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Abstract

We have developed an efficient computational framework for simulating mul-
tiple earthquake cycles with off-fault plasticity. The method is developed
for the classical antiplane problem of a vertical strike-slip fault governed by
rate-and-state friction, with inertial effects captured through the radiation-
damping approximation. Both rate-independent plasticity and viscoplastic-
ity are considered, where stresses are constrained by a Drucker-Prager yield
condition. The off-fault volume is discretized using finite differences and
tectonic loading is imposed by displacing the remote side boundaries at a
constant rate. Time-stepping combines an adaptive Runge-Kutta method
with an incremental solution process which makes use of an elastoplastic
tangent stiffness tensor and the return-mapping algorithm. Solutions are
verified by convergence tests and comparison to a finite element solution.
We quantify how viscosity, isotropic hardening, and cohesion affect the mag-
nitude and off-fault extent of plastic strain that develops over many ruptures.
If hardening is included, plastic strain saturates after the first event and the
response during subsequent ruptures is effectively elastic. For viscoplasticity
without hardening, however, successive ruptures continue to generate addi-
tional plastic strain. In all cases, coseismic slip in the shallow sub-surface is
diminished compared to slip accumulated at depth during interseismic load-
ing. The evolution of this slip deficit with each subsequent event, however,
is dictated by the plasticity model. Integration of the off-fault plastic strain
from the viscoplastic model reveals that a significant amount of tectonic off-
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set is accommodated by inelastic deformation (~0.1 m per rupture, or ~10%
of the tectonic deformation budget).

Keywords: earthquake cycle, plasticity, Drucker-Prager, finite difference
method

1. Introduction

Field observations reveal regions of highly damaged rock (containing
abundant microfractures) surrounding a fault core, which many attribute
to thousands of years of seismogenic cycling during which earthquakes shat-
ter the rocks in the vicinity of the fault (Chester and Logan, 1986; Chester et
al., 1993; Shipton et al., 2005; Mitchell and Faulkner, 2009; Faulkner et al.,
2010; Ben-Zion and Sammis, 2011). Understanding how an earthquake will
propagate is intimately tied to the evolution of these damage zones. Im-
portant and unsolved problems include the relationship between the degree
of off-fault yielding and mechanical properties of fault zone material, how
damage zones evolve with increasing cumulative slip, and how damage zones
affect subsequent rupture.

Current models for dynamic rupture have led to much insight into earth-
quake propagation, the generation of high-frequency ground motion, and the
influence of plasticity on rupture propagation (Templeton and Rice, 2008;
Ma and Andrews, 2010; Dunham et al., 2011a,b; Kaneko and Fialko, 2011;
Xu et al., 2012a,b; Shi and Day, 2013; Gabriel et al., 2012, 2013). Although
the inclusion of a plastic material response has been shown to reduce stress
and slip velocities at the rupture front to reasonable values, little work has
been done to understand the evolution of a damage zone (and its impact on
rupture) over multiple event sequences. In particular, most dynamic rupture
models currently make the assumption of a uniform background stress and
are limited to single-event simulations where rupture is artificially initiated
via a stress perturbation imposed on the fault. Earthquake cycle models,
on the other hand, generate self-consistent initial conditions because of their
ability to handle varying time scales. Cycle models developed in the bound-
ary integral or boundary element context were limited to simulations in a
uniform, linear elastic whole- or half-space (Lapusta et al., 2000; Tullis et al.,
2012). Recent developments, however, have shown how to incorporate more
realistic features (material heterogeneities or inelastic deformation, for exam-
ple) into the earthquake cycle framework (Johnson and Segall, 2004; Kaneko
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et al., 2011; Barbot et al., 2012; Aagaard et al., 2013; Erickson and Dunham,
2014; Thompson and Meade, 2016; Allison and Dunham, 2017).

In this work we study the role of plasticity throughout the earthquake
cycle. The computational method is developed for the classical antiplane
problem of a vertical strike-slip fault governed by rate-and-state friction.
The off-fault material is idealized as a Drucker-Prager elastic-plastic solid
and stresses are constrained by a depth-dependent yield condition. Inertia
is approximated with radiation damping. Within the context of a time-
stepping method, we solve the resulting equilibrium equation (a nonlinear,
elliptic partial differential equation) for the displacement increment.

Although computational plasticity is most commonly addressed in a finite
element framework, we develop a finite difference method, as the latter is
easy to program, efficient, and can be applied in a straightforward manner in
order to obtain a numerical approximation to the solution (Scalerandi et al.,
1999). Recent work in summation-by-parts finite difference methods has
furnished high-order accurate schemes that enforce boundary and interface
conditions in a stable manner (through the simultaneous-approximation-term
technique) (Kreiss and Scherer, 1974, 1977; Nordstrém et al., 2007; Svdird
and Nordstrom, 2014). These methods provide a framework for proving
convergence for linear and nonlinear problems, which is fundamental in order
to obtain credible numerical approximations. In this work, an initial analysis
is done of the underlying continuum problem to show it satisfies an energy
estimate (in this case, dissipation of mechanical energy in the absence of non-
trivial boundary conditions or source terms). The computational method
then provides a spatial discretization that mimics the energy estimate of the
continuum problem and proves stability of the method.

The paper is organized as follows: In section 2 we state the continuum
problem solved in this work. A rate-and-state frictional fault is embedded in
an elastoplastic solid and the equation for static equilibrium is solved within
the context of a time-stepping method that imposes remote loading and fault
slip (in a manner consistent with a fault friction law), deferring specific de-
tails to later sections. Section 3 provides details of the Drucker-Prager model
for rate-independent plasticity that defines the constitutive relation (as vis-
coplasticity is a straight-forward extension of the associated algorithms, de-
tailed in section 7.2). This is described in terms of the material response at
a particular point in the solid, and provides a procedure for evolving stress
and plastic strain given a history of total strain. Section 4 applies the results
of section 3, detailing the derivation of the incremental form of the contin-
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uum problem of section 2 and obtaining the governing equation solved within
the time-stepping method. In section 5 we show conditions under which the
resulting boundary value problem for the solid satisfies the Drucker stabil-
ity condition. We also establish conservation of the incremental internal
energy in the absence of nontrivial boundary conditions. Section 6 details
the spatial discretization, specifically a finite difference method for variable
coefficients satisfying a summation-by-parts (SBP) rule with weak enforce-
ment of boundary conditions through the simultaneous-approximation-term
(SAT) technique. The combined method will be denoted throughout the
paper as SBP-SAT. We show that the semi-discrete problem using the SBP-
SAT method mimics the energy balance of the continuum problem. In sec-
tion 7 we describe the time stepping method for the overall problem. The
solid displacement, stress, and plastic strain are updated in response to time-
dependent boundary conditions obtained by updating fault slip in a manner
consistent with the friction law. At each time step we solve numerically
the incremental equilibrium equation for the solid using an iterative Newton
procedure with the return mapping algorithm to calculate stresses consistent
with the constitutive theory. The extension of the algorithms to viscoplas-
ticity is also detailed. In section 8 we present convergence tests and compar-
isons with numerical solutions from a finite element code to verify our finite
difference method. In section 9 we apply our method to earthquake cycle
simulations, and conclude in section 10 with a discussion.

2. The Continuum Problem

In this work we assume two-dimensional antiplane shear deformation. The
equation for static equilibrium in the medium is given by

00, 00,
Y

y 0z

=0, (y,Z) € [_LZN Ly] X [07 LZ]? (1>

where 0,, and o, are the relevant components of the stress tensor o. The
constitutive relation (Hooke’s law) relates stress to elastic strain through the
relations

Ozy — N(ny_'ygy)a (2&)
Oz — M(%:z_fygz)v (2b>
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Figure 1: Schematic diagram for antiplane shear deformation where u(t,y, z) is the out-
of-plane displacement. We displace the sides y = &L, at a constant rate, with free surface
conditions on the top and bottom. A frictional fault at y = 0 is embedded in an elastic-
plastic medium.

for out-of-plane displacement u(t,y, z), shear modulus pu, total engineering
strains

Yoy = Ou/Oy (3a)
Vo = Ou/0z, (3b)

and plastic engineering strains 72, , 72, . Plastic deformation evolves according
to a flow rule of the form

;ng = )\nya (4&)
'%c)z = AP, (4b)

where A is the magnitude of the plastic strain rate (a positive, scalar function
of the stress), which is nonzero only when plastic deformation occurs. P, P,
are dimensionless, (generally nonlinear) functions of the stress, determine
how the plastic strain rate is partitioned between different components, and
specified by the particular plasticity model (Chen and Han, 1988; Simo and
Hughes, 1998). More details are given in section 3.

