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Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is 
a useful idealization of natural earthquakes. The conditions relating discontinuities in 
particle velocities across fault zones and tractions acting on the fault are often expressed 
as nonlinear friction laws. The corresponding initial boundary value problems are both 
numerically and computationally challenging. In addition, seismic waves generated by 
earthquake ruptures must be propagated for many wavelengths away from the fault. 
Therefore, reliable and efficient numerical simulations require both provably stable and 
high order accurate numerical methods.
We present a high order accurate finite difference method for: a) enforcing nonlinear 
friction laws, in a consistent and provably stable manner, suitable for efficient explicit 
time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; 
and c) accurate propagation of seismic waves in heterogeneous media with free surface 
topography.
We solve the first order form of the 3D elastic wave equation on a boundary-conforming 
curvilinear mesh, in terms of particle velocities and stresses that are collocated in space 
and time, using summation-by-parts (SBP) finite difference operators in space. Boundary 
and interface conditions are imposed weakly using penalties. By deriving semi-discrete 
energy estimates analogous to the continuous energy estimates we prove numerical 
stability. The finite difference stencils used in this paper are sixth order accurate in 
the interior and third order accurate close to the boundaries. However, the method is 
applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time 
stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, 
thus yielding a globally fourth order accurate method in both space and time. We show 
numerical simulations on band limited self-similar fractal faults revealing the complexity 
of rupture dynamics on rough faults.
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1. Introduction

Spontaneously propagating shear ruptures along frictional interfaces embedded in elastic solids occur in many solid me-
chanics and geophysical problems [51,21,49,31,44,2,41,46,48,45,47,55,4,3]. For example during an earthquake, two sides of 
the fault, initially held in contact by a high level of frictional resistance, slip suddenly when that resistance catastrophically 
decreases, generating strong ground shaking which is carried by seismic (elastic) waves to remote areas, far away from fault 
zones. Thus efficient and reliable simulations of earthquake ruptures and the resulting strong ground motion form a crucial 
component of earthquake-hazard analysis. The discontinuity in the tangential displacements across a fault zone is referred 
to as slip. Seismic waves generated by slip on one part of the fault transmit stresses to adjacent parts of the fault, possibly 
causing that part of the fault to slip and leading to the progressive propagation of ruptures. A typical dynamic earthquake 
rupture model couples the equations of linear elastodynamics to friction laws at the fault. The friction laws are generally 
expressed as nonlinear relations between tractions acting on the fault and the slip rate. The catastrophic initiation of slip 
and the sliding motion of the fault across the interface are captured via the interaction of friction and elastic waves. In 
dynamic earthquake rupture models, the earthquake source process is not known a priori, but is determined as part of the 
solution. The corresponding initial boundary value problem (IBVP) can be ill-conditioned, and poses several numerical and 
computational challenges. In addition, seismic waves generated by earthquake ruptures must be propagated many wave-
lengths far away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high 
order accurate numerical methods.

A number of numerical methods have been developed for computational modeling of earthquake rupture dynamics. 
Classical finite difference methods (on planar faults) have been widely used [12,5,35,38]. Some of these methods have been 
extended to nonplanar fault geometries using curvilinear grids and coordinate transformation techniques [32], or by aligning 
the fault surface through cell diagonals [10,11]. However, the presence of nonlinear boundary and interface conditions, and 
discontinuities in media parameters make the design of stable and accurate finite difference methods challenging. The 
method developed in [32] for two space dimensional (2D) models can be proven stable; others produce solutions that 
appear accurate before eventually diverging, or require artificial dissipation of some form to stabilize the method. Another 
historical and popular class of methods for earthquake rupture dynamics is boundary element methods [46,22,48,2]. Thus 
far, these methods have been limited to uniform elastic materials. They can also handle nonplanar faults, with the exception 
of the spectral boundary integral equation method [22]. It is particularly noteworthy that spectral boundary integral equation 
methods are effective for planar fault problems, and have been extensively used to study fault weakening processes.

Unstructured discretizations such as continuous Galerkin finite element methods [25,34,1,14,18] and discontinuous 
Galerkin (dG) finite element/volume methods [13,42,56] have also been developed for earthquake rupture dynamics. The 
power of unstructured methods lies in their ability to resolve complex fault geometries. However, generation of a high qual-
ity unstructured mesh can be a non-trivial problem in itself. Unstructured discretizations also require extra bookkeeping 
and additional memory to keep track of the connectivity of the grid. Nonetheless, continuous Galerkin finite element meth-
ods are quite popular for rupture dynamics. In practice these methods have been limited to second order accuracy due to 
lumping of the mass matrix, which is necessary for computational efficiency. Since second order accuracy is not sufficient 
to propagate waves to remote areas, high order finite element methods have also been considered. Spectral element and dG 
finite element/volume methods [27,13,42,56] have been developed, yielding diagonal or locally block diagonal mass matri-
ces. There are also potential drawbacks for these methods, due to doubling of the number of degrees of freedom along the 
element edges, and restrictive time-steps particularly for high order methods.

In this study, we develop a provably stable and high order accurate finite difference method for earthquake rupture dy-
namics on nonplanar faults embedded in three space dimensional (3D) geometrically complex, heterogeneous Earth models. 
In particular, we solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, sub-
ject to traction free boundary conditions at the Earth’s surface and nonlinear friction laws at the fault. The unknown field 
variables are particle velocities and stress fields that are collocated in space and time. Prior to numerical approximations, 
we transform the equations and boundary/interface conditions to computational cubes where numerical approximations of 
spatial derivatives can be performed efficiently. However, the coordinate transformation must be carefully introduced such 
that the transformed system of partial differential equations (PDEs) is numerically tractable. For linear hyperbolic problems 
in multiple dimensions, the SBP property is not sufficient for numerical stability [30,32]. This is because the way the metric 
terms enter the transformed system of PDEs and product rule does not explicitly hold for finite difference operators. This is 
truly a fundamental problem for numerical approximation of spatial derivatives on curvilinear meshes/elements [40,29,28,
30,57,39,54,26,32]. Previous work has suggested to split the transformed equations into conservative and non-conservative 
parts such that the transformed equation is skew-symmetric [29,30,39,32]. This is critical for numerical stability. Unfortu-
nately, splitting the equations increases the expected number of floating point operations. This is undesirable, particularly 
because of the sheer size of the problem in 3D. In this paper, we propose a new way to transform the equations of linear 
elastodynamics, which reduces the expected number of floating points operations at least by half while ensuring numerical 
stability. We use two different representations of the spatial derivatives: nonconservative form for the velocity fields and 
conservative form for the stress fields. This enables the construction of a continuous energy estimate, for the transformed 
equations, which can be mimicked to develop stable numerical approximations. After we have performed the coordinate 
transformation to the computational domain, the transformed equations are then discretized in space using high order 
accurate summation-by-parts (SBP) finite difference operators [53,36,23].
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Next, we turn our attention to the boundary and interface conditions. The interface conditions are nonlinear friction 
laws. If appropriate care is not taken the numerical treatment of the interface conditions can introduce artificial numerical 
stiffness, thus preventing the use of efficient explicit time-stepping schemes [19,32]. To succeed, we construct a subspace 
of solutions satisfying the (discrete) linear elastodynamics equations and the interface condition exactly. We then project 
the solutions on the interface to this subspace, extracting data. The boundary and interface conditions with appropriate 
data are enforced weakly using a penalty technique referred to as the simultaneous approximation term (SAT) method 
[9,36]. By deriving penalty parameters and constructing discrete energy estimates we prove asymptotic stability of the 
semi-discrete system. Time integration is performed using a fourth order accurate low storage Runge–Kutta scheme [8]. The 
SBP operators used in this study are sixth order accurate in the interior with third order accurate boundary closure, thus 
yielding globally a fourth order accurate scheme in both time and space. Since we have used the SBP–SAT methodology, 
our technique is in spirit similar to the method developed in [32] for 2D problems. However, the coordinate transforms, 
numerical approximation of the interior problem and the penalty parameters derived in this paper are different from [32]
in general curvilinear grids. Moreover, while the method developed in [32] is limited to 2D isotropic elasticity our method 
is applicable to arbitrary linear elastic media in 3D.

We have performed numerical experiments verifying stability, high order accuracy, and demonstrating the potential of 
our method in simulating earthquake rupture dynamics on nonplanar faults embedded in 3D geometrically complex, hetero-
geneous Earth models. In particular, we have considered both slip-weakening and rate-and-state friction laws on nonplanar 
faults, including recent benchmark problems proposed by SCEC/USGS Dynamic Earthquake Rupture Code Verification Project 
(http :/ /scecdata .usc .edu /cvws/). We also show simulations on fractal faults revealing the complexity of rupture dynamics on 
rough faults.

