdamped waves
(zero phase velocity). For all others there is a symmetric conjugate wave (not plotted).
(b) Quality factor Q (3.13) for the cases in (a). (c–e) Non-equilibrium (dashed) and
total (solid) free energy density, relative to equilibrium free energy (§ 2.2) for the modes
in (a). Ratio of non-equilibrium to equilibrium free energy density equals Keq/K =
(1+ α)−1. Differences between total and equilibrium free energy indicate departure from
thermodynamic equilibrium.

the least damped (highest Q) modes correspond to the short- and long-wavelength
limits. The region around σ/(2π) ∼ 1 is the most highly damped, optimizing the
dissipation from non-equilibrium phase exchange (2.53). Figure 5(a) plots only one
of the complex conjugate roots, except for the region of overdamped propagation for
large α (in which there are not conjugate roots). Curves in figure 5(a,b) can also be
interpreted as the dispersion relation for coefficients frozen at increasing depths in the
conduit (pressures) as α increases (figure 3d). γ increases by a factor of ∼50 from
α = 0.1 to α = 100 at fixed wavenumber.

3.4. Energetics
For each of the solutions of the characteristic equation (3.9) at a given wavelength,
we can evaluate the partition of total energy into kinetic and potential energy. The
gravitational energy term does not appear, as the domain is periodic. Figure 5(c–e)
plots contributions to the potential energy of the propagating modes from panel (a)
(α = 0.1, 1, 10) according to the partitioning defined by (2.52).

For wave periods much smaller than τ (σ � 1), there is negligible BGR over a
wave period and energy is equally partitioned between kinetic and non-equilibrium
free energy, as is the case for simple acoustics. For σ � 1, BGR keeps the
system in thermodynamic equilibrium and the mixture is more compressible than
in the non-equilibrium case; total energy is equally partitioned between kinetic
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and equilibrium free energy (2.54). Figure 5(c–e) illustrates this transition in fluid
compressibility, and hence free energy, and highlights its dependence on the time
scale of the wave motion relative to τ as quantified through σ . It is also clear that
α quantifies the difference in fluid compressibility; as α→ 0, the difference between
non-equilibrium and equilibrium free energy becomes negligible.

4. Eigenmodes: depth-dependent properties
One of the defining aspects of even the simplest volcanic conduit systems is the

strong variation of fluid properties with depth. Below the depth of gas exsolution, the
fluid is single phase, with properties such as density and compressibility given by pure
liquid values. Above exsolution, gas mass fraction increases nonlinearly as the surface
is approached. In this region we expect the volume distribution of gas bubbles to vary
in space along with the degree of non-equilibrium BGR. Additionally, conduit radius
may not be constant with depth. These features imply spatially varying coefficients
in our governing equations, so the eigenmodes are no longer Fourier modes, and the
eigenvalue problem must be solved numerically.

4.1. Numerical method
We therefore develop a numerical method that can be used to both solve the
eigenvalue problem and study excitation of these eigenmodes in the time domain.
We return to dimensional governing equations, but now discretize in space using
finite differences. Specifically, a field such as v(z, t) is discretized on a finite domain
0 6 z 6 L at a set of M + 2 possibly non-uniformly spaced grid points zi. The
discontinuity in properties at the gas exsolution depth is handled using split nodes,
that is, a pair of collocated points, one on either side of the material interface, with
appropriate conditions enforcing mass and momentum balance across the interface. A
field such as v(z, t) is approximated at the grid points, with the grid values stored in
a vector v(t) having components vi(t)≈ v(zi, t).

We use summation-by-parts (SBP) finite differences (Kreiss & Scherer 1974, 1977;
Strand 1994; Gustafsson, Kreiss & Oliger 1995). Boundary conditions (and interface
conditions across the material interface at the exsolution depth) are enforced weakly
with the simultaneous approximation term (SAT) method (Carpenter, Gottlieb &
Abarbanel 1994). With the SBP–SAT framework (e.g. Svard & Nordstrom 2014) we
can construct a discrete energy balance that closely mimics the continuous energy
balance (2.53) and prove that numerical solutions are both stable and high-order
accurate. The examples shown below use a globally fifth-order-accurate difference
operator. Derivation of the discrete version of governing equations (2.40)–(2.42) and
(2.49), boundary and interface conditions, and the energy balance (2.53) are presented
in appendix A.

This method is first used to solve the eigenproblem that arises after Laplace
transforming, with Laplace parameter s, the semi-discrete governing equations:

sũ= Bũ, (4.1)

where u(t) = [v0(t), . . . , vM+2(t), p0(t), . . . , pM+2(t), n0(t), . . . , nM+2(t), h(t)]T is a
column vector of velocity, pressure perturbation, and gas fraction perturbation at the
grid points along with the free surface displacement h, and

ũ(s)=
∫ ∞

0
u(t)e−st dt (4.2)

defines the Laplace transform. B is a 3(M+ 2)+ 1× 3(M+ 2)+ 1 matrix containing
spatially variable fluid properties evaluated at the grid points, the finite difference
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operator, and penalty terms that enforce interface and boundary conditions (see
appendix A for details). There are 3(M+ 2)+ 1 eigenvalues, which we store for later
use in the diagonal matrix Λ.

Diagonalization of B defines the eigenmodes of the system, with the corresponding
eigenvalues characterizing the oscillation frequencies and decay rates of modes. In
contrast to the frozen coefficient case, where eigenmodes took the form of Fourier
modes, eigenmodes of the finite conduit exhibit a complex spatial structure that
reflects the strong gradients in background fluid properties. In particular, a large
impedance contrast at the exsolution interface serves to segment the conduit into
two parts, with significantly different properties due to the presence of bubbles and
increased compressibility in the upper portion of the conduit.

