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Abstract

The Dynamics and Near-Source Ground Motion of Supershear Earthquakes
by

Eric Michael Dunham

Earthquake ruptures propagate in one of two velocity regimes: either less than
the Rayleigh wave speed (sub-Rayleigh) or between the S- and P-wave speeds
(intersonic or supershear). We present an overview of rupture dynamics, the basis
of which is a consideration of how waves released by material failure processes
in the fault zone transmit shearing stresses ahead of the propagating rupture.
Departure from steady state rupture growth generates a set of elastic waves that
diffract off of the moving crack edge. These transient diffractions provide the
mechanism that allows ruptures to jump between the two propagation velocity
regimes. The supershear transition is accompanied by the release of a Rayleigh
interface wave on the fault surface, which manifests as a secondary slip pulse
trailing the supershear rupture.

Until recently, seismic inversions have revealed most earthquakes to be sub-

Rayleigh. Near-source seismograms from the 2002 M, 7.9 Denali Fault earthquake

viii



offer evidence to the contrary. We present a dynamic rupture model of the event,
in which an initially sub-Rayleigh rupture accelerates to supershear velocities prior
to the station. The ground motion is characterized by two sets of pulses, one set
appearing when the supershear rupture passes the station, and the second when
the theoretically predicted Rayleigh wave goes by.

We augment this analysis by calculating synthetic ground motions using two-
dimensional analytical solutions for steady state ruptures, valid for an arbitrary
traction function within the slip zone, in both the sub-Rayleigh and supershear
regimes. These solutions place constraints on which friction law properties can be
inferred from near-source records. At supershear rupture velocities, information
remains unattenuated as it is transported away from the fault along the S-wave
Mach front, a situation that does not occur at sub-Rayleigh speeds. Consequently,
ground motion from supershear ruptures offers unprecedented insight into such
parameters as the rupture pulse length and the extent of the process zone. This
comes at the expense of significantly higher peak velocities and accelerations far

from the fault, an obvious point of concern for seismic hazard analyses.
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CHAPTER 1. INTRODUCTION

Tectonic motions, driven by internal convection of the mantle, deform the
surface of the Earth. The brittle crust, the outermost portion of the planet, ac-
comodates this deformation through the formation of highly localized weak fault
zones on which slip occurs. The rocks surrounding faults sustain small deforma-
tions and may consequently be modeled as a linear elastic solid. Deviations from
linear elasticity, in particular the extreme strains occuring within the fault zone
during slip, become sources in the linear elastic model. We shall refer to these
inelastic deformations as the source process.

Slip often occurs in earthquakes, rapid shear fracture events characteristic of
highly strained brittle materials under compression. Ruptures follow complicated
paths through fault zones determined by the interplay between the heterogeneous
fault strength and the elastic waves released when the fault zone material fails.
These elastic waves play a central role in earthquake dynamics. In the vicin-
ity of the fault, they redistribute the stress field, transmitting the driving force
of the rupture to the unbroken region ahead of the propagating rupture front.
The rupture consequently proceeds at a velocity comparable to the elastic wave
speeds, meaning that inertial dynamics of the elastic material surrounding the
fault become important. The most pronounced manifestation of this feature is
the generation of seismic waves that are responsible for the destructive ground

motion well known to those who live in the vicinity of active faults.
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The rheology of fault zones and the resulting friction laws are the subject of
considerable debate. We avoid this question entirely in this work. The only re-
quirement that we demand of the source process is that slip occurs as the strength
of the fault zone decreases. This process is dissipative, characterized by a flow
of kinetic and strain energy from the elastic medium into the slipping fault zone.
The dissipated energy is typically classified as friction (the energy lost due to fric-
tional sliding behind the rupture front) and fracture energy (the energy consumed
at the rupture front that is required to extend the rupture in the absence of fric-
tion on the slipping fault). We further assume, based on entropic arguments, that
this energy enters a disordered form (eventually heat) and cannot be recovered as
elastic energy.

The primary focus of this work is the relationship between rupture speed and
seismic waves. The geometry of many ruptures, particularly crustal strike-slip
events, is such that the rupture moves in the direction of slip. In this case, the
source process generates both P and S waves. The interference of these waves
introduces another velocity, the Rayleigh speed cg, which is slower than either
the P- or S-wave speeds ¢, and c,. Ruptures propagate in one of two rupture
velocity regimes, either less than the Rayleigh speed (sub-Rayleigh) or between
the S- and P-wave speeds (intersonic or supershear). At supershear velocities, S

waves radiate from the rupture to form a Mach front, completely changing the
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seismic signature and ground motion of these events.