The remainder of the paper will proceed in the following manner. In the next section, we introduce the equations of 
linear elastodynamics in a general medium and 3D geometrically complex domain. Then we discuss wave modes, curvilin-
ear coordinates and coordinate transformations as well as appropriate boundary conditions, and derive energy estimates. In 
Section 3, we present the friction laws governing the dynamics of the fault, and derive corresponding energy estimates. In 
Section 4, we discretize the equations with the boundary and interface conditions implemented using penalties. Numerical 
stability is proven using the energy method. In Section 5, we present numerical experiments verifying high order accuracy 
and demonstrating the potential of the method for earthquake rupture dynamics on rough faults embedded in 3D geomet-
rically complex, heterogeneous Earth models. A summary of the paper and suggestions for future work are offered in the 
last section.

2. The elastic wave equation

Let t denote the time variable and the Cartesian coordinates of a three dimensional spatial domain defined by (x, y, z). 
Consider the first order form of the time-dependent elastic wave equation in a source free, heterogeneous medium,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ ∂vx
∂t

ρ
∂v y
∂t

ρ ∂vz
∂t

S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂σxx
∂t

∂σyy
∂t

∂σzz
∂t

∂σxy
∂t

∂σxz
∂t

∂σyz
∂t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂σxx
∂x + ∂σxy

∂ y + ∂σxz
∂z

∂σxy
∂x + ∂σyy

∂ y + ∂σyz
∂z

∂σxz
∂x + ∂σyz

∂ y + ∂σzz
∂z

∂vx
∂x

∂v y
∂ y
∂vz
∂z

∂vx
∂ y + ∂v y

∂x
∂vx
∂z + ∂vz

∂x
∂v y
∂z + ∂vz

∂ y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where 
(

vx, v y, vz
)T

are the particle velocities, and 
(
σxx, σyy, σzz, σxy, σxz, σyz

)T
are the stresses. At the initial time 

t = t0 ≥ 0, we set initial data for particle velocities and stresses. The elastic medium is described by the density ρ (x, y, z)
and the compliance matrix S = C−1, where C = CT > 0 is the stiffness matrix. Since the stiffness matrix is symmetric positive 
definite, it also follows that the compliance matrix is symmetric positive definite, S = ST > 0. Note that the stiffness matrix 
depends on the spatial variables (x, y, z). In a general medium the stiffness matrix C is described by 21 independent elastic 
coefficients. In the isotropic case, the medium is described by two independent elastic coefficients, the Lamé parameters λ, 
μ, and

http://scecdata.usc.edu/cvws/
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Fig. 1. Boundary conforming curvilinear grids and coordinate transformation.

C =

⎛⎜⎜⎜⎜⎜⎝
2μ + λ λ λ 0 0 0

λ 2μ + λ λ 0 0 0
λ λ 2μ + λ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎞⎟⎟⎟⎟⎟⎠ .

2.1. Wave modes

In order to discuss wave modes it is convenient to rewrite the elastic wave equation (1) as a first order hyperbolic system

∂U

∂t
= Ax

∂U

∂x
+ A y

∂U

∂ y
+ Az

∂U

∂z
. (2)

Here, U = (
vx, v y, vz, σxx, σyy, σzz, σxy, σxz, σyz

)T
and the coefficient matrices Ax , A y , Az are determined by the density ρ

and the stiffness matrix C. To describe the wave properties of the medium, we consider constant coefficients and introduce 
the plane wave solution

U = U0eiωt+ikxx+iky y+ikz z, with k2
x + k2

y + k2
z = 1, i = √−1, (3)

in (2). Thus we obtain

ωU0 = (
kx Ax + ky A y + kz Az

)
U0.

Note that k = (
kx,ky,kz

)
is an arbitrary unit vector denoting the normalized propagation direction of the plane wave (3). 

The normalized angular frequency ω and the polarization vector u0 are the eigenvalues and eigenvectors, respectively, of 
the matrix

ϒ
(
kx,ky,kz

) = kx Ax + ky A y + kz Az. (4)

It is well-known that the matrix ϒ
(
kx,ky,kz

)
is symmetric (or can be symmetrized). The eigenvalues ω are real and 

the eigenvectors are complete. The matrix ϒ
(
kx,ky,kz

)
has six non-zero eigenvalues ω1 = cn , ω2 = −cn , ω3 = cm , ω4 =

−cm , ω5 = cl , ω6 = −cl , and three zero eigenvalues ω7 = ω8 = ω9 = 0. Note that we have arranged the eigenvalues and 
eigenvectors such that cn ≥ cm ≥ cl > 0.

An eigen-pair ω j , u0 j describes a wave mode and the wave speed is given by |ω j |. The eigen-pairs with ω j = 0 corre-
spond to temporally constant wave modes. In the absence of boundaries, the elastic wave equation (1) supports one p-wave 
mode and two s-wave modes. The p-wave speed is given by cn and s-wave speeds are cm , cl . For a general medium the 
two s-waves can have different wave-speeds. However, in an isotropic medium the s-waves have an identical wave-speed 
cm = cl .

2.2. Curvilinear coordinates and coordinate transformation

For geometrically complex models, numerical treatments can be simplified if there is a smooth coordinate transformation 
from the physical space to a reference computational cube (Fig. 1). Consider the elastic wave equation (1) in a domain with 
arbitrarily shaped smooth boundaries. Let one of the boundaries of the domain be located at x = x̃ (y, z), where ̃x (y, z) is a 
function describing the surface of the boundary. In principle, it is possible to construct a boundary conforming curvilinear 
mesh, with the coordinates (x, y, z), representing the domain. We introduce a smooth grid mapping [43] from the curvilinear 
mesh to the unit cube (q, r, s) ∈ [0, 1] × [0, 1] × [0, 1] defined by:

(x (q, r, s) , y (q, r, s) , z (q, r, s)) ↔ (q (x, y, z) , r (x, y, z) , s (x, y, z)) . (5)
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We have chosen coordinates such that the boundary (̃x (y, z) , y, z) in the physical space is now located at (q = 1, r, s). The 
Jacobian and metric coefficients are defined by

J = xq (yr zs − zr ys) − yq (xr zs − zr xs) + zq (xr ys − yr xs) > 0, (6)

Jqx = (yr zs − zr ys) , J rx = (
zq ys − yq zs

)
, J sx = (

yqzr − zq yr
)
,

Jqy = (zr xs − xr zs) , J ry = (
xqzs − zqxs

)
, J sy = (

zqxr − xq zr
)
,

Jqz = (xr ys − yr xs) , J rz = (
yqxs − ysxq

)
, J sz = (

xq yr − xr yq
)
. (7)

Here, the subscripts denote partial derivatives, that is qx = ∂q
∂x , xq = ∂x

∂q , etc. It is possible to rewrite the metric terms in (7)
such that the numerical approximation of the metric terms and their derivatives satisfy exactly the same metric identities 
as the continuous metric derivatives. For example the first row in (7) can be rewritten as [28,57]

(yr zs − zr ys) = 1

2
(yr z − zr y)s − 1

2
(zys − yzs)r ,

(
zq ys − yqzs

) = 1

2

(
zq y − yqz

)
s − 1

2
(yzs − zys)q ,

(
yq zr − zq yr

) = 1

2

(
yqz − zq y

)
r − 1

2
(zyr − yzr)q . (8)

The second and third rows of (7) can be rewritten in the same manner as in (8).

Remark 1. Note that we have assumed that the curvilinear mesh is sufficiently smooth such that the Jacobian and all metric 
coefficients can be computed efficiently from the mesh. Here, it is sufficient to assume that the Jacobian defined in (6)
is positive and bounded, 0 < J < ∞ everywhere in the computational space. More elaborate discussions on the impact of 
mesh quality on numerical simulations of partial differential equations can be found in [26], and in the references therein.

We will now transform the elastic wave equation from the physical space to the computational space. We will use two 
different transformations of the spatial derivatives in the transformed coordinates. Spatial derivatives for the stress fields 
will be transformed using the conservative form:

∂u

∂x
= 1

J

(
∂

∂q
( Jqxu) + ∂

∂r
( J rxu) + ∂

∂s
( J sxu)

)
, (9)

and spatial derivatives for the velocity fields will be transformed using the non-conservative form:

∂u

∂x
= qx

∂u

∂q
+ rx

∂u

∂r
+ sx

∂u

∂s
. (10)

The elastic wave equation in the transformed curvilinear coordinates is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ ∂vx
∂t

ρ
∂v y
∂t

ρ ∂vz
∂t

S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂σxx
∂t

∂σyy
∂t

∂σzz
∂t

∂σxy
∂t

∂σxz
∂t

∂σyz
∂t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= DU, (11)

where
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DU =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
J