4.2. Eigenmode families
Results for a 3 km length conduit with nt = 0.01, p= 0 bottom boundary condition,
and three choices of τ are shown in figures 6 and 7. The eigenfunction amplitudes are
only defined up to an arbitrary constant. We choose this constant in figure 6 so that
total free energy density has unit maximum amplitude, which facilitates comparison of
mode families. For figure 7 the constant is chosen to make the total energy of each
mode equal to 10 kJ. Note that n is not defined, and hence not plotted, below the
exsolution depth in figure 7.

We find three families of modes, labelled in figure 6(a–c). Family I contains the
longest-period modes of the conduit. Most of these modes, with the exception of
the fundamental mode discussed below, are localized primarily above the exsolution
depth. Family II contains shorter-period eigenmodes. When τ is comparable to the
mode periods (∼1 s in this example), these modes exhibit dominant or even exclusive
spatial localization below the exsolution depth. Family III exists only for non-zero τ ,
and contains modes that are non-oscillatory. These monotonically decaying modes are
associated with mass exchange between the phases, similar to the frozen coefficient
case. The modes shown in figure 6 are arranged in this order, from left to right, with
the ten longest-period modes from each family shown. Note that the non-oscillatory
modes in family III are absent for the τ = 0 (equilibrium BGR) case in figure 6(a).

The mode Ex 1 in figures 6(b, f,i) and 7(a) is the longest-period mode of the conduit
for the p= 0 bottom boundary condition. We refer to this mode as the fundamental
mode. The p, v, and n eigenfunctions have no nodes (zero crossings). We classify
this mode as part of family I, though it is somewhat unique and spans the entire
conduit. Furthermore, as discussed later, this mode does not exist for the v= 0 bottom
boundary condition. The p = 0 bottom boundary condition permits flow in and out
of the bottom of the conduit. Kinetic energy is largest below the exsolution depth,
while free energy is largest immediately above this depth. Thus, liquid melt at depth
oscillates up and down, compressing and expanding the bubbly magma just above
the exsolution depth. Gravity provides an additional restoring force, although small
compared to magma compressibility, for this mode.

The second-longest-period mode (Ex 2 in figures 6b, f,i and 7a) has somewhat
different characteristics, and is more representative of other members of family I.
The p, v, and n eigenfunctions each have one node. Both kinetic and free energy
are largest in the bubbly magma. The bubbly magma in the upper 1 km of the
conduit serves as the mass, with restoring force coming from compressing and
expanding the bubbly magma immediately above the exsolution depth and also just
below the free surface. Motions are largely decoupled from the liquid melt region at
depth. Gravity provides an additional restoring force for this mode of approximately
equal importance relative to magma compressibility. Gravity becomes increasingly
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FIGURE 6. (Colour online) Families of eigenmodes for (a,e,h) τ = 0 s (equilibrium
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eigenmodes in each family are shown, with the normalization and family naming scheme
described in the text. (d) Background gas mass fraction, showing segmentation of conduit
into bubbly magma above exsolution and liquid melt below. (a–c) Spatial distribution of
total free energy density. Bright colours indicate regions where magma is compressed or
expanded. (e–g) Mode period, dots coloured by decay rate. (h–j) Energetics. (a,e,h) shows
contributions to potential energy from equilibrium free energy (which equals total free
energy) and gravitational potential energy. In panels (b, f,i,c,g,j), potential energy is divided
into total free energy and gravitational potential energy; also shown is non-equilibrium
free energy (which differs from total free energy when BGR is appreciable over a mode
period). White arrows in (b) refer to modes plotted in figure 7.

less important for higher-frequency modes in this family (figure 7h) as the spatial
wavelength of oscillations becomes small compared to the density scale height.

The mode Ex 3 (figures 6b, f,i and 7a) is localized below the exsolution depth.
This mode, and others in family II, are somewhat akin to standing acoustic waves
in the liquid melt region, relatively uninfluenced by gravity, with a p = 0 boundary
condition at the bottom and high degree of reflection off of the exsolution surface due
to the large impedance contrast there. The mode is expressed as very short wavelength
oscillations in the bubbly magma above the exsolution depth (due to the much lower
sound speed there).

We next discuss how τ influences the oscillatory modes. For the fundamental
mode (Ex 1) and other modes in family I (such as Ex 2), the differences between
τ = 0 (equilibrium BGR, figure 6a,e,h), τ = 1 s (figure 6b, f,i), and τ = 1000 s
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(non-equilibrium BGR, figure 6c,g,j) are relatively minor. These differences arise
from the increased compressibility of the bubbly magma in the equilibrium limit.
The differences between equilibrium and non-equilibrium properties are largest
immediately above the exsolution depth (figure 3). When τ is comparable to the
mode period (not shown), energy dissipation from BGR processes increases.

In contrast, τ exerts a much stronger influence on modes in family II (such as
Ex 3). For values of τ close to the mode period (e.g. τ = 1 s, figure 6b, f,i), there
is little contribution to the overall kinetic or potential energy from the bubbly magma
region, because this is where energy dissipation from non-equilibrium BGR occurs.
Because dissipation vanishes as τ → 0 or ∞, the amplitude of the eigenfunctions
above the exsolution depth is larger in these limits (figure 6a,e,h,c,g,j). The impedance
contrast across the exsolution depth also changes with τ . This contrast is evidently
more important for these shorter-period (and hence shorter-wavelength) modes than
for the longer-period modes in family I, as illustrated by more substantial differences
in the modes for the τ = 0 and 1000 s cases.