A vertical, strike slip fault governed by a rate-and-state friction law lies
at the interface y = 0 (Dieterich, 1979; Ruina, 1983) (see Figure 1) where
we impose the condition that the jump in displacement is equal to the fault
slip, Au, namely

u(t,07,2) —u(t,07,2) = Aul(t, 2). (5)
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In addition, we require that the components of the traction vector on the
fault be equal and opposite across the interface, which, for antiplane motion,
reduces to the second interface condition

Guy(t,07, 2) = 04y (£,07, 2). (6)

Slow tectonic loading is imposed by displacing the remote boundaries at a
constant relative rate V}, and the top and bottom boundaries are assumed
to be free surfaces. We assume the solution u is anti-symmetric across the
fault interface (ie. u(t,y,z) = —u(t,—y,z) for 0 < y < L,) so that (6)
is satisfied by construction, and so we may focus on one side of the fault,
namely (y, z) € [0, L] x [0, L] (see Erickson and Dunham (2014) for details
and a discussion on the choice of boundary conditions). For the one-sided
problem the boundary conditions are thus given by

u(t,0,z) = Au/2, (7a)
ult, Ly, z) = Vpt/2, (7b)
0., (t,y,0) = 0, (7c)
oe(t,y, L) = 0. (7d)

In the rate-and-state friction framework, shear stress on the fault, denoted
7 (and related to oy, as detailed below), is equated with frictional strength
through the relation

T =onf(V,¥), (8)
where
V =Au (9)

denotes the slip velocity, 1 is an internal state variable, o, is the effective
normal stress and f is a friction coefficient that takes the particular form

f(V,4) = asinh™! (2—“//0e¢/a) (10)

(Dieterich, 1979; Ruina, 1983). We assume the state variable ¢ evolves to
the aging law form of evolution, namely

dp Vo [ oy V
i~ D, <e ) (11)

6
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With the aging law, state can evolve in the absence of slip, and therefore
may be more suitable for modeling the interseismic period. In equations (10)
and (11), a and b are dimensionless parameters quantifying the direct effect
and state evolution, respectively, fy is a reference friction at a reference slip
velocity Vp, and D. is the state evolution distance (Marone, 1998).

In section 7 we describe how the slip Aw is obtained in a manner consistent
with the fault friction law (8), where 7 is related to o,, through the following.
Solving the equilibrium equation (1) provides the quasistatic stresses 0,,, 0.
Since disregarding inertia entirely is known to cause slip velocity V' — oo
in finite time (after which no solution exists), we incorporate the radiation
damping approximation to inertia (Rice, 1993). Thus 7 is defined to be

T = 04y(t,0,2) — DpaaV (12)

where —n,,4V is the stress due to radiation damping and 7., = p/(2¢s)
is half the shear-wave impendance (not to be confused with viscosity n for
viscoplastic flow) for shear wave speed ¢, = \//p and material density p.
3. Elastoplastic Constitutive Theory

In this section we review the Drucker-Prager elastoplastic constitutive
theory that is used to evolve stress and plastic strain (in response to an
imposed total strain history at a particular material point).

3.1. Drucker-Prager Plasticity

Throughout this work we assume infinitesimal strains. Hooke’s law (intro-
duced in (2) for the antiplane setting) can be expressed generally by

o=C:(e—¢) (13)

where ¢ and €’ are the total and plastic strain tensors. The fourth order
elasticity tensor Cj;; for an isotropic solid is given by

Cijer = K8;0k + 1 (001 + 606 — (2/3)0ij0k1) (14)

where K is the bulk modulus. Stresses in the medium are constrained by a
Drucker-Prager yield condition, see Figure 2. For rate-independent response
with linear, isotropic hardening, the yield function is given by

F(o,7") =7 = oy + h7?), (15)

7
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Figure 2: The Drucker-Prager yield condition for yield function F'. Elastic response occurs
for states of stress that lie below the yield surface, while plastic response occurs for states
on the surface. States above the yield surface are inadmissible. The slope of the line
is defined by the angle of internal friction ¢, while the y—intercept depends further on
cohesion ¢ and hardening modulus h.

where ~? is the hardening parameter (equivalent plastic strain, defined below)
and h is the hardening modulus. In this work we assume h > 0 is constant (we
say the response is strain-softening if h < 0, and perfectly plastic if h = 0).
The elastic domain in stress space is given by E, = {(0,79?) : F(0,~?) < 0}
and plastic flow ensues when the yield condition

F(o,7") =0 (16)
is met. The second invariant of the deviatoric stress is
T = \/Si;8ij/2 (17)
for s;; = 0,5 — okrdi; /3. The yield stress is given by
oy = —(okx/3) sin ¢ + ccos ¢, (18)

where ¢ is the cohesion and ¢ is the internal friction angle. Plastic strain
evolves according to the flow rule (introduced in equation (4)) given by

& = AP, (19)

%)



191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

where A =  /2¢7;¢7; is the deviatoric plastic strain rate for e; = }; —€,.045/3.
Thus

() = / A(s) ds, (20)

and P,; (specified in the next section) quantifies how plastic strain is dis-
tributed between different components of the plastic strain rates. The con-
stitutive theory is closed by including the Kuhn-Tucker loading/unloading
(complementarity) conditions

A>0, F<0, M =0, (21)

(which ensure that plastic flow can only occur if stresses lie on the yield
surface) and the consistency (persistency) condition

A =0, (22)

so that if plastic flow occurs, the stress state must persist on the yield surface
for some positive period of time.

3.2. FElastoplastic Tangent Stiffness Tensor

In rate form, Hooke’s law (13) expresses stress rate in terms of total strain
rate, namely
dij = C'ejpklékla (23>

)

where the continuum elastoplastic tangent stiffness tensor Cpj, = C7), (o)
is a nonlinear function of stress. We derive this tensor following Simo and
Hughes (1998), by first taking the time derivative of the yield function, and
then using (19) and the time derivative of (20):

oF . OF . OF OF .

Fe 2 G4 22 AP — (e P g8
anj Tij + 8’}/1)7 50@' ngkl(@cl le) + a’yp
oF oF oF
= —Ciinér — M=—CijuPu — =—). (24
60ij0mkl€kl (ao_ijcmk'l i 871’) (24)
Assuming that
oF oF
(%Cijklpkl - 8_71’) >0, (25)
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(in order to ensure consistency with (21)-(22), see Simo and Hughes (1998)
for more details), we can solve F' = 0 for A\, namely

oF :
(For; Ciimiér)

oF oF
_OF P, —

D0 mm = TNOP P

A= (26)

where the brackets denote the ramp function (z) = %m Taking the time
derivative of the stress and substituting in the flow rule yields

. . . {ge=Clunoptop)
Gij = Cijri(érr — APu) = Ciju | € — 52 a7 P | (27)

aqu qrstPst - AP

which allows us to express the continuum elastoplastic tangent stiffness tensor

ep Cijkl lf )\ = 0, ( )
cl = CiiionPopCmnkl 5. 252— . 28
gkl Cijri — —sp————Igmn if \ > 0.
mcqrstpstfw

Note that C'? is symmetric in the same manner as the elastic tensor given

in (14) (namely, that Cij, = C7h, = Cif), = Cppi), if the flow rule (19) is
associative (i.e. if P; = 25). For Drucker-Prager plasticity,
ij

Py =s;;/(27) + (8/3)d45, (29)

where [ determines the degree of plastic dilatancy. Thus the flow rule is
associative only if § = sin(¢).
Expression (28) is thus

Cijki if A=0,

ep  __
CZ]kl - kal _ %Sijskl‘f’%[Sin(¢)sij6kl+65ijskl}‘i’ﬁKz sin(¢)6ij5kl lf )\ > 0 (30>

pu+BK sin(¢p)+h

and associativity (symmetry of Cif;) holds in the general case if 8 = sin ¢.

4. The Governing Equation in Incremental Form

Because of the nonlinearity of the constitutive relation (2), a typical ap-
proach taken is to consider the rate form, given by (23), and posit the equi-
librium equation (1) in terms of an infinitesimal displacement increment du

10
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(Chen and Han, 1988; Simo and Hughes, 1998; Dunne and Petrinic, 20006).
In this section we derive the incremental equilibrium equation as well as the
specific forms of the relevant elastoplastic moduli. Note that although du is
an infinitesimally small increment in the continuum setting, it is taken to be
finite when the problem is discretized in time as done in section 7.

In the case of antiplane strain, the only non-zero strains are 7y, Vu--
For notational purposes, we therefore denote the relevant components of
the fourth-order tensor C' as Cuypy = Ch1, Coyer = Ch2, Cpaay = Co1, and
Cyrrz. = Co. We use similar notation to denote relevant components of the
elastoplastic tangent stiffness tensor, C*?; introduced in the previous section.
Using the rate form (23) allows us to replace (2) with an expression solely in
terms of increments of stress do and strain dvy, namely

dogy = Cridyey + C13dY., (31a)
dO’xZ - C;{Jd’}/wy + ;gd’)/xzy (31b>
where o y
U U
d Ty — "o d Tz — "4 32

are the incremental total engineering strains and du is the (infinitesimal)
displacement increment. Relations (31), along with the strain-displacment
relations (32) are substituted into the incremental form of the equilibrium
equation (1) and produce the nonlinear equilibrium equation for du given by

0 ddu odu 0 odu ddu

— |C— e — | — + CFH——| = 0. 33

ay 11 8y 12 aZ:| +az |: 21 ay + 22 aZ:| ( )
Recall that the elastoplastic moduli C77, CT5, Cs7 and C55 in equation (33)
depend nonlinearly on the stress. Forming the 2 x 2 matrix

+C

ep ep
C111 C’12

CP0) = | rep e 34
= lop cg (34

(matrix C is formed analogously), we derive conditions in section 5 such that
det C°? > 0, as is required for well-posedness.

Specified background stresses in the medium, denoted o,,,0,,,07, are
depth variable (see section 9), and the initial background shear stresses are
given by o7, and ¢7,. Note that from (30), antiplane deformation can activate

changes in normal stresses (for example, do,, = C, dve,+C, dvy,.) unless

0 0 0

11
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the relevant components of the tangent stiffness tensor are zero. This scenario
can be avoided with the assumption 8 = 0 and 0, = o), = 07, which we
make for the rest of this work.