Evidence for supershear ruptures continues to mount, warranting further ex-
ploration of the phenomenon. In this work, we focus on two aspects: the dynamics
of the supershear transition and the seismic signature of supershear ruptures in
near-source ground motion. This work is organized as follows. A review of the lit-
erature is provided in Chapter 2, which assumes a certain basic knowledge of frac-
ture mechanics. Such may be found in any number of review articles (Rice, 1980;
Dmowska and Rice, 1986; Das, 2003) or texts (Freund, 1989; Broberg, 1999a), and
a review of intersonic fractures, focusing particularly on laboratory experiments,
has recently appeared (Rosakis, 2002). Chapter 3 discusses elastic waves and the
earthquake source process, and provides an explanation for the allowed propa-
gation velocity regimes. Chapter 4 contains a study of elastic wave propagation
in the vicinity of frictionally sliding faults. After these preparatory studies, we
examine in Chapter 5 the ground motion from steady state ruptures propagating
with both sub-Rayleigh and intersonic speeds. We then turn in Chapter 6 to the
underlying dynamics behind the supershear transition. Finally, in Chapter 7 we
bring these theoretical ideas together with seismic data to present evidence for

supershear rupture speeds in the 2002 Denali Fault, Alaska, earthquake.
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CHAPTER 2. BACKGROUND

The speed at which ruptures propagate depends on their geometry, which
may be decomposed into three modes. Tensile, or mode I, fracture is the most
common failure mode in engineering materials, and involves symmetric normal
displacement of the crack faces. Under conditions of large compressive stresses, as
commonly occur in the earth, failure may occur via shear slip along an interface.
Shear fractures are classified as either mode Il or mode IlI, depending on the
relative orientation of the slip vector and the crack edge (or rupture front, as we
shall often call it). Mode II rupture has slip perpendicular to the front, and mode
IIT has slip parallel to it. In this work, we shall be concerned only with the shear

failure modes since no evidence of tensile failure has been observed in earthquakes.

2.1 Theoretical Studies

Mathematical solutions for propagating ruptures appeared in the early 1960s in
the context of the singular crack model. The solution for self-similarly expanding
mode I cracks was given by Broberg (1960), and the corresponding problem for
mode II shear cracks was obtained by Kostrov (1964). The solution for a steady
state semi-infinite crack involving a combination of mode I and II loading was
obtained by Craggs (1960). In these models, all of the dissipation is localized to

the crack edge, where the stress field diverges as the inverse square-root of the
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distance from the edge. This singularity acts as an energy sink in an otherwise
linear elastic body. A flux of energy into the crack edge is taken to be a physical
requirement for occurence of rupture. At sub-Rayleigh speeds, energy flows from
the elastic medium into the crack edge, as required (Craggs, 1960). For speeds
between the Rayleigh and S-wave speed, the flow of energy reverses, and the
propagating crack releases energy into the elastic medium (Kostrov, 1964; Fossum
and Freund, 1975). Since this process violates our basic assumption that rupture
is a dissipative phenomenon, this rupture velocity regime is forbidden.

The intersonic (or supershear, as it is known within seismology) rupture ve-
locity regime, in which the rupture speed lies between the S5- and P-wave speeds,
has more complicated energetics. Application of the singular crack model yields
solutions for which the singularity at the crack edge is weaker. The stress field
o diverges as 0 « r 7 where 7 is the distance from the edge and 0 < ¢ < 1/2
(Burridge, 1973; Andrews, 1976). The exponent ¢ is a function of rupture speed
and takes on the value 1/2 only at the particular speed of v/2¢,. Except at this
speed, the singularity is too weak to be associated with a flow of energy into the
crack edge, leading to the (mistaken) conclusion that intersonic propagation is
not possible except at v/2c;.

A major change in the wavefield occurs at intersonic speeds: The § waves

excited by the propagating rupture switch from being evanescent to radiating
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waves, manifesting in the formation of a distinctive Mach front. An exception to
this again occurs at v/2c,, a speed at which no S waves are excited. The absence
of radiation at this speed was noted quite early by Eshelby (1949) in a study of
propagating edge dislocations. This coincidence suggests a connection between
energy dissipation at the crack edge and emission of S-wave radiation that will be
discussed in Chapter 5.

The early conclusion that the limiting velocity of mode II ruptures was the
Rayleigh speed (Craggs, 1960) was first questioned by Burridge (1973), who con-
ducted an analytical study of self-similarly expanding cracks with a finite-stress
fracture criterion. This criterion has the property that stresses remain bounded at
the crack edge, as expected for a real material, but carries with it the unphysical
consequence that no energy is dissipated from the medium. Despite this ques-
tionable assumption, Burridge (1973) obtained solutions for shear ruptures at the
P-wave speed, hinting that elastic waves moving along faults at intersonic speeds
transmit driving forces that could potentially generate intersonic shear failure.

A physically satisfying approach was taken by Andrews (1976) in his numer-
ical models of shear crack growth. The key idea was to remove the singularity
at the crack tip by introducing a finite length scale over which dissipative pro-
cesses occur, a feature that most certainly occurs in real materials. To simplify

the numerical calculations, this region, known as the process zone, is confined to
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the fault plane. This idea emerged in the work of Barenblatt (1959) and Dugdale
(1960) for tensile cracks, where it was known as the cohesive-zone model, and was
extended to shear fractures by Ida (1972, 1973) and Palmer and Rice (1973). An-
drews (1976) introduced this into his numerical models through a slip-weakening
fracture criterion, in which the fault strength decreases from a peak strength (or
yield stress) to a residual strength (or sliding friction) as the fault slips. The
amount of slip required to decrease the strength to the residual strength is known
as the slip-weakening distance. With this fracture criterion, ruptures propagate
spontaneously, as the actively slipping zone extends whenever the stress on the
fault reaches the peak strength.