(
∂
∂q

(
J
(
qxσxx + qyσxy + qzσxz

)) + ∂
∂r

(
J
(
rxσxx + ryσxy + rzσxz

)) + ∂
∂s

(
J
(
sxσxx + syσxy + szσxz

)))
1
J

(
∂
∂q

(
J
(
qxσxy + qyσyy + qzσyz

)) + ∂
∂r

(
J
(
rxσxy + ryσyy + rzσyz

)) + ∂
∂s

(
J
(
sxσxy + syσyy + szσyz

)))
1
J

(
∂
∂q

(
J
(
qxσxz + qyσyz + qzσzz

)) + ∂
∂r

(
J
(
rxσxz + ryσyz + rzσzz

)) + ∂
∂s

(
J
(
sxσxz + syσyz + szσzz

)))
qx

∂vx
∂q + rx

∂vx
∂r + sx

∂vx
∂s

qy
∂v y
∂q + ry

∂v y
∂r + sy

∂v y
∂s

qz
∂vz
∂q + rz

∂vz
∂r + sz

∂vz
∂s(

qy
∂vx
∂q + ry

∂vx
∂r + sy

∂vx
∂s

)
+

(
qx

∂v y
∂q + rx

∂v y
∂r + sx

∂v y
∂s

)(
qz

∂vx
∂q + rz

∂vx
∂r + sz

∂vx
∂s

)
+

(
qx

∂vz
∂q + rx

∂vz
∂r + sx

∂vz
∂s

)(
qz

∂v y
∂q + rz

∂v y
∂r + sz

∂v y
∂s

)
+

(
qy

∂vz
∂q + ry

∂vz
∂r + sy

∂vz
∂s

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(12)

Note that in the continuous setting, the transformed derivatives (9) and (10) are mathematically equivalent. In nontrivial 
geometries, discrete approximations of the transformed derivatives (9) and (10) will yield two different discrete spatial op-
erators. Because the momentum equation defines a conservation law while Hooke’s law expresses a constitutive relation, 
this approach is a natural way to transform the equations of linear elastodynamics. When discrete approximations are intro-
duced, this is also crucial in order to minimize the number of floating point operations and prove numerical stability. More 
so, a finite difference approximation of the conservative operator (9) is more expensive than the corresponding discrete ap-
proximation of the non-conservative operator (10). The approach taken in [32,39,29,30] was to construct a skew-symmetric 
splitting by computing all derivatives using a weighted average of the conservative form and the non-conservative form. Ev-
idently, when we compare our method with the approached taken in [32,39,29,30], we have reduced the expected number 
of floating point operations at least by half. Our approach can also be seen as a skew-symmetric splitting where certain 
weights have been set to 1 and others to 0, eliminating unnecessary terms and reducing numerical computations dramati-
cally.

2.3. Boundary conditions

To define the boundary conditions, we introduce the orthonormal basis vectors n = (
nx,ny,nz

)
, m = (

mx,my,mz
)
, l =(

lx, l y, lz
)
, where n is the outward unit normal on the boundary. A schematic description is shown in Fig. 1.

The outward unit normal on the boundary is given by

n = 1√
q2

x + q2
y + q2

z

⎛⎝ qx

qy

qz

⎞⎠ . (13)

Given the unit normal n, defined by (13), we can construct the other two basis vectors m, l, as follows:

m = m0 − (
nT m0

)
n

|m0 − (
nT m0

)
n| , l = n × m. (14)

Here, m0 (�= ±n) is an arbitrary unit vector.
Introduce the stress tensor ¯̄σ and the impedance matrix Z defined by

¯̄σ =
⎛⎝σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

⎞⎠ , Z =
⎛⎝ Zn 0 0

0 Zm 0
0 0 Zl

⎞⎠ ,

where Zn = ρcn is the p-wave impedance and Zm = ρcm , Zl = ρcl are the s-wave impedances. Here, cn , cm , cl are the 
corresponding wave-speeds determined by the eigenvalues of the matrix ϒ

(
nx,ny,nz

)
defined in equation (4). Note that 

here the normalized propagation direction of the plane wave (3) is n.
On each point on the boundary, we denote the particle velocity vector, traction vector, and the local rotation matrix on 

the boundary by

v =
⎛⎝ vx

v y

vz

⎞⎠ , T =
⎛⎝ Tx

T y

T z

⎞⎠ = ¯̄σn, R =
⎛⎝ nx ny nz

mx my mz

lx ly lz

⎞⎠ , (15)

where det (R) �= 0 and R−1 = RT .
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The corresponding in and out of the domain characteristics at the boundary are

q = ZRv + RT ≡ Zvloc + Tloc, p = ZRv − RT ≡ Zvloc − Tloc, (16)

where

vloc :=
⎛⎝ vn

vm

vl

⎞⎠ = Rv, Tloc :=
⎛⎝ Tn

Tm

Tl

⎞⎠ = RT. (17)

Note that vloc and Tloc are the particle velocity vector and the traction vector rotated into the local orthogonal coordinates 
n, m and l. There are three characteristics q going into the domain and three characteristics p going out of the domain. The 
number of boundary conditions must correspond to the number of characteristics going into the domain, see [24,33]. We 
consider linear boundary conditions, the general form of the boundary conditions is

q − �p = 0 ⇐⇒ 1

2
(I − �)ZRv + 1

2
(I + �) RT = 0, (18)

where the reflection coefficient matrix � is real and defined by

� =
⎛⎝γn 0 0

0 γm 0
0 0 γl

⎞⎠ , 0 ≤ |γ j| ≤ 1, j = l,m,n.

The boundary conditions (18) specify the incoming characteristics q on the boundary in terms of the outgoing characteris-
tics p. Here, γ j are the reflection coefficients. In order to simplify future algebra we have tacitly considered zero boundary 
data. The analysis carries over to the case of nonzero boundary data, though. We have a free-surface boundary condition if 
γ j = 1, a characteristic boundary condition if γ j = 0 and a clamped boundary condition if γ j = −1. For later use in deriving 
energy estimates, we note that

v j T j = − Z j
(
1 − γ j

)(
1 + γ j

) v2
j = −

(
1 + γ j

)
Z j

(
1 − γ j

) T 2
j < 0, ∀|γ j| < 1, and v j T j = 0, ∀|γ j| = 1. (19)

2.4. Energy estimates

Here, we will derive energy estimates corresponding to the elastic wave equation (1) and (11) in a bounded domain 
subject to the boundary condition (18). We define the elastic energy

E J (t) =
1∫

0

1∫
0

1∫
0

⎛⎜⎜⎜⎜⎜⎜⎝
ρ

2

(
v2

x + v2
y + v2

z

)
+ 1

2

⎛⎜⎜⎜⎜⎜⎝
σxx

σyy

σzz

σxy

σxz

σyz

⎞⎟⎟⎟⎟⎟⎠

T

S

⎛⎜⎜⎜⎜⎜⎝
σxx

σyy

σzz

σxy

σxz

σyz

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ Jdqdrds. (20)

By using the energy method we can show that the energy E J (t) at any time is bounded by the initial energy E J (0).

Theorem 1. Let the basis vectors n, m, l be defined by (13), (14). The solutions of the transformed elastic wave equation (11) subject 
to the boundary condition (18) satisfy the energy estimate

d

dt
E J (t) =

1∫
0

1∫
0

(vn Tn + vm Tm + vl Tl)

(√
q2

x + q2
y + q2

z J

)∣∣∣
q=1

drds ≤ 0. (21)

The proof of Theorem 1 follows from standard energy methods and it is concluded using the expressions in (19).

3. Fault and interface conditions

Consider now two elastic half spaces with an interface at (̃x (y, z) , y, z), where ̃x (y, z) is a function describing the surface 
of the interface. The elastic wave equation (1) is now defined on the two blocks lying to the left and right. The collocated 
grid points on two sides of the interface are called split nodes. We map the elastic wave equation and the curvilinear 
blocks to reference computational cubes. A schematic description is shown in Fig. 2. Note that we have chosen transformed 
coordinates such that the fault is located at the boundary (q = 0, r, s).
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Fig. 2. Fault and boundary conforming curvilinear grids and coordinate transformation.

3.1. Friction laws

Denote the corresponding fields and material parameters with the superscripts −/+ for the left/right block. To define the 
interface conditions we rotate the particle velocity vector and the traction vector on the boundary into the local orthogonal 
coordinates n, m, l having⎛⎜⎝ v+

n

v+
m

v+
l

⎞⎟⎠ = Rv+,

⎛⎜⎝ T +
n

T +
m

T +
l

⎞⎟⎠ = RT+, and

⎛⎝ v−
n

v−
m

v−
l

⎞⎠ = Rv−,

⎛⎝ T −
n

T −
m

T −
l

⎞⎠ = RT−. (22)

Note that in order to simplify notations and ensure consistent sign convention we have defined

T± = ¯̄σ±n, (23)

where ¯̄σ± is the stress tensor and n is the unit normal pointing into the right block. Thus, T− is the traction exerted by the 
left block on the fault, and −T+ is the traction exerted by the right block on the fault.

Since there are 6 characteristics going in and out of the interface, we need exactly 6 interface conditions. We begin with 
force balance, obtaining relations on the tractions acting on the interface:

T− = T+ ⇐⇒ T +
j = T −

j = T j, j = l,m,n. (24)

To specify the remaining three conditions we define jumps on the velocities:

[[v j]] = v+
j − v−

j , j = l,m,n.