5. Source excitation and time-dependent simulations
In real magmatic systems, source excitation can arise from a diverse set of

mechanisms, for example impulsive mass addition or loss, phase change (e.g. rapid
gas exsolution, Chouet, Dawson & Nakano 2006), brittle fracture of magma, rockfall
(e.g. Orr et al. 2013), edifice collapse, conduit erosion, or nearby tectonic earthquakes.
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A detailed examination of source physics is outside the scope of this work. However,
we can motivate future source studies by examining the time-dependent excitation of
waves within the conduit by idealized sources added to the governing equations. The
eigenmodes identified from § 4 then provide a quantitative framework for interpreting
excitation.

We explore two general sources here. First we model an impulsive force on the free
surface at the top of the conduit by setting the right-hand side of the top pressure
boundary condition (2.51) equal to I (t) (with units of Pa). We also consider an
internal volumetric source, as might arise from volumetric transformation strain or
injection of mass, by setting the right-hand side of (2.41) equal to Ṁ (z, t) (with units
of 1 s−1). The equations are spatially discretized as before, but are now solved in the
time domain using an explicit Runge–Kutta method for time stepping. See appendix A
for details of the method and appendix B for convergence tests verifying stability and
high-order accuracy.

In the following, we assume Gaussian sources,

Ṁ (z, t)= FM exp
[
−(t− tFM)

2

2σ 2
FM

]
exp

[
−(z− zFM)

2

2σ 2
Z

]
, (5.1)

I (t)= FI exp
[
−(t− tFI)

2

2σ 2
FI

]
, (5.2)

with FM, FI the source amplitudes, tFM, zFM, tFI the time and spatial location of source
excitations, and σFI , σFM, σZ the duration and spatial width of the sources.

5.1. Connection to conduit eigenmodes and to observables
Before we present numerical solutions, we point out that time-dependent solutions to
the inhomogeneous equations do not directly provide information about which of the
conduit eigenmodes from (4.1) are excited. Neither do they reveal how excitation of
waves within the conduit relates to potential observations. There is, however, a formal
procedure for connecting these two calculations. We first Laplace transform the semi-
discrete, inhomogeneous governing equations (A 2)–(A 5), yielding a linear system of
the form

sũ= Bũ+ bFI f̃FI(s)+ bFM f̃FM(s), (5.3)

where ũ and B are defined as before, and the two terms of the form bf̃ (s) are
the Laplace-transformed source vectors associated with surface impulses (subscript
FI) and internal volumetric or mass sources (subscript FM). We have assumed a
source process that permits us to factor the source into a vector b capturing the
spatial dependence of the source and another function, f (t), carrying the source
time dependence and magnitude. For this special case b is independent of Laplace
parameter s. Discussion of b and f is presented in appendix A.

B can be decomposed as B=WΛW−1, with W a matrix containing the eigenvectors
of B as columns and Λ= diag(λ1, . . . , λ3(M+2)+1) a diagonal matrix of eigenvalues λi
(denoted as s in the previous section on the eigenvalue problem). As mentioned in § 3,
B is non-normal, so although B is diagonalizable, eigenfunctions are not necessarily
orthogonal (W is not unitary). We have experimented with partially symmetrizing the
eigenproblem by rescaling u(t) such that its L2 norm is the total mechanical energy
density, which greatly reduces the condition number of the resulting coefficient matrix
and improves numerical accuracy. However, all calculations have shown that the
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longest-period modes are nearly orthogonal and we will show that we can accurately
recover the time-domain solution with the method described below. This suggests that
our problem is not far from normal, at least for the range of parameters we have
studied thus far.

Suppose we are interested in a particular set of observations y(t), which are a
linear functional of the fields u(t). Examples of observations include the ground
displacements in an elastic half-space caused by pressure changes applied to the
surface of the conduit, motions of the lava lake surface, and infrasound signals
generated by oscillations of the lava lake surface. From linearity it follows that there
exists an observation matrix linking the observables to the fields within the conduit,
expressed in the Laplace domain as

ỹ=C ũ. (5.4)

In general C =C (s) (such that the observation at time t depends on the fields at all
times leading up to t), but in this study we restrict attention to observables for which
C is independent of s.

Using (5.3) the solution of (5.4) is then

ỹ=HFI f̃FI +HFM f̃FM, (5.5)

where HFI(s) and HFM(s) are transfer functions between the observables and surface
impulse and internal volumetric/mass sources, respectively, which take the form

H (s)=C Wdiag
(

1
s− λ1

, . . . ,
1

s− λ3(M+2)+1

)
W−1b. (5.6)

The time-domain solution may be recovered by inverting the Laplace transform
through use of the residue theorem, or alternatively by approximating the integral as
a discrete inverse Fourier transform (e.g. Davies & Martin 1979). We find that
numerically the latter is the more accurate method. This method requires that
the time series is chosen to be long enough that the least damped mode decays
sufficiently to prevent wrap-around effects in the source excitation, and thus is not an
efficient method in general. However, we can accurately reproduce the time evolution
calculated by the time-domain method for a single or multiple observables.