In his numerical models, Andrews (1976) observed that bilaterally expanding
cracks begin at sub-Rayleigh speeds. As the crack expands, a peak in shear stress
moving at the S-wave speed develops ahead of the crack tip, a feature revealed in
the earlier study by Burridge (1973). Under certain conditions (basically, when
faults are loaded close to failure), this peak exceeds the peak strength of the
fault, initiating a secondary rupture ahead of the original sub-Rayleigh crack.
The secondary rupture expands at intersonic speeds around 1.5¢; and the original
rupture coalesces with it. In this way, the rupture bypasses the forbidden velocity
region between cg and ¢y by simply jumping discontinuously across it. The same

effect was observed in the numerical work by Das and Aki (1977b).
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A complimentary analytical study of steady state intersonic cracks appeared
soon after this (Burridge et al., 1979). Like Andrews (1976), Burridge et al.
(1979) introduced a finite cohesive zone, actually idealized to a single point force
following at a fixed distance behind the crack tip. The strength of this point force
was chosen such that the stresses at the crack tip remained finite. They found
that while all intersonic speeds were allowed, the region between ¢, and v/2¢, was
mechanically unstable, in the sense that propagation at faster speeds required a
smaller load. This conclusion was consistent with the simulations of Andrews
(1976), in which intersonic rupture speeds were always greater than v/2c;.

Other seismologically relevant studies from this time dealt with propagating
rupture pulses (where the slip zone has a fixed width), rather than with traditional
cracks (where the area of the actively slipping zone grows with the rupture). The
rupture pulse model is closer to a propagating dislocation, which was successfully
used by Aki (1968) in his seminal study of the near-source records of the 1966
Parkfield earthquake. This model was studied for an arbitrary shear traction
distribution within the slip zone by Broberg (1978). This study was initially
constrained to sub-Rayleigh rupture speeds, although this restriction was lifted in
later work (Broberg, 1989). Freund (1979) also studied the rupture pulse model,
both for sub-Rayleigh and intersonic ruptures, but only in the singular limit.

Analytical studies of self-similarly expanding cracks in the intersonic regime were
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conducted by Broberg (1994, 1995), who built on ideas developed earlier regarding
the necessity of cohesive zones for a finite energy dissipation at intersonic speeds
(Broberg, 1989).

There has recently been a growing number of papers related to intersonic
growth, spurred particularly by the laboratory experiments of Rosakis, which are
discussed in the next Section. Steady state growth under combined mode I and
IT loading, as might occur in engineering applications, has been investigated both
numerically (Geubelle and Kubair, 2001) and analytically (Kubair et al., 2002).
Intersonic growth is possible, with the mode II component driving the rupture
while the mode I component resists.

Intersonic propagation, in particular the supershear transition, has also re-
ceived attention in three-dimensional or shear mixed mode loading. These include
numerical studies of three-dimensional problems having two-dimensional planar
faults. This involves a combination of mode II and III loading that varies around
the rupture front. Day (1982b) found that for relatively homogeneous faults, the
supershear transition occurs in the predominantly mode II direction via the same
mechanism described earlier by Andrews (1976). This conclusion was also reached
by Johnson (1990). For heterogeneous faults, ruptures can discontinuously jump
to sections close to failure, leading to apparent rupture speeds exceeding the S-

or even P-wave speed (Day, 1982b). The supershear transition in the presence
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of heterogeneities has been studied by Fukuyama and Olsen (2002) and Dunham
et al. (2003). These studies indicate that local bursts of supershear rupture are
common in dynamic crack models.

Studies of the supershear transition for three-dimensional ruptures expanding
radially outward from an initially circular nucleation patch were conducted by
Madariaga and Olsen (2000) and Madariaga et al. (2000). They found that the
supershear transition occurs smoothly, unlike the discontinuous jump described
by Andrews (1976). The supershear transition occurs first in the mode II direction
and spreads laterally around the rupture front.

A number of analytical solutions have recently appeared, focusing on the un-
steady growth of semi-infinite cracks in the intersonic regime or on the jump
between the sub-Rayleigh and intersonic regimes. At the basis of these problems
is a self-similar “fundamental” solution that can be used in superposition schemes
to solve non-steady problems. The method was pioneered by Freund (1972a,b) for
mode I cracks and extended to sub-Rayleigh mode II cracks by Fossum and Fre-
und (1975). An alternative path to the solution for non-uniformly moving cracks
in the sub-Rayleigh (for mode I and II) and subshear (for mode III) regimes was
given by Kostrov (1975). The solution to the “fundamental” solution for inter-
sonic cracks was obtained by Huang and Gao (2001), who then used the results to

study a suddenly stopping intersonic crack (Huang and Gao, 2002). The solution
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was used by Guo et al. (2003b) to solve the problem of a suddenly decelerat-
ing or accelerating crack. Their results highlight the fact that both S waves and
Rayleigh waves trail supershear ruptures. When a rupture decelerates from the
intersonic to sub-Rayleigh regime, these waves will catch up to the crack edge
and influence its dynamics. A solution for a continuously accelerating intersonic
crack is given by Broberg (1999b). For semi-infinite intersonic cracks subject to
a time-dependent load, the stress intensity factor has been derived by Guo et al.
(2003a).

Antipov et al. (2004) studied the cohesive-zone model for intersonic cracks,
obtaining a simple expression for the energy release rate as a function of rupture
speed and cohesive zone size. This result was used by Obrezanova and Willis
(2003) in a linearized stability analysis of intersonic cracks. They concluded that
the crack is stable to two-dimensional perturbations of its propagation velocity,
in accordance to what has been observed in numerical simulations.