In this work we assume isotropic elastic moduli C7; = Cyy = 1, and Co =
C5; = 0. For antiplane strain the specific components for the elastoplastic
stiffness tensor (30) are thus

it A =0,
cr = {“ oty (35)
1= Tihn it A >0,
if A=0,
265 = {H, po?, )72 if \ 0 (36>
~ Thi 1 >0,
and
0 if A =0,
Cleg = 05110 - { ,uazyazz/fQ i\ 0 (37)
T AT

Note that matrix CP is symmetric and in the antiplane setting, Drucker-
Prager reduces to von-Mises plasticity. Equation (17) reduces to

T=,/o3,+0Z, (38)
and the corresponding flow rule (19) is given by
) — Oy e )\% 39
me 7 Viz 7 ( )
The yield stress (18) reduces to
oy = —(0},./3)sin ¢ + ccos ¢. (40)

5. Incremental Energy Balance

We now switch from tensor notation used in previous sections to ma-
trix/vector notation, in order to facilitate comparison with the discrete for-
mulation we derive in the next section. We also assume, for ease of the
analysis in the following sections, that the boundary conditions for the in-
cremental problem (33) involve general boundary data dgy,, dgr, dgr and dgp
at the left, right, top and bottom boundaries (respectively) namely,

12
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du(t,0,z) = dgrp(t,z), (41a)

du(t, Ly, z) = dggr(t,2), (41b)
op Odu op Odu
C(2112 ay +CQ§ 82 0 = dgT(tvy)v (41C)
op Odu ep Odu
021108_3/ + nga . = dgp(t,y). (41d)

Later, however, we outline how we specify incremental boundary conditions
so as to impose fault slip, slow tectonic loading and free surface conditions,
as expressed in (7).

Assuming the solution to (33) with boundary conditions (41) is sufficiently
smooth, we multiply (33) by the incremental velocity du and integrate by
parts, yielding the following energy balance

d L, Ly Ly L.
—dE = / didoy,| dz+ / dudo,.| dy, (42)
dt 0 0 0 0
where the incremental internal energy is defined by
1 Lo [Ls B
dE = 3 / / dUTC (o) dUdydz (43)
o Jo
for vector
ddu/dy
dU = )
ddu/0z

The symmetric 2 x 2 matrix C°? has eigenvalues

Ao = itA=0, (44)
R/ (L4 h/p) iEA>0

and (25) implies that 1+ h/p > 0. C® is therefore positive definite for rate-
independent plasticity if and only if o > 0 (Horn and Johnson, 1985). If
h < 0, det(C?) = A\ < 0, which results in a loss of ellipticity of the equi-
librium equation (33) and a loss of solvability. This case violates Drucker’s
first stability postulate (requiring dU?C* (o) dU > 0) and can lead to prob-
lems including loss of uniqueness of the solution (Drucker, 1959; Jain, 1989;

13
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Bower, 2010). For the case h < 0, the constitutive theory therefore requires
modification (through the introduction of rate dependence, for example).
Thus for rate-independent plasticity, h > 0 is required; however, viscosity in
the viscoplastic model ensures a positive definite matrix, even if h = 0 (see
section 7.2).

Note that in terms of increments, the rate of change of the internal energy
can be decomposed into the sum of the rate of change of the mechanical (elas-
tic strain) energy and the plastic dissipation (a positive quantity), namely,

1
%E_—/ / [dU*] C’dUedydz+/ / [dU*)" C dU” dy dz,
(45)

where dU® = dU — dUP, is the vector of elastic strains and the plastic strain
vector is
A3y

P __
T = db,

For simplicity in the analysis only (see Erickson and Dunham (2014) for
details), we may take the boundary data dg;, = dgr = dgr = dgp = 0 and

show that (42) reduces to

d
—dE = 4
o 0, (46)

showing conservation of the incremental internal energy (or dissipation of the
incremental mechanical energy) in the absence of source terms and nontrivial
boundary conditions (i.e., in the absence of work done by body forces or
surface tractions).

6. The Spatial Discretization

The nonlinearities present in the governing equation (33) with boundary
conditions (41) make analytical solutions difficult, if not impossible to obtain,
except perhaps in certain limiting cases. SBP-SAT finite difference methods
are often used, however, to obtain numerical approximations to solutions
of nonlinear problems (e.g., Navier-Stokes from fluid mechanics (Nordstrom
et al., 2007)), although the stability analysis can be challenging and is gen-
erally approached by consideration of the linearized or “frozen coefficient”
problem. If the solution is sufficiently smooth (which is not guaranteed for
our problem), the linearized analysis is often enough to ensure convergence
for the nonlinear problem (Gustafsson, 2008).

14



346 We discretize equation (33) using the second-order accurate, narrow-
a7 stencil, summation-by-parts (SBP) finite difference operators for second deriva-
us  tives, originally defined in Mattsson and Nordstrom (2004) for constant co-
1o efficients, and for variable coefficients in Mattsson (2011). Time-dependent
3 boundary conditions are imposed and the elastoplastic moduli C77, C1%, C57
3 and Cg are nonlinear functions of the current stress state (or equivalently, of
32 the displacement increment). We use a Newton’s method with line search to
33 solve the nonlinear equation, detailed in section 7.3. At each time step, and
;4 each iteration of Newton’s method we consider the moduli as frozen, spatially
55 variable coefficients, and use the static counterpart of the spatial discretiza-
16 tion of the anisotropic acoustic wave equation in heterogeneous media ( Virta
s7 - and Mattsson, 2014).

358 We apply second-order accurate SBP operators and introduce the 2D
30 operators by first considering one spatial dimension. The 1D domain y &€
w0 [0, L] is discretized into N, 4 1 grid points yo, 1, ..., yn, with grid spacing
se Ay = L/N,. First derivatives are approximated by g—Z ~ Du, where u =
w2 [ug, w1, ... un,]” is the grid function and matrix D = H™'Q is an N, + 1 x
s [N, 41 finite difference operator. H and Q are also N,+1x N,+1 matrices and
s the building blocks for the SBP operators. H is a diagonal, positive definite
s quadrature matrix defining a discrete norm on the space of grid functions

366 HUH% = uTHu, (47)

%7 and Q is an almost skew-symmetric matrix such that Q+Q7” = diag[—1,0,0, ...0, 1].
s The SBP operators are derived such that they mimic integration-by-parts
w0 and provide a discrete energy estimate (that mimics its continuum coun-

1
w0 terpart). Namely, the relation / dy =3 [u*(L) — w*(0)] is obtained
s by 1ntegrat1on by-parts and is m1m1cked discretely by u”H(Du) = %u(Q +
w2 QT )u = L(u} —ul). If p(y) defines the variable coefficient, the narrow-stencil
313 second derlvatlve operator for variable coefficients is given by
0 13} p . .
74 a—y(p(y)a—y) ~Dj =H™ (-M" + pBS), (48)
ws where B = diag[—1, ... 1], and S approximates the first derivative operator

s on the boundary. Matrix M? = DTHpD+R?, where R? = (242(D,)TCypD,
w7 (correcting the typographical error in equation (21) in Erickson and Dunham
ws (2014)) is a positive definite damping matrix and C, = diag0, 1,1, ...,1,1,0]
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(Mattsson, 2011). Matrix p = diag[p(yo), p(y1), .. plyn,)]isa N,+1x
N, + 1 coeflicient matrix (all coefficient matrices are denoted similarly, with
bold notation).

In 2D, we discretize the domain [0, L] x [0, L,] with an N, +1 x N, + 1-
point grid, defined by

v, =1Ay, i=0,1,..,N,, Ay=L,/N,, (49a)
2z =iAz, 1=0,1,.,N,, Az=L,/N,, (49b)

where Ay and Az are the grid spacings in each direction. Thus w;; ~
u(yj, zi). Letting N = (N, + 1)(N, + 1), the N x 1 grid vector u in 2D is
given by

u=[ul, uf, .., u%y] (50)

where
u; = [Uo,i, Ulﬂ', g ey uNz,iL fOI‘ ), = 0, ceey Ny. (51)

The 2D variable coefficient p(y, z) defined on [0, L,| x [0, L,] is transformed
to the N x N diagonal matrix p = diag[p{,p7, ..., pﬁy] using analogous
notation. To form the SBP finite difference operators in 2D we make use of
the Kronecker product. Recall that if matrix A is size p x ¢ and B is r X s
then the Kronecker product of the two is of size pr x ¢s and given by

0,070B s CI,Q,NB
AB=| : Co (52)
(ZN’()B s &N,NB

In addition, the following identities hold:

(A®B)(C®D) = (AC)® (BD), (53a)
(AB)' = (A'®B™")if A and B are invertible, (53b)
(AeB)! = AT®B’. (53c)

We can thus extend any 1D operator P to 2D (in the y and z direction,
respectively) by

(P®I), (54a)

Py
P. =I®P). (54b)
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ws The first and second derivative operators in 2D are thus

0

w07 — =~ D, 55a
9 y (55a)
0
408 & ~ Dz7 (55b)
0 0\ « D? = H![-D!pH,D, — R” + pB,S
409 a_y p(y7 Z)a_y ~ Moy - y [_ yp yHy T Yy +Pp Y y] ) (55C)
wo (sl ) ~DE = H[-DIPH.D. - RZ+pB.S . (550)

a1 where RP,R? are positive definite damping matrices in 2D (see Erickson
sz and Dunham (2014) for details). The equilibrium equation (33), along with
a3 boundary conditions (41), is thus discretized by