5.2. Source excitation by top boundary pressure forcing
We first study the problem of a pressure impulse on the upper boundary of an initially
static magma column. This could arise from perturbations to the surface of a lava lake
by, for example, rockfall or shallow near-surface degassing bursts. Figure 8 illustrates
results from a test case using L= 3 km, τ = 1 s, and nt = 0.01, with source pressure
amplitude FI = 10 kPa centred in time at tFI = 10 s after the start of the simulation,
with duration σFI = 1 s. This pressure pulse initially pushes the free surface down
(figure 8b), generating a downward-propagating wave carrying a pressure increase
and downward velocity perturbation. At the exsolution depth (z≈ 1420 m) this wave
is partially reflected. The transmitted wave continues into the single-phase region
at depth, where it excites high-frequency oscillations. The reflected wave causes
low-frequency oscillations in the upper, bubbly region. Damping in these simulations
is only through energy lost by non-equilibrium BGR, as we have assumed inviscid
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FIGURE 8. (Colour online) Excitation of waves by a Gaussian pressure impulse on the
otherwise traction-free upper boundary. Source is centred at 10 s, with amplitude 10 kPa
and duration half-width 1 s. τ = 1 s and nt = 0.01. (a) Pressure at free surface and
(b) height of free surface as a function of time. (c) Excitation amplitude of free surface
eigenmodes from the transfer function of h (5.6) for the free surface height (blue line) and
pressure at exsolution (red line). (d) Pressure perturbation and (e) velocity perturbation
within the conduit. Dashed line is exsolution depth. ( f ) Quality factor Q of conduit
eigenmodes (figure 6) as a function of mode period. Panels (c) and ( f ) together express
which modes are excited and which will contribute to some particular observable field. A
mode can be excited but not expressed in some field.

magma. Inclusion of viscosity would result in smaller free surface height variations
and more rapid decay of oscillations.

We then use the transfer function in (5.6) to obtain excitation amplitudes of
individual eigenmodes. Figure 8(c) shows the magnitude of HFI(s) as a function of
excitation period (2π/Im(s) with purely imaginary s), for two choices of y: the free
surface height h and the pressure perturbation at the exsolution depth pexsolve. The
latter is a crude proxy for excitation of seismic waves and ground displacements
by pressure perturbations on the conduit walls. The former is inverted to the time
domain to demonstrate that the Fourier transform inversion method reproduces finite
difference calculations accurately and is plotted on top of the time-dependent solution
in figure 8(b). Figure 8( f ) then shows the period and quality factor of eigenmodes
obtained during study of the homogeneous problem. Comparison to figure 8(c)
shows that the top forcing excites long-period modes at much larger amplitude than
short-period modes, as observed in the time-dependent simulations.

5.3. Source excitation by an impulsive internal mass source
The second type of source we study is an impulsive, localized volumetric source
within the conduit. This could arise from influx or outflux of mass from a branching
sill or dike, or any other discrete dilational event. We explore a case where dilation
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FIGURE 9. (Colour online) (a,c,e) Excitation of waves by an internal mass source, a
Gaussian source with spatial extent σZ = 10 m, temporal duration σFM = 1 s, injected at
zFM = 2 km depth (below exsolution) at time tFM = 10 s. (a) is free surface height, (c)
is pressure perturbation amplitude in kPa versus time. (e) is transfer function amplitude
of pressure at the exsolution depth and surface height versus mode period in seconds.
(b,d, f ) Same as part (a,c,e), except the mass source is injected at zFM= 1 km depth (above
exsolution).

rate is FM = 0.05 1 s−1, with tFM = 10 s, σFM = 1 s, and spatial half-width σZ = 10 m,
all other parameters as in the top forcing example of § 5.2. Figure 9 shows two
examples, one where the volumetric source is below exsolution (zFM=2 km, figure 9a)
and one where the source is above exsolution (zFM = 1 km, figure 9b).

Looking first at the amplitude of the pressure perturbations, we see that sources
below exsolution generate much higher pressures than sources above exsolution. This
can be understood in terms of the difference in fluid properties between bubbly and
non-bubbly magma: the fluid bulk modulus is ∼4 orders of magnitude larger at 2 km
depth than at 1 km depth. From the amplitude of pressure eigenmode excitation in
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figure 9(e, f ) (amplitude of transfer function HFM(s) for pressure at the exsolution
depth) we also see that high-frequency modes are excited in the single-phase region
when the source is below the exsolution depth, but not when the source is above it.
By the time perturbations reach the free surface, however, in both cases the high-
frequency modes have been damped out, and the free surface height still primarily
records long-period modes from the bubbly upper conduit.

5.4. Influence of bottom boundary condition
All results so far assume a constant-pressure bottom boundary condition, so fluid
can flow freely in and out of the conduit from some deeper magma reservoir or
chamber. This is not the only possible boundary condition for real volcanic systems.
Another possibility is a no-flow (zero-velocity) boundary condition, which would lead
to variations in pressure during oscillatory motion of the magma column. We can
assess the conditions under which either of these boundary conditions is realistic in
the context of a simple model of the reservoir that is coupled to the bottom boundary
of the conduit. We assume uniform pressure throughout the reservoir, which might
be a chamber or sill within an elastic solid.

We combine a statement of mass balance for the reservoir, neglecting influx from
below, with linearized expressions relating changes in fluid density and reservoir
volume to pressure changes (Segall 2010). This reservoir model is coupled to the
conduit by setting reservoir pressure equal to the pressure at the bottom of the
conduit, Pb, and setting volume flux out of the reservoir into the conduit equal to
A(0)Vb, where A(0) is the cross-sectional area at the bottom of the conduit and Vb is
the velocity there. The result is an ordinary differential equation linking Pb and Vb:

dPb

dt
=−εrVb, (5.7)

where εr = A(0)/βrVr contains the overall compressibility βr (the sum of chamber or
sill compressibility and fluid compressibility) and the reservoir volume Vr. We have
assumed for simplicity that the conduit and chamber have the same bubble content.