Supershear crack growth has also been studied in molecular dynamic simula-
tions (Abraham and Gao, 2000; Abraham et al., 2002), in which particles interact
via a Lennard-Jones potential. They found that the supershear transition occurs
as described by Andrews (1976), indicating that the transition mechanism is a
rather universal feature associated with wave propagation in an elastic solid. Gao

et al. (2001) provided an analytical analysis of these simulations, which they used
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to predict the timing of the supershear transition.

2.2 Laboratory Experiments

Recent interest was spurred by the observation of supershear ruptures in lab-
oratory experiments (Rosakis et al., 1999). The original experiments were con-
ducted using a plate containing a pre-existing notch to act as a stress concentrator.
The material was chosen because of its rheology as a brittle solid (similar to rock)
and to its photoelastic properties, which allow the imaging of the internal stress
field via interference fringe patterns. The rupture was triggered by the impact
of a moving projectile, which generates a loading wave and transmits driving
stresses to the stress concentration at the notch. Evidence of supershear speeds
comes from the distinctive Mach fronts emanating from the ruptures. Finite el-
ement simulations of the experiment were conducted by Needleman (1999). An
analytical study of self-similar cracks with a velocity-weakening cohesive zone by
Samudrala et al. (2002) explains many of the observed features, including tensile
microcracks that were observed on the extensional side of the interface.

Recently, the laboratory experiments have been modified to mimic real faults,
in which slip occurs on a pre-existing frictional interface. An interface is cut in

the sample and held in place by a compressive load. A shear load mimics the
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tectonic stress field prior to an earthquake. The rupture is nucleated in the center
of the interface by exploding a small wire. Using this setup, Xia et al. (2004) have
captured the transition from sub-Rayleigh to supershear speeds, which in their
experiments occurs via a discontinuous jump originally described by Andrews

(1976).

2.3 Seismic Observations

Supershear rupture speeds have been inferred for several earthquakes, based
on various types of data ranging from near-source to teleseismic records. Many of
these studies rest on seismic inversions, a procedure for extracting source param-
eters from a finite data set. The inverse problem is underdetermined, resulting
in instability unless additional assumptions are made. These typically involve
constraints on slip positivity (no reverse slip is permitted) and solution smooth-
ness. Inherent trade-offs between variations in rupture speed and variations in
slip render accurate statements regarding local rupture speeds somewhat difficult
to substantiate.

For the most part, supershear ruptures seem to occur on well-developed, active
strike-slip faults (e.g., the Izmit, Duzce, Kunlunshan, and Denali Fault events).

Exceptions to this rule appear to occur when the rupture process is sufficiently
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heterogeneous as to involve some focusing process or rupture of a highly loaded
region (e.g., the Imperial Valley and Landers events). The geologic or tectonic
setting is likely correlated with the propensity for supershear ruptures. New faults
will be complex, composed of multiple, partially connected fault segments. Rup-
ture through such a system will be locally delayed during the transfers between
faults, and the driving radiation is likely to be less coherent due to scattering at
the junctions. On the other hand, well-developed fault systems consist of a sin-
gle dominant fault that accomodates almost all of the deformation of the region.
These faults are often quite straight, which will enhance the coherence of the driv-
ing radiation and more easily promote supershear ruptures. The data appear to
support this idea, although the paucity of records from large faults renders such
a conclusion rather speculative. In the remainder of this Section, we summarize

the studies of earthquakes for which supershear speeds have been suggested.

1979 Imperial Valley, California

The first seismic observation of supershear rupture speeds comes from the Im-
perial Valley earthquake. Trial and error waveform fitting of near-source strong
motion data by Archuleta (1984) suggested that the rupture process was quite
variable, with rupture speeds approaching the P-wave speed at depth during the

later stages of rupture on the Imperial Fault. The argument rests not on the dom-

16



CHAPTER 2. BACKGROUND

inant fault normal motions, which could be explained by a sub-Rayleigh rupture,
but on fault parallel motions recorded, in particular, at distances quite removed
from the fault. The amplitudes at these distances were larger than would typically
be expected. This observation foreshadows our conclusions regarding the ground
motion generated by the S-wave Mach front, and will be discussed in Chapter 5.

The possibility of supershear speeds had been suggested earlier in the inver-
sion results of Olson and Apsel (1982), who also used near-source data. They
constrained the average rupture velocity to 0.9c,, but allowed local variations in
rupture time both ahead and behind the average by allowing slip in multiple time
windows surrounding and centered on the average. Their results indicated supers-
hear speeds over the same section identified by Archuleta (1984). Analysis of data
from a short baseline accelerometer array, from which the location of the incident
radiation could be determined, also suggested supershear speeds (Spudich and
Cranswick, 1984). Not all studies reached this conclusion, however. Two other
studies, the first by Hartzell and Helmberger (1982) using near-source data and
the second by Hartzell and Heaton (1983) using both near-source and teleseismic
data, did not find supershear rupture. As discussed by Archuleta (1984), their

models underpredict the ground motion at stations removed from the fault.
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1992 Landers, California

The Landers earthquake offers an example of an extremely complex rupture
process with highly variable rupture speed. Unlike the other earthquakes dis-
cussed in this section, the Landers earthquake propagated through numerous fault
segments having various orientations, none of which play a dominant role in ac-
comodating lithospheric deformation. The inversion by Wald and Heaton (1994)
using near-source, teleseismic, and geodetic data sets suggests that the average
rupture speed was sub-Rayleigh. However, there are significant fluctuations, in-
cluding a segment on the Camp Rock and Emerson fault segments that propagates
at supershear speeds. Cohee and Beroza (1994), in their inversion, also fail to find
evidence for supershear rupture, at least on average. They present several models
for the inferred slip distribution for various average rupture speeds. The extreme
variability between the models highlights a strong trade-off between heterogeneity
in slip and rupture timing.