D§ 1 du+D,C%D.du+D.CED,du+DS#du+P;+Pr+Pr+Pps =0,
a1 (56)
a5 where du is the incremental displacement grid vector, and the SAT penalty
a6 vectors are given by

P, = H;'(ap +H;(-CTS, — C1D.)" )H.Eo(du,, — dg;)(57a)
Pr = H,'(ap+ SH;'(CYS, + CHD.)" H.Ey(dug — dgg) (57b)
419 Pr = —H;'(I, ® Ey)([-C%S.du — C5{D,du], — dg;) (57¢c)
Py = —-H;' (I, ® Ey)([C%S.du+ C$D,du], — dgy). (57d)

a1 Recall that the coefficient matrices in (56) depend nonlinearly on the stress o
«22 The notation duy, is the restriction of the grid vector du to the left boundary
23 and dug, durp,dug, are the restrictions to the right, top and bottom bound-
w24 aries (respectively). Vector dg; is the boundary data dg;, evaluated at the
w5 grid and dgp,dgy, dgp are defined analogously. Matrices Eg and Ey map
w6 the restricted vectors to full-length (N x 1 length) vectors (see Erickson and
w27 Dunham (2014) for details). Virta and Mattsson (2014) derive conditions
w8 on the penalty parameter 8 and penalty matrices a, and ag such that a
w20 semi-discrete energy estimate can be obtained. Following their analysis, the

a0 semi-discrete incremental internal energy dE (a slightly modified analog of
s (43)) is defined

1 _ 1 op 1 e
dE = §dUT(Hy®HZ)CEPdU+§duT(RyCH®Hz)du+§duT(Hy®R522)du+U1+U2.
a2 (58)
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In (58), vector dU = [D,du D.du]?, the positive-definiteness of the 2N x
2N, block diagonal matrix

ep ep
Cll Cl2

"= loz oz o

follows from that of C*?, and U, U, are positive quantities, see Appendix
A. Assuming zero-boundary data, as in the continuum problem, the semi-
discrete equations are shown to satisfy the energy estimate

d

%dE <0, (60)
which ensures stability of the method, see Appendix A for more details. Note
that for our application problems in section 9 we desire better resolution near
the fault and free surface, and therefore consider a non-uniform grid spacing.
In appendix A we detail the stability analysis for a grid with non-uniform
spacing; the uniform grid spacing assumed in this section (to maintain flow
of the discussion) is a special case.

7. Time Stepping

In this section we explain the time stepping method for the overall prob-
lem. This is done by first updating slip and the state variable along the
frictional fault. The update to slip, along with the remaining boundary con-
ditions, generates an increment of load. Updates to the displacement, stresses
and plastic strains (that occur in the volume in response to the load) are then
computed.

We introduce a time discretization so that notationally, superscripts on
a particular field imply we are considering a finite increment over a discrete
time step. We assume the system is equilibrated at time ¢ with stresses con-
sistent with the constitutive theory of section 3. Slip and state variable along
the fault are updated via a Runge-Kutta method with adaptive time stepping
(see section 7.4 for details). These updates provide the incremental bound-
ary data dg?™ along the fault, which, together with dg/st', dgit, dgh™,
correspond to an increment of load applied over the time step dt = t"+! —¢»
that drives the system to a new state. In what follows, we describe the lat-
ter part update, namely, how the displacement increment and the associated
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stresses and plastic strains are updated in response to the load in a manner
that accounts for plastic response.

Let the discrete equilibrium equation (56)-(57) be denoted £(do) = b
where vector b stores the incremental boundary data. At ¢"*! we wish to
obtain both stress and displacement increments that satisfy

E(do"th) = b (61)
and are consistent with the constitutive theory of section 3, where do™"!
is related to the displacement increment du™™ through a discrete form of
constitutive relation (31) (which we define shortly) and the discretized strain-
displacement relations (32).

To obtain the displacement, stresses and strains at time ¢"*! we first
apply a backward-Euler discretization to the flow rule (19) and equivalent
plastic strain

n+1
7p,n+1 — ,yp,n 4 d)\n+1 ny (62&)
Y Y Fn+l
pn+l D,n n+1 0.;12—1
APIEL P gL (62¢)

where dA"™ = A" T1dt. A direct linearization of this discretization implies

an associated discrete, incremental form of the constitutive relation given by
1

doi™ = CTy (0" )dey’ (63)

where C is the consistent tangent stiffness tensor (and a function of the

stress at the end of the time step), derived in the next section. The fully
discrete equilibrium equation can thus be expressed

g(cep(o_nJrl)dunJrl) — anrl7 (64)
and is a nonlinear function of du™**.
To solve (64) we proceed via a Newton-type method which utilizes the
partial derivative

O 0 . .. oden!
ada adanﬂcifm(ﬂ H)adTlZlH (65)

ij
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and incorporates the consistent tangent stiffness tensor. We set iteration
index k = 0 and compute an initial, elastic guess du"™® to the displace-
ment increment, obtained by assuming C® = C and solving (64). Consistent
stresses o™ 1(*) agsociated with du™"® are obtained from the return map-
ping algorithm which is based on the backward Euler discretization (62), and
detailed in the next section. Deferring specific details until section 7.4, if
the new, consistent stress state satisfies equilibrium, then the final fields are
those at iteration k, and the process is considered done.

If equilibrium is not satisfied, however, the displacement increment du
must be adjusted (and thus adjustments to the stress and plastic strains must
be made). The displacement increment is updated by solving (64) via an it-
erative Newton-type method that solves the linearized equilibrium problem

n+1,(k)

E(CP (" W)duTHETY) = bt (66)

and the return mapping algorithm provides associated consistent stresses
oL (Simo and Hughes, 1998; de Souza Neto et al., 2008). This iterative
procedure continues until equilibrium has been satisfied with an appropriate
convergence criterion met (see section 7.3). The displacement u™*! = u™ +

du™"! can then be formed from the converged value of the finite increment
dun-i—l‘

7.1. The Return Mapping Algorithm

Within the Newton iteration described in the previous section, the finite
displacement increment du"® is obtained and stresses consistent with the
plastic constitutive theory must be updated (Simo and Hughes, 1998). In
this section we describe how to obtain o™t First, the strains associated
with du”™® are computed

Y = dyp (67a)
) =y dy ) (67D)

and allow us to compute the elastic trial state (denoted with asterisk *)

P = pn (684)
o_;,zn—l—l,(k) = p(ynt (k) _ AP = o+ pdy (k). (68h)
O.;ianrL(k) = M(q,;;l( ) _ ,),g,y ) = o-xy + Md7n+1 )’ (68¢)

assuming no additional plastic strain has accrued over the time step.
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The final stress state at time t"*! must satisfy F' < 0, where the yield
function is defined in (15) for yield stress (40). If the elastic trial stresses sat-
isfy £ < 0, then they are accepted as the final stresses. If the trial stresses lie
outside the yield surface (F' > 0), however, they are be “mapped back” onto
the yield surface by adjusting the plastic strains so that F((a™ !, (k), 42" +1(*)
0 is satisfied (Simo and Hughes, 1998).

Substituting equations (62a-b) into (68b-c) yields

a*’"“ = 7th1(1 + pd A"/ (69a)
ol o = o1 4 pdA"TFh). (69b)

Tz

From (69) we calculate

7—_*,n+1 — \/(o_;%/nJrl)Q + (o.;,zn+1)2
7 pdA (70)

Re-arranging (70), noting that F/(g""! 4?"*1) = 0, and substituting in (62c)
yields the plastic consistency condition

dA™ = F(a™ L Pt (b ), (71)
where 4*?"*1 is given by (68c). Finally, solving (69) for of' and o7
yields
*n+1,(k *,n+1,(k) / =x.n n+1,
) ot (k) ol +1,( )(7. L) d A" (k)) (720)
bt 1+ /LdAn+l’(k)/’f'”+l Fxn+1,(k)
0.n+1,(k) _ o +1,(k) B o +1,( )( +1,( ;Ld)\ +1 ((k‘l))iq

1+ pdA™ 50 JEnti ) 1, (k)

which expresses the final stress state entirely in terms of the computed elastic
trial stresses.

The consistent elastoplastic tangent stiffness tensor C/ i in (64) is ob-
tained by a linearization of the return-mapping algorithm. We derive these
consistent moduli in Appendix B, with specific components (ommitting su-
perscripts n+ 1) given by (bold face notation is not used as these moduli are
derived independently of a spatial discretization)

o (u if A =0, -
= M_M_M[l—(%f] if A >0, (%)

1+h/p T
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o 1 it A =0, -1
22 — ,LL o ,LLO'Q%Z/‘T'Z . d)\,u,2 [1 o (a’mz)Q] 1f )\ > 07 ( )

1+h/p T T
and
0 ifA=0
@ _ e = i L (1)
12 21 OwyOzz T2 d\p? OxyOzz :
{—“ ol B [ ] i > ),

which agree with the continuum moduli in the limit that d\ — 0.