Fourier transforming in time, with angular frequency ω, permits us to define the
impedance of the reservoir system as the ratio of the Fourier-transformed pressure and
velocity:

P̃b

Ṽb
=− εr

iω
. (5.8)

We then compare this impedance to the impedance of a wave in the conduit, ρbCb,
where ρb and Cb are the density and phase velocity of the wave at the bottom of the
conduit. The impedance ratio,

Γ =− εr

iωρbCb
, (5.9)

determines how waves reflect from the reservoir (e.g. Lighthill 1978). When Γ � 1,
then Pb ≈ constant; when Γ � 1, then Vb ≈ 0.

We consider two examples of reservoir systems to estimate the impedance ratio.
First, assume the conduit, of radius ∼10 m, is connected to a magma-filled sill of
radius ∼1 km and thickness ∼1 m. Compressibility of the system is principally
from opening/closing the sill, such that βr is approximately equal to the overpressure
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CO2 solubility (Papale, Moretti & Barbato 2006) that represents typical volatile contents
at Kilauea, HI. Inset shows depth variation of gas mass fraction in the base state.

∼10 MPa in the sill (i.e. the difference between magma pressure and compressive
normal stress acting to close the sill). We also take ρbCb ∼ 106 Pa s m−1. Thus,
εr ∼ 103 Pa m−1. It follows that at periods less than ∼1000 s the constant-pressure
condition is appropriate.

As a second example, we assume the reservoir is a spherical magma chamber of
radius ∼100 m; we again take the conduit radius to be ∼10 m. Furthermore, βr is
approximately equal to the reciprocal of the magma bulk modulus (∼10 GPa), with
a slight correction due to the elastic compliance of the chamber. In this case, εr ∼
106 Pa m−1, and here for modes with periods longer than ∼10 s, the no-flow boundary
condition is appropriate.

The major difference between the constant-pressure and no-flow bottom boundary
conditions lies in the longest-period eigenmode. For the constant-pressure boundary
condition, this longest period has the majority of kinetic energy residing in the bubble-
free region (figure 7). Thus, it represents oscillatory mass transport in and out of the
conduit. For the no-flow boundary condition, this mode is absent, and the longest-
period mode is one that resides in the bubbly region (figure 10a, dashed curve).

5.5. Influence of conduit length, total volatile content, and solubility law
We next briefly explore how mode properties and excitation (the latter expressed via
transfer functions) are influenced by the conduit length, total volatile content, and
solubility law.

One might reasonably speculate that the longest eigenmode periods are simply set
by the conduit length L, as they are in organ pipes containing a homogeneous fluid.
Figure 10 explores this in more detail for the p= 0 bottom boundary condition, using
the top boundary pressure excitation and transfer function for the pressure at the
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exsolution depth to probe the sensitivity of mode properties to L. As we increase L,
some of the modes vary systematically. The fundamental mode (Ex 1) shifts to longer
periods as L increases (figure 10a), consistent with an increase in effective mass (due
to the increase of the length of the liquid melt region), with the restoring force from
magma compression immediately above the exsolution depth relatively unaltered.
Similarly, the shorter-period modes in family II (such as Ex 3, with ∼1 s period)
that are localized within the liquid melt region at depth shift to larger periods as L
increases. In contrast, modes with periods between ∼10 and 50 s that are oscillations
within the bubbly region (modes in family I such as Ex 2) are largely insensitive to
L, since it is the length of the bubbly magma region (set by total volatile content nt)
that influences their period.

Finally, switching from a p= 0 to v= 0 bottom boundary condition eliminates flow
in and out of the conduit, and the fundamental mode no longer exists. Modes such
as Ex 2 are effectively unaltered (and they are insensitive to L), while those such as
Ex 3 have longer periods (close to double those for p = 0) that reflect the changed
boundary conditions (figure 10a).

We next explore, for fixed L, the influence of the total volatile content nt, and
hence the length of the bubbly magma region, on mode properties (figure 10b). Modes
of all periods are sensitive to the total volatile content nt, but in differing ways, as
illustrated by comparison of the red and blue curves in figure 10(b), corresponding
to nt = 0.005 and 0.01, respectively. The period of the fundamental open-ended pipe
mode (Ex 1) decreases as nt increases, because the mass (of the liquid melt region
at depth) decreases as the exsolution surface moves to greater depths. In contrast, the
periods of the long-period modes such as Ex 2 increase as nt increases. These modes
reside within the bubbly magma above the exsolution depth, and the extent of this
region increases with nt.

Of course, real magmas have a more complicated volatile content, with H2O as
well as lesser amounts of CO2 and SO2 (as well as other volatiles) that have much
lower solubilities. Although a detailed exploration of the consequences of more
complex solubility laws is outside the scope of this paper, we include in figure 10(b)
a calculation using the joint H2O and CO2 solubility model of Papale et al. (2006)
as the gas base state. Using volatile contents typical of shallowly stored Kilauea
magmas (Gerlach & Graeber 1985) as a guide, we use a H2O mass fraction of
nt,w = 0.006 and a CO2 mass fraction of nt,c = 4× 10−4. The inset demonstrates that
the background gas profile exhibits a more gradual decline with depth than the case
of pure water, due to the persistence of CO2 bubbles at depths greater than that at
which all H2O bubbles have dissolved. Nevertheless, this case still exhibits a large
contrast in properties at the water exsolution depth. Such a result is not unexpected,
since water is more than an order of magnitude more abundant that CO2 in this
example (a result that holds generally for magmas). Therefore the segmentation of
conduit eigenmodes by water exsolution should be even more pronounced for magmas
that contain greater total volatile contents, such as at subduction zones, where H2O
may reach 6–8 % by mass and CO2 up to 0.3 % (Wallace 2005).