We assume that there is no opening or interpenetration of the two sides. Thus the opening velocity is zero,

[[vn]] = 0. (25)

The slip rate and the shear strength on the fault are defined by

V =
√

[[vm]]2 + [[vl]]2, τ =
√

T 2
m + T 2

l . (26)

Slip S is defined as the discontinuity in the tangential displacement fields, dS/dt = V . The slip rate and the shear stress on 
the fault are related via

Tl = σn
f (V ,ψ)

V
[[vl]], Tm = σn

f (V ,ψ)

V
[[vm]]. (27)

Here, ψ is a state variable and the compressive normal stress σn is defined by

σn = max (0,−Tn) . (28)

The state variable ψ is governed by an ordinary differential equation

dψ

dt
= G (V ,ψ) . (29)

Note that (27) implies that the shear traction vector and the slip velocity are parallel

Tl

τ
= [[vl]]

V
,

Tm

τ
= [[vm]]

V
, (30)

and the shear strength on the fault is constrained by the nonlinear friction law

τ = σn f (V ,ψ) ≥ 0. (31)

In general, f (V ,ψ, ) and G (V ,ψ) are highly nonlinear functions with f (0,ψ) = 0 for all ψ .
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3.2. Energy dissipation rate

For reference purpose we summarize the interface conditions:

Force balance: T +
n = T −

n , T +
m = T −

m , T +
l = T −

l , (32a)

No opening: [[vn]] = 0, (32b)

Friction law: Tm = σn
f (V ,ψ)

V
[[vm]], Tl = σn

f (V ,ψ)

V
[[vl]]. (32c)

We will show that the interface condition (32) dissipates the total elastic energy. In particular we can prove the theorem:

Theorem 2. Let E±
J denote the elastic energy in the ±-sides of the fault. If f (V ,ψ) V ≥ 0, then the sum of the energies satisfies

d

dt

(
E−

J + E+
J

)
= −

1∫
0

1∫
0

σn f (V ,ψ) V

(
J
√

q2
x + q2

y + q2
z

)∣∣∣
q=0

drds ≤ 0. (33)

In particular if the interface is locked, V = 0, the total energy is conserved,

d

dt

(
E−

J + E+
J

)
= 0. (34)

Remark 2. Theorem 2 alone does not guarantee well-posedness of the corresponding IBVP [33]. In order to guarantee 
well-posedness, in addition to Theorem 2, a unique solution must exist. However, the proof of well-posedness of IBVPs 
resulting from nonlinear friction laws (32) is beyond the scope of this paper. Here, we assume that the friction laws together 
with the elastic wave equation is well-posed, and focus our attention on developing a stable numerical method for those 
models. Numerical stability will be demonstrated by deriving discrete energy estimates analogous to (33), (34).

3.3. The stress transfer functional and hat-functions

The difficulty lies in constructing stable discrete approximations and deriving discrete energy estimates, analogous to (33)
and (34), without introducing additional numerical stiffness. To succeed, we construct a subspace of functions (solutions) 
satisfying the elastic wave equation and the interface conditions (32), and then project the particle velocities and tractions 
on the fault to that subspace.

Assume that the particle velocities 
(

vx, v y, vz
)T and the stress field 

(
σxx, σyy, σzz, σxy, σxz, σyz

)T satisfy the elastic wave 
equation (11). Define the characteristics propagating to the fault

p−
j = Z−

j v−
j − T −

j , q+
j = Z+

j v+
j + T +

j , j = l,m,n (35)

where Z±
j are the impedances. Using (32a) and (35), we can now write

T j = 
 j − η j[[v j]], (36)

where


 j = η j

(
1

Z+
j

q+
j − 1

Z−
j

p−
j

)
, η j = Z+

j Z−
j

Z+
j + Z−

j

. (37)

Note that the representation (36) embodies the elastic wave equation and force balance on the fault (32a), and arises natu-
rally in boundary integral equation formulations of elastodynamics [22]. Here, 
 j are called the stress transfer functionals 
and η j[ [v j]] are called the radiation damping terms [48,47,45,46]. The stress transfer functionals 
 j are tractions on a locked 
fault [ [v j]] = 0, which are altered by outgoing wave radiation when the fault is slipping [ [v j]] �= 0.

We define the hat-functions satisfying

q̂+
j := Z+

j v̂+
j + T̂ +

j = q+
j = Z+

j v+
j + T +

j , (38a)

p̂−
j := Z−

j v̂−
j − T̂ −

j = p−
j = Z−

j v−
j − T −

j , (38b)

and the interface condition (32) exactly. Given q+
j , p−

j , the procedure will solve (38) and (32) for the hat-functions, v̂±
j , ̂T ±

j . 
As before, we use force balance and the stress transfer functionals to rewrite (38) and (32), having

Force balance: T̂n + ηn[[̂vn]] = 
n, T̂m + ηm[[̂vm]] = 
m, T̂l + ηl[[̂vl]] = 
l, (39a)

No opening: [[̂vn]] = 0, (39b)

Friction law: T̂m = σ̂n
f
(

V̂ ,ψ
)
[[̂vm]], T̂l = σ̂n

f
(

V̂ ,ψ
)
[[̂vl]], (39c)
V̂ V̂
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where

V̂ =
√

[[̂vm]]2 + [[̂vl]]2.

We need to solve equation (39) for the hat-functions corresponding to tractions T̂ j and jump in particle velocities [ [̂v j]]. In 
the normal direction j = n, we have closed form solutions

[[̂vn]] = 0, T̂n = 
n,

thus, implying

σ̂n = max
(
0,−T̂n

)
.

In the tangential directions we have four coupled algebraic equations to solve,

T̂m + ηm[[̂vm]] = 
m, T̂l + ηl[[̂vl]] = 
l, (40a)

T̂m = σ̂n
f
(

V̂ ,ψ
)

V̂
[[̂vm]], T̂l = σ̂n

f
(

V̂ ,ψ
)

V̂
[[̂vl]]. (40b)

However, we can reduce the algebraic problem (40) to two nonlinear equations for hat-functions corresponding to slip 
velocities, [ [̂vl]], [ [̂vm]].

[[̂vm]] =
(
ηm + σ̂n

f
(

V̂ ,ψ
)

V̂

)−1


m, [[̂vl]] =
(
ηl + σ̂n

f
(

V̂ ,ψ
)

V̂

)−1


l. (41)

The nonlinear problems (41) can be reduced further to a single equation for the hat-function corresponding to slip rate√(
ηl V̂ + σ̂n f

(
V̂ ,ψ

))−2

2

l + (
ηm V̂ + σ̂n f

(
V̂ ,ψ

))−2

2

m = 1. (42)

Note that in an isotropic medium we have ηl = ηm = η, thus yielding

ηV̂ + σ̂n f
(

V̂ ,ψ
) =

√

2

l + 
2
m. (43)

We can now solve (42) or (43) to determine the hat-function for the slip rate V̂ , and then evaluate (41) to compute the 
hat-functions corresponding to the slip velocities. After computing the hat-functions corresponding to slip velocities [ [̂vl]], 
[ [̂vm]] in (41), we can obtain the hat-functions corresponding to shear tractions T̂l , T̂m directly from (40). We can now define 
explicitly the hat-functions corresponding to the particle velocities

v̂+
j = p−

j + T̂ j

Z−
j

+ [[̂v j]], v̂−
j = q+

j − T̂ j

Z+
j

− [[̂v j]]. (44)

Note that we have equivalently redefined the fault/interface condition (32) as follows

v±
j = v̂±

j , T −
j = T +

j = T̂ j, j = l,m,n. (45)

In particular, (45) defines a rule to update particle velocities and tractions on the fault.

Remark 3. One may be concerned if (42) or (43) always has a unique solution (or even a solution). Note that if the IBVP 
corresponding to the interface condition (32) is well-posed, then there is a unique solution of the IBVP and by construction 
the solution satisfies (42) or (43). Further, if f (0,ψ) = 0 and ∂ f (V ,ψ) /∂V ≥ 0, then using a geometric argument we can 
show that the solution of (42) or (43) is unique. Therefore, using our constructions, the solutions of the IBVP are the only 
solutions to (42) or (43). We remark also that many friction laws used in dynamic earthquake rupture simulations satisfy 
the requirements f (0,ψ) = 0 and ∂ f (V ,ψ) /∂V ≥ 0.

We can now formulate a result equivalent to Theorem 2.

Theorem 3. Let E±
J denote the elastic energy in the ±-sides of the fault. If the fault/interface condition is determined by (45), that is 

v±
j = v̂±

j , T −
j = T +

j = T̂ j ( j = l, m, n) on the fault, then the sum of the energies satisfies

d

dt

(
E−

J + E+
J

)
= −

1∫
0

1∫
0

σ̂n f
(

V̂ ,ψ
)

V̂

(
J
√

q2
x + q2

y + q2
z

)∣∣∣
q=0

drds ≤ 0. (46)
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4. Stable numerical approximations

In this section, we introduce discrete approximations and prove numerical stability. We will use SBP finite difference 
operators to approximate all spatial derivatives and impose boundary and interface conditions weakly using penalties. In 
order to prove numerical stability we will derive discrete energy estimates analogous to (21) and (46).