Several later studies examined this in more detail. In particular, Cotton and
Campillo (1995) developed an inversion method in the frequency domain that
places no restrictions on rupture speed. Building on this work, Hernandez et al.
(1999) conducted a two-step inversion process for both slip and rupture timing. In

the first step, they inverted synthetic aperture array (SAR) and global positioning
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system (GPS) data for the final slip distribution on the fault. Then, taking this
slip field as known, they inverted the near-source strong motion data for the
rupture time, again using the frequency-domain method without restrictions on
rupture speed. Their model shows a rupture process even more complex than
inferred in previous studies. Strong variations in rupture speed were observed,
but they make no explicit claim of supershear speeds.

Dynamic models do not place any constraint on rupture speed. An examina-
tion of the surface velocity field from the dynamic model of the Landers earthquake
by Olsen et al. (1997) reveals a feature similar to a Mach front. This indicates
that at least the apparent or along-strike phase velocity of the rupture locally
exceeded the S-wave speed over sections of the fault. In some sense, the rupture
process is similar to that described by Day (1982b) for heterogeneous faults, in
which waves radiating ahead of the rupture trigger slip on weak patches ahead of

the original front, causing apparent supershear speeds.

1999 Izmit and Duzce, Turkey

The Izmit and Duzce earthquakes were a bilateral events occuring within three
months of each other. Rupture propagated at a supershear speed in one direction
and at a sub-Rayleigh speed in the opposite direction according to the inversions of

Bouchon et al. (2000, 2001). Evidence supporting the claim of supershear speeds
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rests heavily on a single near-source accelerogram, for which only one horizon-
tal component functioned properly. This station was located in the direction of
supershear propagation and shows the abrupt arrival of large amplitude S waves
immediately after the hypocentral P-wave arrival. No hypocentral S-wave arrival
is evident. In contrast to this, the hypocentral S wave is clearly visible prior to
the rupture front arrival at a station in the opposite direction, supporting the

conclusion of sub-Rayleigh rupture speeds in this direction.

2001 Kunlunshan, China

Unlike the other earthquakes discussed here, the Kunlunshan event lacks near-
source records due to its location in a remote section of the Tibetan plateau.
Evidence of supershear speeds instead rests on analyses of regional and teleseismic
data. Bouchon and Vallée (2003) matched regional waveform data, claiming that
without supershear speeds, the major wave groups arrived too late at the stations.
An analysis of teleseismic records by Antolik et al. (2004) also suggests an average

rupture speed slightly higher than the S-wave speed.

2002 Denali Fault, Alaska

Near-source records from the Denali Fault earthquake (Ellsworth et al., 2004;

Dunham and Archuleta, 2004) suggest locally supershear speeds over a section of
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the fault near the Trans Alaska Oil Pipeline. A study of these records is presented

in Chapter 7, so discussion will be deferred until then.
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Elastodynamic Framework
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3.1 Governing Equations

The governing equation for an elastic solid is the convervation of momentum

aQUIZ' _ 80’@'
ot? N 8xj’

p (3.1.1)

where p is the mass density and u; and o;; are components of the displacement
and stress fields. Repeated indices are summed. In general, the solid begins in
an initially deformed state, characterized by some initial displacement and stress
fields u) and o7;. Due to the linearity of the governing equation (3.1.1), we shall
concern ourselves only with solving for the changes in these fields due to some
source process. These changes are denoted without a superscript.

For this work, we shall assume that the material is isotropic, for which the

stress-strain relation is

i = )\51']'619]9 + 2/,LEij, (3.1.2)

where €;; are components of the strain field and A and u are Lame’s elastic con-
stants, which we take to be uniform throughout the medium. Combining Eqns.

(3.1.1) and (3.1.2) with the strain-displacement relationship,

1 8u, an
€ij = 5 (8xj + aacz-) , (3.1.3)
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yields the elastodynamic equation

2, 2, , .
0%, 0%u, 9] <8uZ auj). (3.1.4)

"o = “omos, "oz, \oz, T oz,
The intial-boundary value problem approach to solving dynamic rupture prob-
lems involves specifying the initial values of the displacement and velocity fields
(or their equivalents) everywhere within the solid, and possibly time-dependent
boundary bonditions on any external surfaces or internal interfaces. These bound-
ary conditions consist of three components of either displacement, traction, or

some combination thereof, where traction is defined as

T’i = 0415 (315)

for unit normal n; to a surface.