It has been shown for many problems that using the consistent tangent
moduli (73)-(75) with discretization (64) (to compute numerical solutions
to (33)) then the quadratic convergence rate typical of Newton-type itera-
tive methods is achieved. This rate of convergence is often lost, however, if
the continuum tangent moduli (35)-(37) are used instead (Simo and Taylor,
1985). In our application problems we thus use the consistent elastoplastic
moduli and leave the comparison of Newton convergence results to future
work.

7.2. Extension to Viscoplasticity

Classical Perzyna viscoplasticity (Perzyna, 1966, 1971) is obtained from
rate-independent plasticity by replacing the yield condition (16) with F'(o, v?)
nA, where n > 0 is the viscosity. A viscoplastic response alters the return
mapping algorithm in the previous section through the following: If the
computed elastic trial stresses are such that F(g*"* 4*Pnt1l) > (0 then
equations (70) and (71) are replaced with

n+1
7—_*,n+1 — 7—_n+1 + 1

dt (76)

and
AN = P A ) o g 4 R ). (77)

The consistent elastoplastic tangent moduli (73)-(75) can also be derived
from linearizing the return-mapping algorithm (see Appendix B), yielding

14 it A =0,

Cle?l) - iua-,%y/?Q dAM2 Ozxy 2 :
[ — T T [1— (7) ] it A>0,

(78)
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ng = o, /72 dip? o . (79>
- Rl [1—( ) ] it A > 0,
and
Cep Cep {0 lf )\ = Oa (80)
12 = 21 = _NUzyO'zz/'FQ _ d)\,u,Q _ OzyOaxz .
b b/ -1 2= ifA>0.

Note that for a fixed n, if dt — 0, the consistent elastoplastic moduli (78) -
(80) approach the elastic moduli. Furthermore, for n > 0, we can take h = 0
and still guarantee that C is positive definite.

7.3. Newton Iteration with Return-Mapping

We let k& = 0, du">® be the initial (elastic) guess for the displacement
increment du™*', and iterate as follows.
Step 1: Compute the strain increments

d'yg?jl’(k) = D,du"t® (81a)
dy; P ® = D.dutt®, (81b)

Step 2: Compute the elastic trial state and use the return mapping algorithm
to obtain the consistent stresses oy "*) o7 ™ and plastic strain 4P L®),
Step 3: Check if equilibrium is sufficiently satisfied. That is, check if a
stopping criterion is met, for example, ||€(CP (o™ *))du™®) — prt1|| <
tol), where tol is a specified tolerance. If so, set u"t! = u” + du"tH®),
the remaining fields are those at iteration (k), and the Newton iteration
is complete. Otherwise set k = k + 1, solve £(CP(a"tH*)du" ¢+ =
bt for du™H*+Y and return to step 1, iterating until the Newton method

converges and equilibrium is met.

7.4. Time Stepping Method

In this section we provide details of time stepping for the overall prob-
lem, which includes details of the update to slip and the state variable along
the fault, and provides an initial guess for the off-fault fields. As stated in
section 2, rate-and-state friction, as used in our algorithm, provides the set
of differential equations (9)-(11) that are used to evolve the fault boundary
displacement (i.e., fault slip). We modify the method from FErickson and
Dunham (2014) in order to incorporate off-fault plasticity. Bold-face type is
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again used to denote spatially discrete quantities. We assume the body is
equilibrated (with consistent stresses) at time ¢" and that V™ and " are
known. The following time-stepping method is illustrated in the context of a
forward Euler step, but we use Matlab’s adaptive, fourth order Runge-Kutta
method with a relative tolerance of 1077.

Step 1. Update slip and state on the fault by explicitly integrating

Au" = Au" 4 dtV" (82a)
Pt = N dG(VE "), (82b)

Step 2. Set the boundary data in (41):

dg}t! = dtv"/2,
dgitt = dtV, /2,
dgi' =dgj™ =0,

form b™*! and solve for an elastic increment du™*(©; i.e., take C? = C and
solve the discrete equation (64).
Step 3. Correct the initial elastic guess du"*H© by iterating following the

Newton procedure in section 7.3 until convergence is reached, thus obtaining

n+1 n+1 n+1l ~p,n+1 p,n+1 p,n+1
u ?Uzy 1Oz s Ty » lxz Y :

n+1

Step 4. Compute the shear stress qu+1 =0y,

|y—0 on the fault.

Step 5. Equate shear stress with frictional strength T(;?SH — gV =
o, f(V"T 4p™*1) and solve for the updated slip velocity V"™ (solved using

a local, safe-guarded Newton method) and return to step 1.

8. Convergence Tests and Comparison with Finite Element Solu-
tion

We conduct two studies to verify our numerical method. The first study
is a convergence test of our spatial discretization and time-stepping for an
elastic problem; the second study is a comparison test with a finite element
solution for the same plasticity model.
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For the first study we proceed with the method of manufactured solutions
and show that our numerical solution is converging to the exact solution at
the correct rate (Roache, 1998). The nonlinearity introduced by plasticity
makes this procedure difficult, thus we solve the anisotropic elastic version
by assuming that the elastoplastic moduli do not vary with stress or time,
but rather in space only. We want to check that our incremental procedure
will provide a numerical approximation to the exact solution to the non-
incremental equilibrium equation

O | e ou ep ou O | ~ep ou ep ou|
By 011(97 Z) By + 012<y7 Z) 82} + 92 [021(% z) By + C, (y, Z) 92| 0,
(83)

where the moduli in (83) are known functions of space. Let the exact displace-
ment (denoted with a hat) to (83) be that given in Erickson and Dunham
(2014), namely

oo

i(t,,2) = SK(0B(,2) + 211 D(y, 2)] + o (84)

which provides the exact (elastic) stresses (also denoted with hats)

6oy = C1(y,2)0u/0y+ Ci3(y, 2)0u/0z (85a)
0. = C51(y,2)00/0y + Cy3(y, 2)0u/0z. (85b)

Appropriate source terms are added to (83) so that @ is indeed the solu-
tion. In the construction of the exact solution (84), K(t) controls the time-
dependency of the solution, ¢ is the total slip that occurs during the event,
7% is a parameter that defines the remote stress, and ® describes the spatial
dependency of the solution. The specific forms are given by

(S = V;)t_—f— Vmint_, (86&)
1 _1 t—f T Vmin
K(t) = — |tan (t )+§ t—5 (86h)
H(H +vy)
d(y, = —— 86

where t denotes the event time, ¢,, denotes the time scale over which the event
occurs, Vi, defines a minimum slip velocity throughout the simulation, and
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s H defines a locking depth. For the elastic moduli, we assume the following
65 forms

pei(y, 2)2/|cf?

656 Clef = MU — 11 h/,u s (87&)
e ,U/C2<y7 2)2/|C|2
657 ng = Mu— W’ (87b>
e e He (ya Z)CQ(yv Z)/|C|2
658 015 = 02:{) —- — 1 T h/yj , (87C)
650  where
Hf L
660 caly,z) = FEEey (88a)
H L3
661 ey, z) = Ty (88b)
e and |c|* = ¢f + ¢3. Thus the moduli form a symmetric, positive definite
63 matrix C? if b > 0. The exact slip along the fault is
664 AU(t, z) = 2u(t,0,z) = 0K (t)P(0, z) + V,t[1 — (0, 2)], (89)
665 with slip velocity
- ou* ou*

w  V(t2) = Sl = rlymo- = SK(DB(y,2) + V, [1 - 8(0,2)] . (90)
eo7 Lastly, since 7(t, z) = 6,,(t,0, 2), we can solve (8) for the exact state variable
. 2V P — DradV
668 7,D =aln [ AO sinh <u> (91)

1% na

ss0 which implies that a source term must also be added to state evolution

670 Y = G(V,v¥) + s(t, 2) (92)
o1 where R o

672 S = ¢ - G(V,¢) (93)
673 All parameter values used in the convergence tests are given in Table 1.

o At the end of the simulation (ty = 70 years), we compute the relative error
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Table 1: Parameters used in the manufactured solution convergence tests.

Parameter Definition Value

L, fault length 24 km
L, off-fault domain length 24 km
ly z-length scale for coordinate transform 5 km

Uy y-length scale for coordinate transform 5 km

H locking depth 14 km
Ly y-length scale for ¢ 5 km

H, z-length scale for c¢; 6 km

Lo y-length scale for ¢, 4 km

H, z-length scale for ¢y 5 km

p density 2670 kg/m?
1 shear modulus 30 GPa
h hardening modulus 30 GPa
o, normal stress on fault 50 MPa
T remote shear stress 40 MPa
ty final simulation time 70 years
t event nucleation time 35 years
tw timescale for event duration 10 s

a rate-and-state parameter 0.015

b rate-and-state parameter 0.02

D. critical slip distance 0.4 m

v, plate rate 1079 m/s
Vo reference velocity 107% m/s
fo reference friction coefficient 0.6
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Table 2: Relative error in the discrete H- and energy-norms with N = N, = N,. The
rate of convergence approaches 2, as expected for a method with second-order accuracy.

N | Errory(h) Rate | Errorg(h) Rate
241 1.030 x 1073 | - 1.236 x 1073 | —

25 | 2.867 x 1074 | 1.845 | 3.514 x 107* | 1.814
26 | 7.433 x 107> | 1.947 | 9.242 x 1075 | 1.927
271 1.883 x 107> | 1.981 | 2.360 x 107 | 1.970
28 1 4.741 x 107% | 1.990 | 5.967 x 1075 | 1.984

between the exact and the numerical approximation in both the discrete
H—norm and the energy-norm, defined by

Errorg(h) = |[lu—1|lg/[[4||x (94a)
Errorg(h) = |[lu—1llz/|[4lle (94b)
where
M
lall7 = ) lldulf3 (95a)
i=1
M
lull} = D dE; (95b)
i=1

where ||dul[?, = (du)”(H, ® H,)(du), M is the number of adaptive, Runge-
Kutta time steps and dE is the incremental internal energy defined by (58).
Table 2 shows that we are achieving second-order convergence, as expected.