4.1. Spatial discrete operators

Consider the uniform discretization of the unit interval, 0 ≤ q ≤ 1, with Nq number of grid points and the spatial step, 
hq > 0,

qi = (i − 1)hq, i = 1,2, . . . , Nq, hq = 1

Nq − 1
. (47)

Let Dq be a differentiation matrix approximating the first derivative, Dq ≈ ∂/∂q, on the uniform grid (47). The matrix Dq is 
an SBP operator (in one space dimension), if the following properties hold

Dq = H−1
q Q q, Q T

q + Q q = ERq − ELq, Hq = HT
q > 0. (48)

Here, ELq = diag(1, 0, 0, . . . , 0), ERq = diag(0, 0, 0, . . . , 1) pick out the left and right boundary values. The matrix Hq is diag-

onal with positive entries h(q)

ii > 0, thus defining a discrete norm. The matrix Q q is almost skew-symmetric. Note that from 
the SBP property (48) we have

Dq = H−1
q Q q = H−1

q

(
−

(
H−1

q Q q

)T
Hq + ERq − ELq

)
= −H−1

q DT
q Hq + H−1

q

(
ERq − ELq

)
. (49)

The SBP finite difference operator Dq defined in (48) mimics the integration-by-parts property of the continuous operator. 
This is crucial in order to prove numerical stability. The SBP operator used in this study can be found in [23].

4.2. Discretization of the three space dimensional elastic wave equation

We discretize the spatial domain in the q-, r-, and s-directions using Nq , Nr , Ns grid points with constant spatial steps 
hq , hr , hs , respectively. A three space dimensional scalar grid function, u = [uijk], is stacked as a vector of length Nq Nr Ns , 
u = (

u111, u112, . . . , uNq Nr Ns

)T . All three space dimensional scalar material parameters are rearranged as diagonal matrices 
of the form a = diag

(
a111,a112, . . . ,aNq Nr Ns

)
. Spatial derivatives in higher space dimensions are derived using the Kronecker 

products,

Dq = (
Dq ⊗ Ir ⊗ Is

)
, Dr = (

Iq ⊗ Dr ⊗ Is
)
, Ds = (

Iq ⊗ Ir ⊗ Ds
)
.

Here, Dq , Dr , Ds are one space dimensional SBP operators and Iq , Ir , Is are identity matrices of sizes corresponding to the 
number of grid points Nq , Nr , Ns .

We use the SBP operators to compute the metric derivatives, that is xq = Dqx, yr = Dry, zs = Dsz, . . . , where (x,y, z)
denote the curvilinear mesh. The conservative transformation (9) is approximated by

∂u

∂x
≈ J−1 (

Dq (Jqxu) + Dr (Jrxu) + Ds (Jsxu)
)
, (50)

and the non-conservative transformation (10) is approximated by

∂u

∂x
≈ qxDqu + rxDru + sxDsu. (51)

If u = const, a constant function, then any derivative of u must vanish, ∂u
∂x ≡ 0, independent of the mesh. For a constant 

function, the non-conservative approximation (51) also vanishes completely independent of the mesh. For the conservative 
approximation (50) we have

ux = uJ−1 (
Dq (Jqx) + Dr (Jrx) + Ds (Jsx)

)
. (52)

If the metric terms are determined by (7), then for a constant function on a general mesh, from (52) we have ux = O (hp), 
where p is the order of accuracy of the SBP operator. Note that ux = O (hp) will vanish asymptotically with mesh refinement 
at the rate p. However, if we use the representation (8), then from (52) we have ux ≡ 0, on any mesh. The preservation 
of the derivative of a constant function can be useful in ensuring accuracy for nonlinear problems, see for instance the 
free-stream preservation [28,57] in computational fluid dynamics. However, for wave propagation in linear elastic media, as 
long as the numerical method is stable, we have not found this to be an issue.
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The semi-discrete approximation of the elastic wave equation (11) is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ dvx
dt

ρ
dvy
dt

ρ dvz
dt

S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dσxx
dt

dσyy
dt

dσzz
dt

dσxy
dt

dσxz
dt

dσyz
dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= DU, (53)

where the discrete spatial operator D is defined by

DU =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J−1
(
Dq

(
J
(
qxσxx + qyσxy + qzσxz

)) + Dr
(
J
(
rxσxx + ryσxy + rzσxz

)) + Ds
(
J
(
sxσxx + syσxy + szσxz

)))
J−1

(
Dq

(
J
(
qxσxy + qyσyy + qzσyz

)) + Dr
(
J
(
rxσxy + ryσyy + rzσyz

)) + Ds
(
J
(
sxσxy + syσyy + szσyz

)))
J−1

(
Dq

(
J
(
qxσxz + qyσyz + qzσzz

)) + Dr
(
J
(
rxσxz + ryσyz + rzσzz

)) + Ds
(
J
(
sxσxz + syσyz + szσzz

)))
qxDqvx + rxDrvx + sxDsvx

qyDqvy + ryDrvy + syDsvy

qzDqvz + rzDrvz + szDsvz

qyDqvx + ryDrvx + syDsvx + qxDqvy + rxDrvy + sxDsvy

qzDqvx + rzDrvx + szDsvx + qxDqvz + rxDrvz + sxDsvz

qzDqvy + rzDrvy + szDsvy + qyDqvz + ryDrvz + syDsvz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(54)

4.3. Boundary treatments

Next, we enforce the boundary condition (18). For more compact notations we introduce Hqrs = (
I9 ⊗ Hq ⊗ Hr ⊗ Hs

)
, 

Jqrs = (I9 ⊗ J), E = (
I9 ⊗ ERq ⊗ Ir ⊗ Is

)
. The boundary conditions (18) are imposed weakly using SAT. That is we construct a 

forcing function satisfying the boundary condition and add it to the right hand side of (53) with special penalty weights. 
The semi-discrete approximation of the elastic wave equation (11) with a weak enforcement of the boundary conditions 
(18) is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ dvx
dt

ρ
dvy
dt

ρ dvz
dt

S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dσxx
dt

dσyy
dt

dσzz
dt

dσxy
dt

dσxz
dt

dσyz
dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= DU −
(

I9 ⊗ H−1
q ⊗ Ir ⊗ Is

)
E
√

q2
x + q2

y + q2
z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αxFx

αyFy

αzFz

θxnx̃Fx

θyny F̃y

θznz̃Fz

θxny F̃x + θynx̃Fy

θxnz̃Fx + θznx̃Fz

θynz̃Fy + θzny F̃z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (55)

where F, ̃F are the SAT forcing defined by

F ≡ 1

2
RT (I − �) ZRv + 1

2
RT (I + �)RT,

F̃ ≡ RT Z−1RF = 1

2
RT (I − �) Rv + 1

2
RT (I + �) Z−1RT. (56)

The matrix E projects the SAT forcing on the boundaries, and if the boundary condition (18) is satisfied exactly then we 
have F ≡ 0 and F̃ ≡ 0. Here, nx , ny , nz are the components of the outward unit vector n. The dimensionless real numbers 
αx , αy , αz and θx , θy , θz are penalty parameters determined by requiring stability. We also remark that the SAT forcing 
functions F and ̃F are invariant with coordinate rotation R.
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4.4. Discrete stability of the boundary treatments

Here, we prove the numerical stability of the boundary treatment (55). The aim is to derive sharp estimates of the 
penalty parameters αx , αy , αz and θx , θy , θz , and a corresponding discrete energy estimate analogous to (21). To begin with, 
we approximate the elastic energy (20) by a quadrature rule

EJh =
Ns∑

k=1

Nr∑
j=1

Nq∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
ρi jk

2

(
v2

xi jk + v2
yi jk + v2

zi jk

)
+ 1

2

⎛⎜⎜⎜⎜⎜⎝
σxxi jk
σyyi jk
σzzi jk
σxyi jk
σxzi jk
σyzi jk

⎞⎟⎟⎟⎟⎟⎠

T

Si jk

⎛⎜⎜⎜⎜⎜⎝
σxxi jk
σyyi jk
σzzi jk
σxyi jk
σxzi jk
σyzi jk

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ J i jkh(q)

ii h(r)
j j h(s)

kk . (57)

Note that for all SBP operators considered in this study, the quadrature weights are positive h(q)

ii , h(r)
j j , h(s)

kk > 0. Therefore, 
the discrete quantity EJh defined in (57) is a discrete elastic energy. If the solutions of the discrete equation (55) satisfy 
EJh (t) ≤ EJh (0) for all t ≥ 0, then we say that the numerical approximation is asymptotically stable. We can now state a 
main result

Theorem 4 (General case). Consider the semi-discrete approximation (55) of the elastic wave equation subject to the boundary condi-
tion (18). If αx = αy = αz = 1, θx = θy = θz = 1, then

d

dt
EJh ≤ 0.

The semi-discrete approximation (55) is asymptotically stable.