6. Discussion

We have developed a linear theory for the resonant modes of a column of bubbly
magma in a volcanic conduit. Stratification (depth dependence of fluid properties
in the base state) and non-equilibrium BGR are important controls on the spatial
structure, periods, and damping rates of these eigenmodes. We connected eigenmodes
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to source excitation in the time domain with two numerical methods, a transfer
function approach that utilizes conduit eigenfunctions, and direct finite difference
solution of the governing equations. The source type, and depth in the case of
internal sources, determine which eigenmodes are excited.

We have chosen the simplest possible background state of a magma column at rest
in mechanical and thermodynamic equilibrium. The systems most closely matching
this idealization are open-vent volcanoes with active lava lakes such as Halema’uma’u
(Kilauea, HI) and Erebus (Antarctica), though additional processes (discussed below)
might need to be added to our initial model to properly characterize these systems. As
mentioned in the introduction, impulsive disturbances such as rockfall into the open
vent or bursting of gas slugs trigger VLP seismic signals (tens of seconds, Aster et al.
2003; Chouet & Dawson 2013) that ring down over several minutes, quite similar to
the longest-period eigenmodes we have identified in our study.

Future application of this model to VLP seismicity will benefit from further
model development, specifically inclusion of viscous drag, degassing (relative motion
of gas and liquid phases), and branching cracks (dikes and sills) at depth. Both
Halema’uma’u and Erebus involve low-viscosity magmas, and as discussed in § 1,
treatment of drag from viscous boundary layers (e.g. Lipovsky & Dunham 2015)
is needed for mode periods less than ∼100 s. This necessitates resolution of radial
variations in the velocity field. Both Kilauea and Erebus also exhibit slow, background
convection, with bubbles rising buoyantly relative to the liquid melt and denser
(degassed) magma sinking. This convection and associated gas loss through the
surface, once cross-sectionally averaged, would increase density, bulk modulus, and
sound speed in the upper part of the conduit relative to the magmastatic model (§ 2.4).
Indeed, inferred values of density in the Kilauea lava lake from continuous gravity
(Carbone et al. 2013) and direct measurement of near-surface samples (Eychenne
et al. 2015) are in the range 400–1000 kg m−3.

Finally, there is evidence that the conduit beneath the lava lake at Kilauea connects
to one or more cracks at depth. For example, seismic waveform modelling suggests
coupling between oscillatory motion of the magma column and the solid Earth occurs
in a set of dikes at approximately 1 km depth (Chouet & Dawson 2011, 2013;
Dawson & Chouet 2014). Ground deformation inversions place a magma reservoir at
similar depths (e.g. Poland, Miklius & Montgomery-Brown 2014). This motivates the
introduction of a crack into our model, which will influence mode properties. For a
crack at the base of the conduit, responding at relatively long time scales compared
to the time of crack wave propagation across the crack, it might be possible to
idealize the crack using the boundary condition introduced in (5.7). Adding one or
more branching cracks, and studying their influence on mode properties and seismic
expression of the modes, is a logical next step.

At the top of the conduit, coupling of magmatic fluid motions to an overlying
stratified atmosphere may occur, producing infrasonic waves (e.g. Garcés & McNutt
1997). We can still use the transfer function approach to infer mode excitation in
these cases, if we have the appropriate model for atmospheric acoustic-gravity wave
propagation that can serve to form the observation matrix, and the coupling between
the conduit and atmosphere is linear.

Better constraints on non-equilibrium BGR are also warranted. The time scale τ

for non-equilibrium BGR is not well known in magmas. It could reasonably lie in
the range ∼1–100 s, based on typical bubble sizes and diffusivity of water and CO2
in silicate melts, and available experimental results on natural silica-rich samples
(e.g. Watkins, Manga & DePaolo 2012). We have shown that the periods and spatial
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structure of conduit eigenmodes are affected by τ (figure 6), with the largest damping
for periods of approximately τ (i.e. σ/2π∼ 1, figure 4). Observations of oscillations
at open-vent systems such as Kilauea, with periods in the ∼30 s range (e.g. Chouet
& Dawson 2013), suggest that either τ is much larger or smaller than this period, or
that energy dissipation from non-equilibrium BGR is smaller than our models suggest
(e.g. due to smaller differences between non-equilibrium and equilibrium properties).
Finally, τ will undoubtedly vary as a function of depth in real conduits, in response
to depth variations in bubble size and spacing, and variable volatile species present.
We reserve exploration of this effect for future work.

Despite the need to introduce additional complexity into our models, this initial
study suggests several exciting opportunities. Perhaps the most important result to
emerge is the sensitivity of the longest-period eigenmodes to total magmatic volatile
content and to the solubility law used in the modelling (figure 10b). Observations
of VLP seismicity might thus be used to monitor variations in volatile content over
time. Total volatile content is one of the most important factors governing volcanic
eruption style (e.g. effusive or explosive), and can vary widely over the course of a
single eruptive episode and between volcanoes. Total volatile contents currently are
inferred primarily from melt inclusions that must be gathered after eruptive activity
is over (e.g. Métrich & Wallace 2008). In addition, with independent constraints on
total volatile content from petrology and melt inclusions, modelling of VLP seismicity
might be used for in situ validation of experimentally determined solubility laws and
non-equilibrium mass exchange in bubbly magmas.