Because this first verification study confirmed convergence for an anisotropic
elastic problem, the purpose of the next study is to validate our results with
plasticity. For the second validation study, we compare results of the solution
to a boundary value problem subject to Drucker-Prager plasticity. Results
from our finite difference code are compared to those from a finite element
solution using the OpenSees Software Framework (Mazzoni et al., 2009) and
available at http://opensees.berkeley.edu.

We want to confirm that our incremental approach using equation (33)
(in the context of the time stepping method outlined in the previous section)
solves the non-incremental form of the governing equation (1), on the domain
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(y,2) € [0, L] x [0, L] with boundary conditions given by

u(0,2z) =0 (96a)
u(L, z) = g(2) (96b)
02:(y,0) =0 (96¢)
owz(y, L) =0. (96d)

Boundary data g(z) and all parameter values are listed in Table 3. Stresses
are subject to the Drucker-Prager yield condition (15) with constant yield
stress oy. We assume an equal grid spacing A = Ay = Az of both 1 km
(N, = N, = 24) and 200 m (N, = N, = 120). Figure 3 shows solutions
from the finite difference solution to the plastic boundary value problem
with A = 200 m, along with the elastic counterpart of the same boundary
value problem, in order to illustrate the differences between the two mate-
rial models. Figure 3(a-c) show the displacement and two relevant stress
components of the plastic solution (in dashed lines) and the elastic solution
(solid lines) at different z-values. Figure 3(d-f) are the equivalent fields at
various y-values. Although plasticity mildly affects the displacement field,
the stresses are significantly reduced in amplitude, particularly near x = 24
km. Fig. 4 compares contours from the finite difference and finite element
solution with A = 1 km. The finite difference solution is plotted in solid
colors, while the finite element solution is plotted with black circles. The
displacement fields in Fig. 4(a-b) are quite similar, but error is visible in the
computed stresses, particularly in Fig. 4(d) near y = 24 km. This error is
visibly decreased when mesh refining, as shown in Figure 5. Absolute and rel-
ative errors between the computed fields using the two methods are denoted
by err® = |[uf? —uf?||, and err” = [[uf? — ulE||y/|[ulF||y, respectively,
and errors for other fields are defined analogously. Results shown in Table 4
suggest the two methods produce similar results.

9. Application

We are interested in how changes in viscosity, isotropic hardening and
cohesion affect features of the earthquake cycle. We find that all three pa-
rameters influence the magnitude and off-fault extent of plastic strain, and
that in all cases, plasticity affects the amount of slip on the fault in the
shallow sub-surface during each rupture. We use the combined spatial dis-
cretization and time-stepping method detailed in previous sections to sim-
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Table 3: Parameters used in antiplane plastic case for comparision of FDM and FEM.

Parameter Definition Value

L, fault length 24 km

L, off-fault domain length 24 km

1 shear modulus 32.038 GPa

p material density 2670 kg/m?

g(2) right boundary condition — cos(wz/12) + 1 (m)
oy yield stress 4 MPa

) angle of internal friction 0

h hardening modulus 32.038 GPa

Table 4: Absolute and relative error between our finite difference solution and that ob-
tained from the finite element code in the discrete L?>-norm for N, = N, = 24, 120.

N err® err err® err” err®

u u Ozy Ozy Oxz

err

T
Oxz

24 | 1.06 x 10° | 3.27x1072 | 1.72x 10° | 3.72x 1072 | 4.76 x 1072 | 3.22 x 1072

120 | 9.87x 1072 | 3.04 x 1073 | 1.92 x 107! | 4.14 x 1073 | 3.81 x 1073 | 2.70 x 10~*

ulate multiple earthquake cycles with off-fault plasticity. The fault is gov-
erned by rate-and-state friction with depth-variable parameters a and b (see
Fig. 6a). Where a — b < 0 defines the velocity-weakening (seismogenic)
zone, below which the fault creeps interseismically. As an initial study,
we assume that the effective normal stresses in the medium are given by
0y, = 0y, = 0%, = —(p — puw)gz + Pam where p, is the density of water, g
is the acceleration due to gravity and atmospheric pressure P, is set to 0.1
MPa. The yield stress (15) is thus linearly increasing with depth, see Figure
6b. We assume the pore-pressure in the fault is higher than in the surround-
ing rock so that although the effective stresses off the fault are depth-variable,
effective normal stress on the fault is constant below some depth, see Fig-
ure 6b (Rice, 1992). Fixing the internal friction parameter ¢ sets the slope
of the yield stress and the yield stress at Earth’s surface can be increased
or decreased by changing the value of the cohesion ¢, which we assume is
constant with depth. We vary cohesion between 40 and 50 MPa, which are
reasonable depth-averaged values of those derived from Hoek-Brown param-
eters for many rock strength models (Roten et al., 2016). The parameters
we use in our simulations are given in Table 5.

To determine grid spacing for our application simulations, Rangjith (2008)
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Table 5: Parameters used in application simulations.

Parameter Definition Value

L, fault length 24 km

L, off-fault domain length 24 km

1 shear modulus 36 GPa

0 density 2800 kg/m?

Cs shear wave speed 3.586 km/s
Puw density of water 1000 kg/m?
On normal stress on fault depth-variable
T remote shear stress 10~7 MPa

a rate-and-state parameter  depth-variable
b rate-and-state parameter  depth-variable
D. critical slip distance 8 mm

Vv, plate rate 107 m/s

Vo reference velocity 1075 m/s

fo reference friction coefficient 0.6

c cohesion variable

h hardening modulus variable

) internal friction angle arctan(0.6)
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zs found that for antiplane sliding between two anisotropic elastic materials,
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Figure 3: Contours of solution to (1) with boundary conditions (96) for elastic (solid
lines) and plastic (dashed lines) material response. (a)-(b) displacement and (c)-(f) stress
components. Plastic effects are seen most prominently in the stress contours which are
reduced due to the yield condition.

79 instability occurs for wave numbers below the critical wave number
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Figure 4: Contours of solution to (1) with boundary conditions (96) for plastic material
response using the finite difference method (solid lines) and the finite element solution
(black dots). (a)-(b) displacement and (c)-(f) stress components, with N, = N, = 24
points.

where

= /det(Cer). (98)

pro= ot T (99)
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Figure 5: Contours of solution to (1) with boundary conditions (96) for plastic material
response using the finite difference method (solid lines) and the finite element solution
(black dots). (a)-(b) displacement and (c)-(f) stress components, with N, = N, = 120
points.

must be resolved by the grid to ensure accuracy of the solution.

As in Erickson and Dunham (2014), we also need to resolve the region
of rapid strength degradation immediately behind the tip of a propagating
rupture, which is typically much smaller than h*, and involves the rate-
and-state parameters a and b in a different manner. By analogy to the
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corresponding elastic problem (Ampuero and Rubin, 2008), we anticipate
that this length scale will be approximately
*Dc

L=" (100)

bo,

For all of our simulations, events nucleate near the transition zone from
velocity weakening to velocity strengthening (at a depth of approximately 10
km) and we chose values for parameters 7 and h primarily for computational
(grid resolution) purposes. Since we use a variable grid spacing, we resolve
h* and Lj in our simulations with at least 60 and 5 grid points (respectively)
near the free surface, with fewer (down to 12 and 1 grid point, respectively)
at the nucleation depth, which we note seems less than desirable. To test that
this grid spacing is adequate, however, we double the number of grid points
for one scenario and the results appear qualitatively similar, see Appendix C.
For the viscoplastic simulations we resolve the viscous relaxation time scale
n/p with at least 5 time steps.

For some parameter regimes, plastic yielding during the interseismic pe-
riod is possible. For example, a decrease in cohesion ¢ decreases the size of the
elastic domain, so that plastic yielding can occur at lower stress states, see
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Figure 7: Snapshots of cumulative slip profiles plotted at 5-a intervals during interseismic
period when max(V) < 1 mm/s and dashed red profiles plotted at 1 s intervals during
quasi-dynamic rupture for (a) elastic reference case, (b) n = 0 GPa-s, h = 20 GPa, ¢ = 50
MPa, and (c) n = 36 GPa-s, h = 0 GPa, ¢ = 50 MPa.

Figure 2. Although in reality plastic yielding may occur during all phases of
the earthquake cycle, we chose to explore scenarios where plastic response is
limited to the coseismic phase. This choice was made because viscoplasticity
introduces the time scale n/h which must be resolved by the time-stepping
method. For small values of 7/h, the effective response during rupture is
plastic. Unfortunately, small n/h cannot be resolved during the interseis-
mic phase without taking unreasonably small time steps, thus we considered
large values of ¢ such that plastic response occurs only at those stress levels
attained during rupture. The study of plastic yielding during all phases of
the earthquake cycle are deferred to future work.