Proof. Multiply equation (55) by 
(
vx,vy,vz, σxx, σyy, σzz, σxy, σxz, σyz

)
HqrsJqrs from the left and use the SBP property (48)

or (49) for the momentum equations (the first three equations in (55)) only. The interior terms cancel out. By ignoring the 
boundary terms at i = 1, j = 1, Nr , k = 1, Ns and introducing |qNjk| =

√
q2

xNq jk + q2
yNq jk + q2

zNq jk we have

d

dt
EJh = −

∑
i=l,m,n

Ns∑
k=1

Nr∑
j=1

|qNjk|
2

(
Zi (1 − γi) v2

i + (1 + γi)

Zi
T 2

i

)
J Nq jkh(r)

j j h(s)
kk . (58)

Note that all terms in the right hand side above are negative semi-definite, thus we have

d

dt
EJh ≤ 0.

Therefore, the semi-discrete approximation (55) is asymptotically stable. �
Note that the boundary treatment (55), with α j = θ j = 1, dissipates energy at least as fast as the continuous problem. 

Take for instance the case of a free-surface boundary condition with γ j = 1. From (58) we have

d

dt
EJh = −

∑
i=l,m,n

Ns∑
k=1

Nr∑
j=1

|qNjk| 1

Zi
T 2

i J Nq jkh(r)
j j h(s)

kk . (59)

The terms in the right hand side of (59) are dissipative. Since (55) is a consistent approximation and tractions are expected 
to be zero, T j = 0, in the limit of mesh refinement these artificial dissipative terms will vanish.

For some boundary conditions it may be more beneficial to penalize only certain equations in (55). This has the potential 
to minimize artificial numerical dissipation.

Theorem 5 (No numerical dissipation). Consider the semi-discrete approximation (55) of the elastic wave equation subject to the 
boundary conditions (18). The following results are true

• A free-surface boundary: If γ j = 1 ( j = l, m, n) and αx = αy = αz = 1, θx = θx = θz = 0, then the solutions of the discrete 
equation (55) satisfy the energy conservation equation

d

dt
EJh = 0. (60)
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• A velocity boundary: If γ j = −1 ( j = l, m, n) and αx = αy = αz = 0, θx = θx = θz = 1 then the solutions of the discrete equation 
(55) satisfy the energy conservation equation

d

dt
EJh = 0. (61)

• An absorbing boundary: If γ j = 0 ( j = l, m, n) then
a) with αx = αy = αz = 2, θx = θx = θz = 0, the solutions of the discrete equation (55) satisfy the energy equation

d

dt
EJh = −

∑
i=l,m,n

Ns∑
k=1

Nr∑
j=1

|qNjk|Zi v2
i J Nq jkh(r)

j j h(s)
kk , (62)

or
b) with αx = αy = αz = 0, θx = θx = θz = 2 the solutions of the discrete equation (55) satisfy the energy equation

d

dt
EJh = −

∑
i=l,m,n

Ns∑
k=1

Nr∑
j=1

|qNjk| 1

Zi
T 2

i J Nq jkh(r)
j j h(s)

kk . (63)

We will omit the proof of Theorem 5 since it is analogous to the proof of Theorem 4. Note that the energy equations 
(60)–(63) are in full accordance with the PDE and the boundary conditions. That is, there is no artificial numerical dissipa-
tion.

4.5. Interface treatment for friction laws

We present now the numerical interface treatments for friction laws. The interface procedure begins with the construc-
tion of the hat variables, as outlined in Section 3.3. The major difference here is that the hat-functions and the stress transfer 
functionals are computed using the semi-discrete grid functions, instead of the continuous functions used in Section 3.3. For 
nonlinear friction laws the hat-functions for slip rate are computed, from the relation (42) or (43), using a nonlinear solver 
such as Newton–Raphson. We also remark that the hat-functions v̂±

j , T̂ ±
j are computed in the l, m, n coordinates, but they 

can be rotated back to the x, y, z coordinates using the transformation

v̂± = RT

⎛⎜⎝ v̂±
n

v̂±
m

v̂±
l

⎞⎟⎠ , T̂± = RT

⎛⎜⎝ T̂ ±
n

T̂ ±
m

T̂ ±
l

⎞⎟⎠ . (64)

We could now update velocities and tractions on the fault by using

v± = v̂±, T± = T̂±. (65)

However, in order to ensure numerical stability we will enforce the discretized interface condition (65) weakly using penal-
ties. We begin by constructing the SAT forcing

F± ≡ 1

2
RT Z±R

(
v± − v̂±) ∓ 1

2

(
T± − T̂±)

,

F̃± ≡ RT (
Z±)−1 RF± = 1

2

(
v± − v̂±) ∓ 1

2
RT (

Z±)−1 R
(
T± − T̂±)

. (66)

Note that if the interface conditions (65) are satisfied exactly, that is v± = v̂± , T± = T̂± , then the SAT forcing functions 
will vanish completely, F− = F+ = F̃− = F̃+ = 0. Note also that the interface SAT forcing functions (66) are invariant with 
coordinate rotation R.

Then, we append the forcing functions defined in (66) to the right hand side of (53) with special penalty parameters, 
obtaining
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ dv±
x

dt

ρ
dv±

y
dt

ρ dv±
z

dt

S±

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dσ±
xx

dt
dσ±

yy
dt

dσ±
zz

dt
dσ±

xy
dt

dσ±
xz

dt
dσ±

yz
dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= DU± −
(

I9 ⊗ H−1
q ⊗ Ir ⊗ Is

)
E±

√
q2

x + q2
y + q2

z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αxF±
x

αyF±
y

αzF±
z

∓θxnx̃F±
x

∓θyny F̃±
y

∓θznz̃F±
z

∓ (
θxny F̃±

x + θynx̃F±
y

)
∓ (

θxnz̃F±
x + θznx̃F±

z

)
∓ (

θynz̃F±
y + θzny F̃±

z

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (67)

Note again that, nx , ny , nz are the components of the unit normal n pointing into the right block, and the dimen-
sionless real numbers αx , αy , αz and θx , θy , θz are penalty parameters determined by requiring stability. The matrices 
E− = (

I9 ⊗ ERq ⊗ Ir ⊗ Is
)
, E+ = (

I9 ⊗ ELq ⊗ Ir ⊗ Is
)

project the SAT terms on the interface. Since we know the solutions at 
the initial time we can advance (67) in time using an explicit time-stepping scheme. In the numerical experiments presented 
below we have used the low storage explicit fourth order accurate Runge–Kutta numerical time integrator [8].

4.6. Discrete stability of the interface treatments

In this subsection, we prove the numerical stability of the interface treatment (67). To begin, we set αx = αy = αz = 1, 
θx = θy = θz = 1, and consider the equations corresponding to the superscript −/+, separately. For −, multiply (67) by (
v−

x ,v−
y ,v−

z , σ−
xx, σ

−
yy, σ

−
zz , σ

−
xy, σ

−
xz , σ

−
yz

)
HqrsJqrs , from the left, and for + multiply (67) by 

(
v+

x , v+
y , v+

z , σ+
xx, σ+

yy, σ+
zz , σ+

xy,

σ+
xz , σ+

yz

)
HqrsJqrs , from the left. Thus, using the SBP property (48) or (49) for the momentum equations only, the interior 

terms cancel out. By summing the two products and ignoring all boundary terms except the terms on the interface we have

d

dt

(
E−

Jh + E+
Jh

)
=

Nr∑
j=1

Ns∑
k=1

|qNjk|
(
− (

v−)T
F− + (

v−)T
T− − (

T−)T
F̃−)

J Nq jkh(r)
j j h(s)

kk

+
Nr∑
j=1

Ns∑
k=1

|qNjk|
(
−(

v+)T
F+ − (

v+)T
T+ + (

T+)T F̃+)
J Nq jkh(r)

j j h(s)
kk . (68)

Defining

q±
j = Z±

j v±
j + T ±

j , p±
j = Z±

j v±
j − T ±

j , q̂−
j = Z−

j v̂−
j + T̂ j, p̂+

j = Z+
j v̂+

j − T̂ j, j = l,m,n,

then we have

− (
v−)T F− + (

v−)T
T− − (

T−)T F̃− = −
∑

j=l,m,n

1

4Z−
j

((
q−

j − q̂−
j

)2 +
(

p−
j

)2 −
(̂

q−
j

)2
)

, (69)

− (
v+)T

F+ − (
v+)T

T+ + (
T+)T

F̃+ = −
∑

j=l,m,n

1

4Z+
j

((
p+

j − p̂+
j

)2 +
(

q+
j

)2 −
(

p̂+
j

)2
)

. (70)

We begin with the following lemma

Lemma 1. Let v±
j , T ±

j ( j = l, m, n) denote the grid-functions for the particle velocities and tractions on the fault, and ̂v±
j , ̂T j ( j =

l, m, n) denote the corresponding hat-functions satisfying the interface condition (39) exactly. The following statements are true

i. q̂+
j = q+

j , p̂−
j = p−

j , (71a)

ii.
(

q+
j

)2 −
(

p̂+
j

)2 = 4Z+
j v̂+

j T̂ j,
(

p−
j

)2 −
(̂

q−
j

)2 = −4Z−
j v̂−

j T̂ j, (71b)

iii. [[̂vl]]T̂l + [[̂vm]]T̂m + [[̂vn]]T̂n = σ̂n f
(

V̂ ,ψ
)