Acknowledgements
This work was supported by the National Science Foundation (EAR-1143623 to

L.K., EAR-1114073 to E.M.D.) and the Alfred P. Sloan Foundation (BR2012-097
to E.M.D.). We thank O. O’Reilly and B. A. Erickson for discussions and advice
on mathematical and numerical issues, and the three anonymous reviewers for their
extremely useful suggestions.

Appendix A. Discrete governing equations
In this appendix we present a finite difference method for solving the continuous

governing equations (2.40)–(2.42) and (2.49) and boundary conditions (2.50)
and (2.51). The coefficients of the equations are discontinuous across the exsolution
surface, making it advantageous to divide the domain into two subdomains, one on
either side of the exsolution surface. Solutions in these two subdomains are coupled
by appropriate interface conditions across the exsolution surface. All calculations in
this study utilize this split domain method, and we provide details on the interface
coupling below. However, for simplicity, we begin by presenting the numerical method
for a single domain.

Spanning the domain 0 6 z 6 L is a set of N + 1, possibly non-uniformly spaced,
grid points zi, i= 0, . . . ,N. A field such as v(z, t) is approximated at the grid points,
with the grid values stored in a vector v(t) having components vi(t)≈ v(zi, t). Spatial
differences are approximated with a summation-by-parts (SBP) differentiation matrix
D, such that the vector Dv contains approximations to ∂v/∂z at the grid points. SBP
operators take the form

D = H−1Q, (A 1)
where H is a symmetric positive definite matrix (diagonal in this work) and Q is an
almost skew symmetric matrix with the property that QT + Q = diag[−1 0 . . . 0 1]
(Kreiss & Scherer 1974, 1977; Strand 1994; Gustafsson et al. 1995).
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Boundary conditions are imposed by including penalty terms in the semi-discrete
governing equations, called simultaneous approximation terms (SAT) (Carpenter et al.
1994). The number of boundary conditions and which equations must be penalized
are determined through the characteristics of this hyperbolic set of equations. The
characteristic variables associated with waves propagating in the +z and −z directions
are p+Zv and p−Zv, respectively, where we have introduced the acoustic impedance
Z = ρ̄C for notational simplicity. Therefore, we must place one boundary condition
on p+ Zv at z= 0 and one boundary condition on p− Zv at z= L. These boundary
conditions can involve the other characteristic variable, of course, which carries
information from within the domain to its boundaries.

The semi-discrete equations are

dv

dt
=− 1

ρ̄
H−1Q p− g

K
p+ gan− θ1(v0 − v̂0)e0 − θ2(vN − v̂N)eN, (A 2)

d p
dt
=−K

A
H−1QAv + ρ̄gv − aK

τ
(n+ bp)− θ3(p0 − p̂0)e0 − θ4(pN − p̂N)eN, (A 3)

dn
dt
=−ρ̄gbv − 1

τ
(n+ bp), (A 4)

dh
dt
= v̂N, (A 5)

where e0 = [1 0 · · · 0]T and eN = [0 · · · 0 1]T are vectors that isolate the penalty
terms to the boundary points. Coefficients not in bold type are now diagonal matrices
containing possibly spatially variable properties such as ρ̄, A, etc., with 1/ρ̄ really
being the inverse of the diagonal matrix ρ̄. Scalars θ1–θ4 are penalty parameters
chosen to ensure a stable numerical discretization, while hatted variables v̂0, v̂N, p̂0, p̂N
are target values for velocity and pressure at the boundary points. These are chosen
to satisfy the desired boundary conditions exactly,

p̂0 = 0 and p̂N = ρ̄gh, (A 6a,b)

while preserving the characteristic variable carrying information from the interior of
the domain to the boundary,

p0 − Z0v0 = p̂0 − Z0v̂0 and pN + ZNvN = p̂N + ZN v̂N . (A 7a,b)

It follows that

v̂0 = v0 − p0

Z0
and v̂N = vN + pN − ρ̄Ngh

ZN
. (A 8a,b)

Following Kozdon, Dunham & Nordstrom (2011), we find that

θ1 = θ3 =C/H00, θ2 = θ4 =C/HNN (A 9a,b)

ensures stability, as shown below.
When adding sources to the semi-discrete equations (A 2)–(A 5), we decompose

pressure and volumetric contributions in (5.1) and (5.2) into a vector b that contains
the spatial dependence and a function f (t) that contains time dependence and
magnitude. In the context of (5.3), the b vectors (length 3(M + 2) + 1) take the
form

bFM = [0 bFM(z) 0 0]T, (A 10)
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where bFM(z) = K(z) exp(−0.5(z − zFM)
2/(2σ 2

Z )) and 0 is a M + 2 length vector of
zeros, while bFI contains corrections to the surface penalty terms but is otherwise zero.
The f are specified in (5.1), without the dimensionless spatial exponential, and (5.2),
and thus have units given by FM and FI , respectively.

One of the principal benefits for using SBP–SAT is the ease with which we can
prove stability of the method, done by constructing a discrete energy balance. Before
doing this we note that the SBP operator is analogous to integration by parts. For
example, if

(u, v)=
∫ L

0
u(z)v(z) dz and (u, v)h = uTHv (A 11a,b)

are continuous and discrete inner products, respectively, then(
p,

dp
dz

)
= 1

2
(p(L)2 − p(0)2) and (p, H−1Q p)h = 1

2
(p2

N − p2
0). (A 12a,b)

To construct a discrete energy balance we multiply (A 2) by vTHA, (A 3) by pTHA,
(A 4) by nTHA, and (A 5) by ρ̄NgANh, and then sum. Doing the same to the transpose
of (A 2)–(A 5), adding the results, and dividing by two, we arrive at

dEh

dt
=−A0

Z0
p2

0 −
AN

ZN
(pN − ρ̄Ngh)2 − (n+ bp)THA

a
bτ
(n+ bp), (A 13)

where the discrete energy Eh is defined as

Eh = 1
2
vTHAρ̄v + 1

2
pTH

A
K

p+ 1
2

nTH
aA
b

n+ 1
2
ρ̄NgANh2. (A 14)

Comparison to the continuous energy balance in (2.52) and (2.53) shows a
correspondence to each term in the discrete version, except for the first two terms
on the right-hand side of (A 13). Those terms, which vanish when the boundary
conditions (2.50) and (2.51) are exactly satisfied, correspond to a slight amount of
numerical dissipation that vanishes with mesh refinement.