Figures 7 and 8 show cumulative slip profiles plotted at 5-a intervals
during the interseismic period, which we define to be when max(V) < 1
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Figure 8: Snapshots of cumulative slip profiles plotted at 5-a intervals during interseismic
period when max(V) < 1 mm/s and dashed red profiles plotted at 1 s intervals during
quasi-dynamic rupture for (a) n = 28 GPa-s, h = 0 GPa, ¢ = 50 MPa, (b) n = 36 GPa-s,
h =20 GPa, ¢ = 50 MPa, and (c) n = 36 GPa-s, h = 20 GPa, ¢ = 40 MPa.

mm/s, and in dashed red contours every 1 s during quasi-dynamic rupture.
Figure 7(a) is the elastic reference case used in Erickson and Dunham (2014),
where periodic cycles emerge. Slip below the velocity-weakening region creeps
interseismically and approximately 3 m of slip occurs at the surface during
each event. Note that during each event, the upper section of the fault
catches up with slip at depth, characteristic of an elastic material response.
For the plastic simulations, in all cases we found that after the first rupture,
slip in the shallow surface is less than the slip at depth. The evolution of this
slip deficit with each subsequent event is dictated by the plasticity model,
however.

Figure 7(b) shows results from considering rate-independent plasticity
with hardening parameter h = 20 GPa and cohesion ¢ = 50 MPa. Plastic
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Figure 9: Off-fault equivalent plastic strain for n = 0 GPa-s, h = 20 GPa, ¢ = 50 MPa
after the first, second, eight and eighteenth rupture events. The magnitude and off-fault
extent (~100 m during first rupture only) of plastic strain effectively saturates after the
first event.

response occurs during the first event when the rupture reaches approxi-
mately 3 km depth, but has only a slight influence on slip above this depth.
During the first rupture, a small slip deficit emerges above ~1 km depth.
Because hardening causes the yield surface to expand, the response during
subsequent events is effectively elastic and the slip deficit remains largely un-
changed. Figure 7(c) shows results from a viscoplastic simulation (without
hardening) with n = 36 GPa-s and ¢ = 50 MPa. The slip deficit in the upper
3 km increases with subsequent ruptures, and after the tenth event, the slip
deficit at the surface is approximately 2 m.

To assess the sensitivity to viscosity, we decrease 1 from 36 to 28 GPa-s,
seen in Figure 8(a). The slip deficit in the upper 3 km also increases with
subsequent rupture, and after the 10th event the slip deficit at the surface is
approximately 3 m, suggesting that the slip deficit will increase at a faster
rate for lower values of n for the viscoplastic model without hardening. Figure
8(b) shows results from combined viscoplastic and hardening effects. For
n = 36 GPa-s, h = 20 GPa and ¢ = 50 MPa, the slip deficit increases with
each rupture, but at a decreasing rate, and reaches a limiting value of ~1 m.

Decreasing the cohesion to 40 MPa, as shown in Figure 8(c), gener-
ates a larger slip deficit (approximately 3.5 m at the surface after the 10th
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Figure 10: Off-fault equivalent plastic strain for = 36 GPa-s, h = 0 GPa, ¢ = 50 MPa
after the first, second, eight and eighteenth rupture events. The magnitude and off-fault
extent (additional ~100 m per rupture) of plastic strain increases at an approximately
constant rate with each rupture during the first 18 events.

event) than the analogous simulation in Figure 8(b), although with hardening
present this deficit also saturates after several ruptures.

For the values we considered, cohesion determines the depth at which
plastic response occurs during rupture (confined to about 1-2 km below
Earth’s surface). Figure 9 illustrates the evolution in off-fault equivalent
plastic strain for the rate-independent simulation from Figure 7(a), during
the first, second, eighth and eighteenth events. The first event generates
plastic strain at depths above ~1 km and off the fault to about 200 m at the
surface. The maximum value at the fault surface is approximately 0.7 mil-
listrain and little increase in either extent or magnitude occurs after the first
event. Figure 10 is the analogous figure for the viscoplastic model without
hardening from Figure 7(b). The first event generates a maximum value of
0.06 millistrain at the fault surface, extending out to approximately 300 m
and to a depth of ~1 km. During all subsequent events the maximum value
of plastic strain increases.

Adding hardening to the viscoplastic model decreases the magnitude and
extent of additional plastic strain with each rupture, see Figure 11, so that
by the eighteenth rupture, the distribution remains relatively unchanged by
subsequent events. Figure 12 illustrates the effect of a decrease in cohesion
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Figure 11: Off-fault equivalent plastic strain for n = 36 GPa-s, h = 20 GPa, ¢ = 50 MPa
after the first, second, eight and eighteenth rupture events. The magnitude and off-fault
extent (~100 m during first rupture only) of plastic strain increases at an approximately
decreasing rate with each rupture. After 18 events, the extent has saturated at < 1 km at
the surface.

(from 50 to 40 MPa) which effectively lowers the yield stress so that plastic
straining occurs at lower depths compared to previous simulations. Com-
pared to the results shown in Figure 11, a decrease in cohesion increases the
depth of plastic strain from 1 to 2 km during the first event. In addition, a
decrease in cohesion generates more plastic strain and with greater extent.
By the eighteenth event, plastic strain extends beyond 2 km at the surface.

The amount of tectonic offset accommodated by plastic strain, u?(t, z),
can be computed by integrating the off-fault plastic strain, namely

Ly
uP(t,z) = 2/ Vo, (ty, 2) dy. (101)
0

At the surface z = 0, the time history of u” is plotted in Figure 13 and illus-
trates how much tectonic offset is accommodated by inelastic deformation for
different plasticity models. In particular, when rate-independent plasticity
with hardening is used (cyan), the amount of offset due to inelastic deforma-
tion is about 0.2 m after the first event and increases almost negligibly after
the first event. If a viscoplastic relaxation is added (green), however, the
amount of offset is lower during the first event, but increases with each rup-
ture, reaching approximately 0.2 m after ~10 events. An increasing amount
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Figure 12: Off-fault equivalent plastic strain for n = 36 GPa-s, h = 20 GPa, ¢ = 40 MPa
after the first, second, eight and eighteenth rupture events. The magnitude and off-fault
extent (~1 km during first rupture only) of plastic strain increases at an approximately
decreasing rate with each rupture. After 18 events, the extent has begun to saturate near
2 km.

of offset accommodated by inelastic deformation occurs with each rupture
for the viscoplastic models without hardening (black, blue, red), with lower
values of viscosity generating greater amounts of inelastic deformation. For
n = 20 GPa-s, for example, approximately 2 m of tectonic off-set is accommo-
dated by inelastic strain after ~10 events. The rate-independent simulation
with hardening present (cyan) reveals that an upper limit to the amount of
inelastic deformation exists, by virtue of the fact that hardening causes in
expansion of the yield surface, as illustrated in Figure 2. The viscoplastic
simulations with hardening (green and purple) show that inelastic yielding
continues to occur (with greater overall amounts for lower values in cohesion),
but at a decreasing rate, i.e for decreasing du?/dt. Only the viscoplastic sim-
ulations without hardening (black, blue, red) reveal that inelastic yielding
continues to occur with an increasing amount of plastic strain accruing with
each event (du?/dt > 0).

10. Discussion

We have developed a finite difference method to account for off-fault
plastic response over many quasi-dynamic ruptures. The computational
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Figure 13: Time history of integrated plastic strain at the surface showing amount of
tectonic offset accommodated by inelastic deformation.

framework can model both rate-independent plasticity and viscoplasticity, al-
though we found that isotropic hardening is necessary in the rate-independent
model for solveability of the underlying equations. We considered a Drucker-
Prager model (which reduces to von-Mises plasticity in the antiplane scenario
we considered) with a depth-dependent yield stress. Numerical results were
verified through convergence tests and comparisons with the solution from a
finite element software package. Future work includes a deeper exploration
of parameter space. For example, the inclusion of a depth dependency of
the internal friction angle and cohesion (like those derived in Roten et al.
(2016)) will be considered. The effects of hardening and viscosity will fur-
ther be explored, as our choices for these parameters were chosen primarily
for efficiency of computation.

For the parameter study in this work, we found that viscosity, hardening,
and cohesion all influence the extent and magnitude of off-fault plastic strain
and all scenarios give rise to a shallow slip deficit. The inclusion of hard-
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ening in all models sets an upper limit on the slip deficit, which is reached
at a faster rate for lower values of viscosity. The viscoplastic models with
no hardening, however, give rise to the largest slip deficits which increase
continuously with subsequent rupture. Our results suggest that cumulative
inelastic deformation over the course of many events can account for a sig-
nificant amount of tectonic offset. We found that per rupture, ~0.1 m of
integrated plastic strain accrues, corresponding to ~10% of the tectonic de-
formation budget. Results from our model compare well to the observations
of Meade et al. (2013) who estimate that 6% £ 9% of deformation occurs off
of several major strike-slip faults.
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Appendix A. The Coordinate Transform and Penalty Parameters