V̂ ≥ 0, V̂ =
√

[[̂vl]]2 + [[̂vm]]2. (71c)

Proof.
i) Equation (71a) is equivalent to (38).
ii) By i) above we have
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(
p−

j

)2 −
(̂

q−
j

)2 =
(

p̂−
j

)2 −
(̂

q−
j

)2 =
(

p̂−
j − q̂−

j

)(
p̂−

j + q̂−
j

)
= −4Z−

j v̂−
j T̂ j,(

q+
j

)2 −
(

p̂+
j

)2 =
(̂

q+
j

)2 −
(

p̂+
j

)2 =
(̂

q+
j − p̂+

j

) (̂
q+

j + p̂+
j

)
= 4Z+

j v̂+
j T̂ j .

iii) By using (39b)–(39c) and the facts that σ̂n ≥ 0 and f
(

V̂ ,ψ
)

V̂ ≥ 0, the inequality (71c) holds.
The proof of the lemma is complete. �
By using the expressions (69), (70) and Lemma 1 above, on the right hand side of (68) we have

Theorem 6. Consider the semi-discrete approximation (67) of the elastic wave equation subject to the interface conditions (32) with a 
nonlinear friction law and the SAT terms defined in (66). If αx = αy = αz = 1, θx = θy = θz = 1, then

d

dt

(
E−

Jh + E+
Jh

)
= −

Nr∑
j=1

Ns∑
k=1

|qNjk|
∑

i=l,m,n

(
1

4Z−
i

(
q−

i − q̂−
i

)2 + 1

4Z+
i

(
p+

i − p̂+
i

)2

)
J Nq jkh(r)

j j h(s)
kk

−
Nr∑
j=1

Ns∑
k=1

|qNjk|σ̂n f
(

V̂ ,ψ
)

V̂ J Nq jkh(r)
j j h(s)

kk . (72)

The semi-discrete approximation (67) is asymptotically stable.

Note that the first term in the right hand side of (72) is a numerical dissipation which will vanish in the limit of mesh 
refinement. The energy rate in the second term in the right hand side of (72) directly matches the energy dissipation rate 
in the continuous problem.

Furthermore, we consider the linearization of the friction law about V = 0 such that Tm = α[ [vm]], Tl = α[ [vl]], 
0 ≤ α < ∞. There are two limiting cases. The first limit is a frictionless fault α → 0 and the second limit is a locked fault 
α → ∞. Consider a frictionless fault, we have α = 0 =⇒ Tm = Tl = 0. A locked fault yields, α = ∞ =⇒ [ [vl]] = [ [vm]] = 0. 
We then have [ [̂vl]]T̂l + [ [̂vm]]T̂m = α

(ηl+α)2 
2
l + α

(ηm+α)2 
2
m , implying that the energy dissipation rate is bounded for all 

0 ≤ α ≤ ∞. This shows that the spectral radius of the discrete spatial operator has an upper bound independent of α ≥ 0.

5. Test problems

In this section, we present numerical experiments demonstrating the potential power of the method to simulate spon-
taneous dynamic earthquake ruptures in complex geometries. We first verify numerical accuracy of the discrete approxi-
mations using the method of manufactured solutions (MMS). We then present a number of 3D numerical simulations of 
dynamic earthquake ruptures on a planar fault, and on two different fractal fault surfaces demonstrating the complexities 
of earthquake ruptures on rough faults. No artificial dissipation is used.

Consider two isotropic linear elastic materials in the three space dimensional blocks �− , �+ separated by a fault in the 
x-direction

�− := {
(x, y, z)|, ax ≤ x ≤ x̃ (y, z) , ay ≤ y ≤ by, az ≤ z ≤ bz

}
,

�+ := {
(x, y, z)|, x̃ (y, z) ≤ x ≤ bx, ay ≤ y ≤ by, az ≤ z ≤ bz

}
. (73)

Note that the fault surface is described by the function ̃x (y, z).

5.1. Accuracy evaluation for a non-planar fault using MMS

In the first test we evaluate numerical accuracy using MMS. Here, the computational domain is defined by

ax = −2 km, bx = 1.5 km, ay = 0 km, by = 2 km, az = 0 km, bz = 2 km, (74)

where the fault surface is

x̃ (y, z) = 0.1

(
exp

(
− (y − 1)2 + (z − 1)2

0.025

)
+ sin

(
2π

by − ay
y

)
sin

(
2π

bz − az
z

))
. (75)

A plot of the fault profile (75) separating the elastic blocks is shown in Fig. 3(a). We generate a 3D boundary conforming 
curvilinear mesh, obeying the fault topography for each elastic block �± , using standard transfinite interpolation [20].

Each domain �± is discretized using different grid resolutions. We choose initial data, boundary data and forcing func-
tions to match the exact solutions,
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Fig. 3. The analytical fault profile used for evaluation of accuracy via MMS and the plot of the error against different spatial resolutions. Note that the 
convergence rate of the error is fourth order.

vi = cos(ωtπt) sin(kxπx) sin(kyπ y) sin(kzπ z), i = x, y, z,

σi j = cos(ωtπt) cos(kxπx) cos(kyπ y) cos(kzπ z), i = x, y, z, j = x, y, z, (76)

where

ωt = 2 s−1, kx = ky = kz = 1 km−1.

The material properties in the first block are ρ = 2600 kg/m3, cs = 2 km/s, cp = 4 km/s and the material properties in 
the second block are ρ = 2700 kg/m3, cs = 3.464 km/s, cp = 6 km/s. Note that the material parameters are discontinuous. 
Since our aim is to verify accuracy we choose friction parameters such that the numerical solution converges to (76). On 
the top sides of the blocks, at y = 2 km, we impose free-surface boundary conditions. Characteristic boundary conditions 
are imposed on all other sides of the elastic blocks. We discretize in time using explicit fourth order accurate low-storage 
Runge–Kutta scheme [8]. The final time is t = 0.5 s and the CFL number is 0.5.

The time-step is set using

dt = CFL

max

(
maxi jk

√
q2

x + q2
y + q2

z cp,maxi jk

√
r2

x + r2
y + r2

z cp,maxi jk

√
s2

x + s2
y + s2

z cp

)h. (77)

Here, max cp = 6 km/s is the maximum p-wave velocity in the medium. The denominator in (77) corresponds to the maxi-
mum eigenvalue of the transformed spatial operator, for the Cauchy problem.

We have run the simulations for different resolutions. Numerical errors, measured in L2-norm, and the convergence rates 
are recorded in Fig. 3(b). Note that the errors converge to zero at the expected theoretical accuracy.

5.2. Rupture dynamics on a planar fault

In this experiment we consider a planar fault rupture dynamics benchmark problem ‘TPV102’ designed by SCEC/USGS 
Spontaneous Rupture Code Verification Project [25]. Below, we briefly describe the setup and the friction model used in this 
study.

To begin, we consider a planar strike–slip fault located at x = 0 km, bounded in the y- and z-direction by the rect-
angle, (y, z) ∈ [−W , 0] × [−W , W ], with W = 15 km. The hypocenter is located at the center of the rectangle (y0, z0) =
(−7.5 km,0 km) and the boundary at y = 0 km is a free-surface. Material properties in the two blocks are homogeneous 
with ρ = 2700 kg/m3, cs = 3.464 km/s, cp = 6 km/s. The fault is governed by a rate-and-state friction law. The shear 
strength on the fault evolves according to the nonlinear friction law

τ = aσnarcsinh

(
V

2V 0
exp

(
f0 + b ln (V 0ψ/L)

a

))
, (78)

coupled to a state evolution equation defined by the ageing law

dψ

dt
= 1 − V

L
ψ. (79)

The friction parameters V 0, a, f0, b and L are set Table 1.
To stop the rupture, the friction law changes from velocity-weakening in the rectangular interior region of the fault to 

velocity-strengthening sufficiently far outside this region. The transition occurs smoothly within a transition layer of width 
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Table 1
Friction parameters.

f0 V 0 a(y, z) b L

0.6 10−6 m/s 0.008 + �a(y, z) 0.012 0.02 m

Table 2
Initial data.

V ini τini σini

10−12 m/s 75 MPa 120 MPa

w = 3 km. Outside the transition layer, the fault is made velocity-strengthening by increasing a(y, z) using �a(y, z) =
0.008 (1 − B (y − y0; W /2, w) B (z; W , w)), where

B (z; W , w) =

⎧⎪⎨⎪⎩
1, if |z| ≤ W ,
1
2

(
1 + tanh

(
w

|z|−(W +w)
+ w

|z|−W

))
, if W < |z| < W + w,

0, if |z| ≥ W + w.