3.2 Source Process

For simplicity, we shall assume that all inelastic material behavior occurs
within a localized fault zone whose width is much smaller than any other length
of interest. In this case, we treat the fault as an infinitesimally thin interface
between two elastic solids. In this work, we shall assume that the fault is a planar

interface, which we nominally take to be z = 0, although in later Sections dealing
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with two-dimensional problems, the y = 0 plane will be used.

Certain components of the fields are discontinuous across the fault. In such
a case, it is instructive to examine the structure of the momentum conservation
equation across a surface of discontinuity within an elastic solid. The jump con-

dition

applies, where v; = Ou; /0t is the particle velocity and V is the speed of the surface
in the direction of its normal n;. The notation [[-]] denotes the difference of field
values across the surface. We allow slip between the two sides of the fault, defined

as

Au, = [[ug]] (3.2.2)

Au, = [[u,]). (3.2.3)

The corresponding slip velocities are defined as

Av, = [[va]] (3.2.4)

Av, = [[v]]- (3.2.5)
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For completeness, we also define the opening and opening velocity as

Au, = [[u,]] (3.2.6)

Av, = [[v.]] (3.2.7)

For Eq. (3.2.1) to remain valid to first order in the fields, we set V' = 0. This
implies that the components of stress which give rise to tractions on the interface
are continuous across it.

Boundary conditions are applied to the elastic solid on either side of the fault.
Any variation in time of these conditions causes a change in the deformation of the
surrounding material that is transmitted by elastic waves. Our objective through-
out this work is to explore connections between physically motivated boundary
conditions describing frictional and fracture processes and the resulting elastic

wave excitations.

3.3 Elastic Waves

We shall now solve Eq. (3.1.4) using Fourier transform methods. The develop-
ment in this Section closely follows that given by Willis (1973). Seeking a solution

of the form
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expli(k - x — wt)]

transforms Eq. (3.1.4) to

pwzui = [()\ + ,Lb)kikj + uéijkkkk] Uj,

which is an eigenvalue equation for w. The characteristic equation is

(uk? = pw?)? [(A + 2p)k* — pw?] = 0,

yielding three eigenvalues:

w = [kle,

and

w = |k|cs,

repeated twice, where ¢, = /(A + 2u)/p is the P-wave speed and c,

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

(3.3.5)

\//T/pis

the S-wave speed. Eqns. (3.3.4) and (3.3.5) are the dispersion relations for waves

in the bulk. The eigenvalues correspond to P waves and the two polarizations of

S waves. The corresponding eigenvectors, denoted by capital U and normalized

to unity, are
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ks
U?f = 1 3.3.6
k,
_kackz
v L (3.3.7)
T kVER | -
k2 + k)
_ky
Uu? = N 3.3.8
C R | R (3.38)
z Y
0

We label the P-wave eigenfunction with a superscript P and the S-wave eigen-
functions with superscripts V' for the SV (shear vertical) polarization and H for
the SH (shear horizontal) polarization. The degeneracy of the S waves allows us
the freedom to align the two polarizations however we wish. We exploit this fact
by constraining the particle motion of the SH waves to the lie in the plane of the
fault.

It will be convenient to work in cylindrical coordinates in wave-number space.

To this end, we define the magnitude of the interfacial wave number
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k= k2+k2,

the propagation angle of the waves within the plane of the interface

¢ = arctan(ky/k;),

and the phase velocity of the waves along the interface

c=wlk.

For notational convenience, we also define

a, =(1-— 02/02)1/2

and

o, = (1 —c%/2)V2.

(3.3.9)

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)

Eqns. (3.3.4) and (3.3.5) fix the magnitude of the z component of the wave

number, and we make the following replacements:
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ky, = kcos¢ (3.3.14)

k, = ksing (3.3.15)

{
ikoy, for P waves

k, = X (3.3.16)
tkag for S waves

\

f

kc/c, for P waves
kl = < (3.3.17)

kc/es for S waves.
\

The sign (or Reimann sheet, if we extend ¢ to the complex plane) of the radicals
appearing in Eqns. (3.3.12) and (3.3.13) is chosen such that the fields do not
diverge as z — F00. Our choice of sign is for the z > 0 half-space only, with the
radical interpreted as giving a positive value for real c. Hereafter, unless otherwise
noted, we shall restrict our attention to this upper half-space. Expressions for
the fields in the lower half-space may be obtained by using symmetry conditions
presented in Section 3.4. The eigenvectors for waves in the half-space z > 0, Eqns.

(3.3.7)-(3.3.8), can be rewritten in these new coordinates as

30



CHAPTER 3. ELASTODYNAMIC FRAMEWORK

( cos ¢

\ 0y,
( —iQs COS @

U’ = 2 —iQg sin ¢ (3.3.19)

\ 1

—sin ¢

A general solution to Eq. (3.3.2) has the space and time dependence

explik(z cos ¢ + ysin ¢ — ct)], (3.3.21)

and is a superposition of the eigenvectors:

ui(k, ¢, ¢,2) = P(k, ¢, o)U e " + [V (k, ¢, p)U) + H(k, ¢, §)U"] e”*%,
(3.3.22)
where P(k,c,¢), V(k,c,¢), and H(k,c,¢) are the amplitudes of excited P, SV,

and SH waves.
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Associated with the deformation field described by (3.3.22) is a stress field.
Of particular interest to us are the tractions exerted on the (z > 0 side of the)
interface, which are readily obtained by combining Eqns. (3.3.19)-(3.3.20), (3.1.3),

and (3.1.2):