As stated in section 6, we desire finer grid resolution in the domain near
the fault and close to the free surface z = 0. Using coordinate transforms,
we map the (y, z) grid in [0, L,] x [0, L.] with unequally spaced nodes, to a
computational domain (&, &) € [0, 1] x [0, 1] with equal grid spacings (Ng, +1
and Ng, + 1 grid points in each direction, with A& = 1/Ng, Aéy = 1/Np,).
We let N = (Ng, + 1)(Vg, + 1). The mapping is given by

y =Ly tan(tan™'(L,/ly)&) (A.la)
z = lgtan(tan'(L,/l)&,). (A.1Db)
Parameters fy,f; > 0 control the strength to which nodes are clustered

near the fault and surface (respectively). The mapping (A.1) is invertible,

with g_é’ 88_52 > (. The Jacobian J of the transformation is
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matrix, and g_éyl—l is its inverse (reciprocals along the diagonal). Using the
notation introduced in section 6, the SBP-SAT discretization of (33) on the
computational domain is given by

with determinant |J| = ® 88—; where g—gl denotes the diagonal coefficient

0 = D3*du+ D¢ ap,De,du+ Dg,ayDydu+D32du+ Py + Pr+Pr JE fBﬁ
3

where the SAT penalty vectors enforcing boundary conditions (41) are

P, = Hgll(aL + BHgQI(—aHS& — a;19D¢,) ) He, Eo(duy, — dg A 4a)
Pp = H.'(agr+ BH'(anSe, + a1nDe,)")He,Ey(dug — dggfA.4b)
Pr = —Hg;(Igl ® Ep)([—a2:S¢,du — a3 D¢, dul,, — dg,) (A.4c)
Py = —H.!(I; ® Ey)([aSe,du + ay D, du], — dgp) (A.4d)

where the modified boundary data are

d~gT Z%dgT (A.5a)
dgp = fXdgp. (A.5b)

The modified diagonal coefficient matrices in (A.4) are

e -1 z
a;; = Cﬁ(% ® 59—52) (A.6a)
a9 = C?Q) (A6b>
ag =C3) (A.6¢)

e z —1

correspond to the moduli

ap = Cflfaa—gyl (A.7a)
a12 = Cfg (A7b>
a1 = 02621) (A?C)
99 = C;g% (A?d)

of the transformed (continuous) problem, and we use the notation ai;,; =
a11(yj, z;) as in section 6. Letting
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_ aj; ajg
A:[ ] (A8)
Az A

symmetry of A follows that of the 2 X 2 matrix C’fp given by (34). That A
is positive-definite also follows from C’: Express A via the Schur decompo-
sition A = XTSX, where

all 0
S = [ 0 ] (A.9)

-1
dgy — Agidgg Ajl2

and

| 31_11812
X=|, 1 | (A.10)

Since S is a diagonal matrix, its eigenvalues lie along the diagonal. Positive-
definiteness of C°? guarantees that each element along the diagonal of C{
is positive and the transformation (A.1) maintains that the diagonal matrix
aj; has positive elements. The diagonal matrix agsy — a21af11a12 = (g_gl ®

5)—;2_1) [CEH(CHCsh — CECSE) has positive elements by construction of the
mapping and positive-definiteness of C®?. Thus positive-definiteness of A
follows from that of S by the Sylvester Law of Inertia (Golub and Van Loan,
2013).

Applying the energy method to (A.3) and a proper choice of penalty

parameters (given shortly) yields 4dE < 0, where

1 . 1 1
dE = S dU" (Hg, ®H,) AdU+du’ (Rg @Hg, )du+ o du’ (He, 9RE? )dut-Uy -+,

(A.11)
where dU = [D¢,du Dg,du]”. U; and U, are non-negative quantities that
that arise from the weak enforcement of Dirichlet conditions, detailed shortly.

Note that uniform grid spacing, as considered in section 6, is the special
case Uy, l; — oo and the transformation merely scales the overall size of the
domain. In the case of uniform grid spacing, A = C. The stability results
of section 6 are thus a special case of the results here.

The penalty parameters in (A.4) are derived in Virta and Mattsson (2014)
and given here. The N x N diagonal coefficient matrix a;; has j, k" entry
ai,,. Virta and Mattsson (2014) find that penalty parameter 8 = —1,
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and penalty (diagonal) matrices v, ag have components obtained by first
defining diagonal matrices by, big, bor, and byg which have components

bir,, = Bp(A&)Ar,/(a11,,)” (A.12a)
bir,, = Bp(A&)Ar, /(a1 )* (A.12b)
bor,, = O0p(A&)Aj1/(az,,)” (A.12¢)
bar,, = Op(A&)Ajng /(a2 5, ) (A.12d)

along the diagonal, where 5, = 36/99 and 6, = 1/2 (for the second order
operators we consider),

)\Lj Hlin()\jyo, )\j,l)yj = 0, ooy Ngz (A13a)
)\Rj = min(/\j7N€1_17 )\j7N51)7j = 0, cey N&, (Al?)b)
and
1 2 2
>\j,k: = 5 (allj,k + CLQQM — \/(allj,k — (IQijk) + 4((112j,k) ) . (A14a)
The positive quantities given in the incremental internal energy are
Uy = UH3T, Uy (A.15a)
U, = ULH;TzUg (A.15b)
for vectors
U, = [du,” (B*'S;du)? (a;sDedu)?]?, (A.16a)
Ur = [dugr’ (B*'S,du)y, (a;pDedu)k]’, (A.16b)

H; = diag([Hy, ® He,, Hg ®He,, He @ Hg).  (A.16c)

Matrix B2 is a coefficient matrix for a;; formed in a special way (see Virta
and Mattsson (2014) for details). Matrices

—Q, -1 -1
TL = -1 blR 0 (A17a)
| -1 0 bop

and
—ap -1 -1
TR = -1 blL 0 (A18a)
~1 0 by
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are shown to be positive semi-definite if

1 1

ay,. . — ,
Lag = Z)ll?jyj l)2l?j7j

1 1 .
. j=0,.. N, (A.19D)

ble,j bQRj,j

R, S =

(Virta and Mattsson, 2014).

Appendix B. The Consistent Tangent Moduli

The consistent tangent moduli for both rate-independent and viscoplas-
ticity are derived here simultaneously. Applying a backward-Euler discretiza-
tion to the flow rule (19), we have

n+1
n+l _ n+l _ _pntly _ n+l _ _pn n+1 Skl
9 = Cijrley — ey ) = Cinley — ey — dA —27__n+1)- (B.1)
n+1
. . . 1 i?cri'
The consistent elastoplastic tangent stiffness tensor C;P,;?Jr = ST can be

kl
computed by first defining a few terms. Following Simo and Hughes (1998),
let n;; = Sij/27_-- Then

3nij_1 1
27,

aSkl = e _I‘jkl — nijnkl} y (B2)

where the fourth order, symmetric identity tensor
1
Iijkl = 5 [@kéﬂ + 6il5jk] . (B3)

It is a quick exercise to show that

*n+l _  nitl
Mg =My (B.4)
and therefore we have
ot 1,
o n+1l *n+l n+1
9l o1 Okl M 2pmyy = 2umg (B.5)
Kl

Next, recall the plastic consistency condition (71), which can be expressed

P oy — by = (n/dt + p+ h)dA"! (B.6)
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where the rate-independent case is obtained by taking n = 0. Taking the
partial derivative of (B.6) yields

orsm+! DX+

= (n/dt +u+h) (B.7)

ey ey
Re-arranging (B.7) and substituting in (B.5) yields
OANTL 2 e (B.8)
et m/dt+p+h e
Also note that we have,
o i v
Therefore
ongit Ong™ Ong ot an;"“C .y on"™ 5, O
Oet! delt Dot 862;_ A M@aZ;““ s Ostt
(B.10)

When plastic straining is occuring (i.e. when A > 0), we can compute the
consistent elastoplastic tangent stiffness tensor by taking the partial deriva-
tive of equation (B.1)

domtl Od) 1 ont

Cep n+1 — 1) — CZ . nn-l—l dAn-‘rl 1) B.11
ijkl 8€%+1 Jkl aezfrl H ij 2 aGZlJrl ( )

n+1
C G g nfth — dXT2p(2 ) (B.12)

IR Jdt+ i+ h S a M(?S”H '
kl
4lL2 n n n 1 1 n

= Cijkl o T]/dt i L 4 hnkl—’—ln H —dA +14M27tn+1 2 l]kl o nl]+17¢g'1:|3)

and the specific case for antiplane motion given in (73)-(75) for rate-independent
plasicity, and (78)-(80) for Viscoplasticity follow, using the notation Cj} =
Cce.,.Coh=C% ,Ch=C? . C&H=CP

TyTy? TZX2) Tyrz) TZXY"

Appendix C. Mesh Refinement

We double the number of grid points used in the simulation shown in
Figure 7(c) with n = 36, h = 0 and ¢ = 50 MPa, see Fig. C.14. Although a
bit more slip occurs with each rupture when mesh refining (note last event
for each simulation, for example), the results appear qualitatively similar.

48



1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

Depth (km)

\ Coarse Grid

[T T

—~
o
=

e
Wt

g
S

|
W 11 1)

—_
(=)

\ \ \\?\\ MR
LR AN

AN
LRANNN

\\ AR\ \ \\
1ATHIRN ARMMNEEREANNN
11T \

20, o AN N
> 0 LATHAAHIN RN
BN L 1AM

me ‘\wwmm

10 ) . 20 30
Cumulative Slip (m)

Figure C.14: Snapshots of cumulative slip profiles plotted at 5-a intervals during inter-
seismic period when max(V) < 1 mm/s and dashed red profiles plotted at 1 s intervals
during quasi-dynamic rupture for n = 36 GPa-s, h = 0 GPa, ¢ = 50 MPa for (a) the coarse
grid simulation from Fig. 7(c) (plotted again for ease of comparison) and (b) results when
using twice the number of grid points.
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