(80)

The function B (z; W , w) is a smooth version of the boxcar function.
The initial stress tensor is given by

¯̄σ 0 =
⎛⎜⎝σ 0

xx σ 0
xy σ 0

xz

σ 0
xy σ 0

yy σ 0
yz

σ 0
xz σ 0

yz σ 0
zz

⎞⎟⎠ , (81)

where

σ 0
xx = −120 MPa, σ 0

zz = −120 MPa, σ 0
xz = 75 MPa, σ 0

yy = σ 0
xy = σ 0

yz = 0 MPa. (82)

We resolve the initial stress on the fault to compute the initial traction vectors

T0 =
⎛⎜⎝ T 0

x

T 0
y

T 0
z

⎞⎟⎠ = ¯̄σ 0n,

⎛⎜⎝ T 0
n

T 0
m

T 0
l

⎞⎟⎠ = RT0. (83)

Note that the unit vectors on a planar fault are the canonical basis vectors, thus the normal vector is n = (1,0,0)T and 
the rotation matrix R is the identity matrix. At t = 0, the fault is everywhere sliding in the horizontal direction with initial 
velocity V = V ini . The initial shear stress on the fault, which is also horizontal for the planar fault, is τini = T 0

l , the initial 
normal stress is σini = −T 0

n , and the initial state variable is ψini (y, z). Note that the initial state variable is spatially variable, 
but the initial velocity and stresses are uniform. The values of the initial conditions V ini, τini, σini are given in Table 2.

ψini (y, z) = L

V 0
exp

(
a (y, z) ln (2 sinh (τini/a (y, z)σini)) − f0 − a (y, z) ln (V ini/V 0)

b

)
. (84)

Starting at t = 0, rupture is nucleated by imposing a horizontal shear traction perturbation, that is

Tl = T 0
l + �τ (y, z, t) , (85)

where

�τ (y, z, t) = �τ0 F (r) G(t), r =
√

(y − y0)
2 + (z − z0)

2,

F (r) =
{

exp
(

r2

r2−R2

)
, if r < R,

0, if r ≥ R,
(86)

G (t) =
{

exp
(

(t−T )2

t(t−2T )

)
, if 0 < t < T ,

1, if t ≥ T ,
(87)

with T = 1 s, R = 3 km, �τ0 = 25 MPa. The perturbation is smooth in both space and time, it grows from zero to its 
maximum amplitude �τ0 over a finite time interval 0 < t ≤ T , and is confined to a finite region of the fault of radius R .
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Fig. 4. Snapshots of the slip rates on a planar fault surface using two levels of mesh resolution: with 0.1 km grid spacing for the first column and 0.05 km 
grid spacing for the second column. Note that the color scale is fixed with the dark red corresponding to the maximum amplitude of the slip velocity 
which is 5 m/s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In (73) we set

ax = −20 km, bx = 20 km, ay = 0 km, by = 20 km, az = −20 km, bz = 20 km,

and discretize using two levels of grid refinements 201 × 201 × 401 and 401 × 401 × 801 grid points, respectively, for each 
block, corresponding to 0.1 km and 0.05 km grid spacing in each direction. We run the simulation until the final time 
t = 12 s. Snapshots of the slip rate are shown in Fig. 4. Fig. 5 shows front contours, marking the time at which the fault 
slip-rate first exceeds 10−3 m/s. Rupture starts in the region, centered at the hypocenter (y0, z0) = (−7.5 km,0 km), with 
the radius R = 3 km, and spreads uniformly outward, in all directions. When the rupture reaches the free surface, some of 
the wave fields are reflected back into the fault but the rupture continues to propagate on the free-surface along the fault. 
Note also that there are spurious high frequency oscillations trailing the rupture front, see the first column in Fig. 4. This is 
due to a combination of the large gradients present in the solutions at the rupture tip and the discrete dispersion properties 
of high order centered finite difference operators for first derivatives on collocated grids. These spurious oscillations can 
be mitigated by increasing resolution, see the second column in Fig. 4, or the addition of accurately constructed artificial 
dissipation operators.

In the next subsection, we will present numerical simulations of earthquake rupture dynamics on nonplanar faults, 
demonstrating the complexity of rupture processes on rough faults.

5.3. Rupture dynamics on nonplanar faults

Here, we consider as before two elastic blocks �− , �+ separated by a fault at x = x̃ (y, z). The major difference here is 
that the fault surface is nonplanar. Observations indicate that natural faults are self-similar fractal surfaces with deviations 
from planarity at all scales [50,7,6]. Recent work [15] in 2D and later by [52] in 3D has shown that dynamic rupture models 
incorporating geologically constrained fault surface roughness correctly predict near-source ground motion up to ∼10 Hz. 
The extreme stress perturbations associated with slip on nonplanar faults cause fluctuations in rupture velocity and slip. This 
variability, which destroys the coherence of the high-frequency seismic wavefield, is evidently comparable to that occurring 
in real earthquakes. We numerically generate a pair (Realization A with minimum wavelength 2 km and Realization B with 
minimum wavelength 1 km) of random band-limited self-similar faults profiles with roughness quantified in terms of the 
amplitude-to-wavelength ratio, α = 10−2. The fault profiles are shown in Fig. 6. All frictional properties, initial stresses, and 
material properties are identical to those in the planar fault simulations.
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Fig. 5. Rupture contours on a planar fault surface.

Fig. 6. Fractal fault profiles with amplitude-to-wavelength ratio α = 10−2.

We generate a 3D curvilinear mesh obeying the fault topography and resolve the stress on the fault to compute the trac-
tion vectors. Note that because of the non-planarity of the fault surface the initial tractions on the fault are heterogeneous, 
even though the initial stress in the medium is homogeneous.

We run the simulations until t = 12 s using two levels of grid refinements 201 × 201 × 401 and 401 × 401 × 801 grid 
points, respectively, for each block. Snapshots of the slip rates for the rough fault profile Fig. 6(a) are shown in the first 
column of Fig. 7. The rupture contours are shown in Fig. 8. Clearly, fault roughness has a significant effect on the rupture 
process. As opposed to slip on a planar fault above, slip on nonplanar faults perturbs the stress field in the vicinity of the 
rupture front, altering its advance and introducing fluctuations in slip and rupture velocity. Those fluctuations, together with 
changes in the local orientation of the fault, reduce coherence of the seismic wave field. Similar observations were made 
in [15] for a 2D simulation and in [52] for 3D, respectively. Note that the fault profile in Fig. 6(b) has the same statistical 
properties as the profile in Fig. 6(a), but now contain shorter wavelength perturbations. The shorter wavelength roughness 
introduces greater complexity in slip rate and rupture contours, see Fig. 8.

6. Summary and outlook

We have developed a high order accurate and provably stable finite difference method for dynamic earthquake rupture 
simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous Earth models. Complex geometries 
and nonplanar faults are handled using curvilinear grids and coordinate transformation. The transformed equations derived 
in this paper have much fewer number of terms than the approaches taken in other related studies [40,29,39,32]. This 
is crucial in minimizing the number of floating points operations, and useful because of the many number of equations 
and variables describing linear elasticity in 3D. This technique can be extended to other linear hyperbolic problems such 
as acoustics and Maxwell’s equation. We use SBP finite difference operators with sixth order accurate interior stencils and 
third order accurate boundary closures. However, the method is applicable to all diagonal norm SBP operators. Boundary 
and interface conditions are imposed weakly using penalties. By deriving penalty parameters and discrete energy estimates, 
that are analogous to the continuous energy estimates, we prove time stability.

We presented numerical experiments verifying accuracy and demonstrating the usefulness of our method in simulat-
ing frictional interface problems in complicated 3D elastic media. We also mention that the code has been benchmarked 
against problems defined by SCEC/USGS Spontaneous Rupture Code Verification Project. Simulations on self-similar rough 
fault profiles indicate complex rupture propagation. This software will be used to further understanding of rupture physics 
and ground motion associated with earthquakes that occur in realistic material structures. Potential applications include 
problems related to earthquake engineering, induced seismicity, and subduction zone earthquakes.

We also note that our method as well as the continuous Galerkin finite element methods [34,1,14,18] and the spectral 
element method [27] exhibit spurious high frequency oscillations, trailing the rupture front. This is in part due to large 
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Fig. 7. Snapshots of slip rates on the rough fault profile Realization A, with minimum wavelength = 2 km, using two levels of mesh resolution: with 0.1 km 
grid spacing for the first column and 0.05 km grid spacing for the second column. Note that the color scale is fixed with the dark red corresponding to the 
maximum amplitude of the slip rate which is 5 m/s. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 8. Rupture contours on rough fault surfaces.

gradients present in the solutions at the rupture tip and the non-optimal discrete dispersion properties of the spatial oper-
ators. These spurious oscillations can be mitigated by increasing spatial resolution or the addition of accurately constructed 
artificial dissipation operators. However, artificial dissipation can also introduce some interesting but unfortunately unde-
sirable effects. Probably, a more promising strategy will be to discretize the equation of linear elastodynamics in second 
order form (where the unknowns are displacements) using minimal stencil second derivative SBP operators [37] for variable 
coefficients. However, provably stable SBP–SAT methodology for elastic wave equations in second order form and curvilin-
ear grids is rather a recent development [16,17]. Extensions of the SBP–SAT method, for displacement dependent variables, 
[16,17] to friction laws and rupture dynamics is a topic of future work.
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