Ti(k,c,¢) = P(k,c, $)TF +V(k,c,o)TY + H(k,c,¢)TF, (3.3.23)

where

( 20 cos @

T = k2| 20,5 (3.3.24)
\ i(l+ a
( 2) cos ¢

TV = k= | i1+ a?)sing (3.3.25)
K 20
( —sin ¢

T = pkos| cosg |- (3.3.26)

\ 0
Note that the stresses on the interface are of the opposite sign, since the unit

normal in this case is —e,.
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3.4 Symmetry Conditions

At this point, we decompose the deformation field into two symmetry cases:

tensile and shear. Tensile deformation has the following symmetries about z = 0:

O2(—2)

Shear deformation has the following symmetries about z = 0:

= 0(2)
= omy(2)
= —0u:(2)
= 0y(2)
= —0,.(2)

= 0,(2).
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us(—=2) = —uy(z)

uy(—z) = —uy(2)

us(—2) = us(2)

Opa(—2) = —04a(2)

Oay(—2) = —0ay(2)

02:(—2) = 04:(2)

oyy(—2) = —oy(2)

0yz(—2) = 0y:(2)

0u(—2) = —0..(2). (3.4.2)

We only consider shear deformations. Combining the shear symmetry condi-
tions (3.4.2) with the continuity of stress across the interface (3.2.1), we find that
the two sides of the fault remain in perfect contact and that the normal stress is

unaltered by shear deformations; i.e.,

[[u]] =0 (3.4.3)

and
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0,, =0

(3.4.4)

Eq. (3.4.4) is equivalent to T, = 0. This condition is automatically satisfied by

SH waves, which cause no changes to T,. For the P-SV wave system, Eq. (3.4.4)

fixes the relative amplitudes of P and SV waves by

T,=TF+T) =0

or

yo el
Ccs 20

P.

Consequently the net traction on the interface is

Ti(k,c,¢) = P(k,c,p)T"" + H(k, c, )T},

where T is given by Eq. (3.3.26) and

cos ¢
PV ¢ R )
T = ¢ 2, | S o |
0

where
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R = 4da,0, — (1 +a?)? (3.4.9)

is the Rayleigh function. The Rayleigh function expresses the interference between
P and SV waves, the relative amplitude of them such that the vanishing normal

stress condition holds on the interface. At the Rayleigh speed, ¢ = cg, R = 0.

3.5 Response of the System to Traction Changes

As stated previously in Section 3.2, we shall view the earthquake source as
some process which alters the shear traction on the interface, the occurrence of
which generates slip. At this point, we shall examine the relationship between
changes in shear traction and the resulting slip.

The expressions for the slip eigenvectors, obtained by combining the displace-
ment eigenvector expressions, Eqns. (3.3.19)-(3.3.20), with the shear symmetry

conditions, Eq. (3.4.2), are
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cos ¢
AUP = 2%” sin ¢ (3.5.1)
0
cos ¢
AUY = —21’0—;&5 sin ¢ (3.5.2)
0
—sin ¢
AU = 2| cosg | (3.5.3)
0

and the total slip field is given by

AU;(k,c, ) = P(k,c, §) AU +V (k,c, ) AU} + H (k, c, o) AU/ (3.5.4)

An examination of the structure of the expressions for the tractions and slips,
Eqns. (3.3.26), (3.4.8), and (3.5.2)-(3.5.3), reveals that the P and SV fields in
the interfacial plane are orthogonal to the SH fields. Because of this, we define
the fields associated with P and SV waves as the P-SV (or inplane) wave system,
and those associated with SH waves as the SH (or antiplane) wave system. This

division exists because the shear symmetry conditions on the interface (which
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translate to a boundary condition on the normal stress) couple P and SV waves,
but not SH waves.

At this point, we wish to examine the structure of the slip response for a
given applied shear traction (as we view the earthquake source process). We
shall consider the SH and P-SV wave systems separately, which is most easily
accomplished by setting ¢ = 0. In this case, the SH waves generate slip and
traction only in the y direction, while the P and SV waves generate slip and
traction only in the z direction. Combining Eqns. (3.5.2)-(3.5.3), (3.3.26), and

(3.4.8) with ¢ = 0 yields the following expressions:

AUP 4o

phoe = g (3.5.5)
AUY 2a5(1 + a?)

phoppr =~ (3.5.6)
AUT 2

These may be viewed as transfer functions, which are functions of the phase
velocity ¢. The amplitude and phase of the response are shown in Fig. 3.1.
These responses provide the underlying explanation for the allowed and forbidden

rupture velocity regimes, as we discuss in the following Section.
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(a) Amplitude response
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Figure 3.1: Amplitude (a) and phase (b) of the traction-slip transfer functions.
The phase is restricted to lie between —m/2 and 7/2, which introduces a sign to
the amplitude. In (b), all lines overlap for ¢ < ¢,, and the lines denoting P and
P+ SV overlap for ¢; < ¢ < ¢,
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3.6 Rupture Velocity Regimes

Many problems possess a further symmetry within the interfacial plane, the
simplest example being problems having straight rupture fronts loaded either par-
allel to or perpendicular to the front. In these cases, the P-SV wave system remains
decoupled from the SH wave system, even after taking into account interactions
(i.e., diffraction or scattering) between waves and the rupture front. Coupling
between the P-SV and SH wave systems occurs whenever this interfacial symme-
try is broken. This occurs whenever the rupture front is curved, or even if it is
straight, but with the loading inclined at an arbitrary angle with respect to it.
Another example we shall consider in detail in Chapter 4 is the presence of friction
on a sliding interface, which couples the P-SV and SH wave systems.