The discrete energy Eh is thus a strictly decreasing function, and our numerical
method is stable. Our method uses SBP operators that have interior accuracy q and
boundary accuracy r = q/2, leading to a global accuracy of p = r + 1 (Gustafsson
1975). As discussed in the next section we generally use SBP operators with q = 8
(Mattsson, Almquist & Carpenter 2014). Time stepping is done with a fourth-order-
accurate low-storage Runge–Kutta method (Carpenter & Kennedy 1996).

The numerical method presented above can be generalized by dividing the domain
into two or more subdomains. Each subdomain is separately discretized and the
solutions in adjacent subdomains are coupled via interface conditions (SAT penalties).
For our problem, we divide the domain across the exsolution surface. Interface
conditions are continuity of mass flux ρ̄Av and pressure p. In this case, the energy
balance contains additional numerical dissipation terms that vanish with mesh
refinement. Dividing the domain in this manner substantially increases the accuracy
of the numerical solution. For later reference, we refer to the total number of points
in both subdomains as M + 2.
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Appendix B. Convergence of the numerical solution

We demonstrate convergence of the numerical method developed in § 4 at the
expected order of accuracy via the method of manufactured solutions (Roache 1998).
This method involves constructing an analytic solution to the governing equations
(2.40)–(2.42) and (2.49) by stipulating an arbitrary set of pressure, velocity, and
gas mass fraction functions, then imposing source terms and boundary data such
that these functions are satisfied by the governing equations. We choose functions
that test all relevant aspects of the governing equations: time dependence, spatially
variable fluid properties and conduit radius, free surface upper boundary condition,
and interface conditions at the exsolution depth. We choose an exact solution that
respects the exsolution depth below which the gas phase is negligible, but otherwise
use a smoothly oscillatory pressure and velocity:

vex(z, t)= Vex sin (kexz) cos (ωext), (B 1)
pex(z, t)= Vexρexcex sin (kexz) sin (ωext), (B 2)

nex(z, t)=Nex

(
1− 20z

11zex

)(
1− tanh

(
2z
zex

)25
)

(B 3)

and
hex(t)= 0. (B 4)

Here Vex, ρex, cex and Nex are scales for pressure, velocity, and gas fraction, while
kex = 6π/L, ωex = 10kexcex. Gas fraction is constant in time, varying linearly from the
exsolution depth to the surface, with a smooth transition to zero below the exsolution
depth zex. We use Vex = 1, ρex = cex = 100, Nex = 0.01.

Equations (B 1)–(B 3) are not solutions to the homogeneous governing equations.
However, by inserting them into (2.40)–(2.42) we find the requisite source terms to
make them solutions. By adding these source terms, evaluated at the grid points, to
the semi-discrete governing equations (A 2)–(A 5), we generate a numerical solution
that approaches the exact solution upon mesh refinement.

We use the non-constant magmastatic background coefficients and nt = 0.01 in
an L = 3 km long conduit, with free upper boundary and conduit widening towards
the surface (a linear increase in the conduit radius of 1 m km−1 beginning at the
exsolution depth). We also include SAT penalties at the exsolution interface. Note
that our exact solutions for p and v are equal and continuous across this depth, while
background coefficients are not.

We run simulations for two oscillation cycles (until time 2π/ωex). We measure
the convergence of our discrete approximation to this solution in the energy norm,
utilizing the discrete expression for total energy in (A 14). Error ε is calculated in the
energy norm by utilizing the difference between the numerical and exact solutions
at the grid points in the expression for energy in (A 14). We can quantify the order
of accuracy of our method by constructing the error rate between two discretizations
with grid spacing 1z1 and 1z2 with errors ε1 and ε2,

Rate= log (ε1/ε2)

log (1z1/1z2)
. (B 5)

Figure 11 shows that our method converges at better than or equal to the expected rate
of convergence for all SBP operators that we tested. The lower-order operators can
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FIGURE 11. (Colour online) Error between manufactured solution (B 1)–(B 3) and
numerical solution in the energy norm after two cycles of oscillation in the exact solution,
for different order SBP operators as a function of number of grid points M. Lines are
expected rate of convergence for each operator.

be found in Strand (1994) and the eighth-order operators were developed by Mattsson
et al. (2014). The eighth-order SBP operators (globally fifth-order accurate) are clearly
the most accurate, not only converging at a faster rate as we increase the number of
grid points M, but resulting in more than four orders of magnitude smaller error at
M = 1024.

Time steps 1t are chosen to match the CFL condition for the fastest travelling
waves expected in the problem (largest sound speed C)

1t= CFL
max(C)

1z, (B 6)

where CFL = 0.5 and 1z is the smallest grid spacing (only non-uniform for
eighth-order operators and in cases where we include different grid resolutions
above and below exsolution). We use eighth-order spatial operators for all results
shown in this work, and use three times the number of grid points above exsolution
as below exsolution.
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