Two-dimensional rupture geometries occur when the rupture front is straight
and the fields are invariant along it. Those in which only the P-SV wave system
is excited are known as mode II and those in which only the SH wave system is
excited are known as mode III. Slip is perpendicular to the rupture front for mode
IT and parallel to it for mode III.

The propagation velocity regimes for mode II and III ruptures follow from the
information contained in Fig. 3.1, which characterizes the elastodynamic response

of the medium. To obtain a valid solution for a propagating rupture, we need to
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specify the source process. As discussed in Chapter 1, the only requirement that
we make is that the fault slips due to a decrease in shear stress.

For mode III problems, only the SH wave system is excited. We see from Fig.
3.1 that slip occurs in the direction of the applied traction, with no phase shift in
the response, for ¢ < ¢,. Thus, waves with phase velocities up to the S-wave speed
drive the rupture forward. The limiting velocity is consequently c,. Propagation
velocities in excess of ¢, are forbidden by causality (no P waves are excited in
mode IIT). The amplitude of the slip response diverges as ¢ — ¢;, which is the
limit that the SH waves travel at grazing incidence with respect to the interface.
In this case, they do not alter the shear traction.

The P-SV wave system drives mode II ruptures. Fig. 3.1 shows that the elas-
todynamic response changes across the Rayleigh speed and the S-wave speed. The
static limit (¢ — 0) displays an interesting feature: The amplitude response of the
excited P and SV waves, considered separately, diverges (in opposite directions),
but the combination remains finite. This reveals that elastostatic solutions consist
of a precise balance between dilatational (P) and shear (SV) deformations.

For waves with interfacial phase velocities less than the Rayleigh speed, slip
occurs in the direction of the applied traction, with no phase shift in the response
(as in the mode III case). Waves in the sub-Rayleigh regime consequently promote

rupture. There is a divergence in the amplitude of the slip response as ¢ — cg.

41



CHAPTER 3. ELASTODYNAMIC FRAMEWORK

This indicates that the particular combination of P and SV waves that propagate
with phase velocity ¢ = cg and satisfy the shear symmetry conditions (which keeps
the normal traction unaltered) do not alter the shear traction. For frictionless
interfaces, this feature manifests itself in the existence of Rayleigh interface waves.

As the phase velocity crosses the Rayleigh speed, the relative sign of slip
and traction reverses. This is, in fact, a natural consequence of the existence of
Rayleigh waves. In order for Rayleigh waves to exist, the tractions exerted by
P and SV waves must precisely balance. However, there are no special velocities
other than ¢, and ¢, at which the character of the waves (specifically the sign
of the tractions exerted by them) will change. It thus follows that as the phase
velocity crosses cg (and the tractions come to a precise balance), the relative sign
of slip and traction must reverse, at least until ¢ = ¢,. This is exactly what occurs,
as Fig. 3.1 reveals. Waves with phase velocities between the Rayleigh and S-wave
speeds thus attempt to halt the rupture process.

When the phase velocity crosses c;s, the S waves change from being evanes-
cent to radiating, or in other words, from inhomogeneous to homogeneous. This
introduces a phase shift in the traction-slip response. Slip returns to the same
direction as the shear traction, and waves with intersonic phase velocities again
promote rupture.

Of particular interest in this intersonic velocity regime is the speed v/2¢,. As
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Fig. 3.1 reveals, no S waves are excited by waves having this phase velocity. This
fact plays an important role in character of the seismic radiation, as we discuss in

Chapter 5.

3.7 Space-Time Expressions

Elastodynamic solutions in the space-time domain may be obtained by an
appropriate superposition of plane waves. The Fourier integral theorem states

that

[e'9) 2m [e'9)
ui(x,t) = # /_oo /0 /0 u;(k, ¢, ¢, z) explik(z cos ¢ + ysin ¢ — ct)]|dedpk>dk
(3.7.1)

where

ui(k,c, ¢, 2) = /00 /OO /00 ui(x, t) exp[—ik(x cos ¢ + ysin ¢ — ct)]|dzdydt.
(3.7.2)
The expansion of u;(k, ¢, ¢, z) into plane wave eigenvectors is given in Eq. (3.3.22).
In later Sections, we shall separate the contributions due to dilatational (P)

and shear (SV plus SH) motions, labeling them as u? and u®. It is easy to verify
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that V x u? =0 and V - u® = 0 using the expressions for the eigenvectors, Eqns.
(3.3.7)-(3.3.8).

There are two particular classes of elastodynamic solutions that we investigate
in this work: steady state and self-similar. Two-dimensional steady state solutions
consist of fields that depend on z, y, and ¢ only through the combination x cos ¢+
ysin ¢ — V't, and physically correspond to propagation at the interfacial angle ¢ at
constant speed V. In this case, the solution consists only of waves having phase

velocities equal to the steady state velocity: ¢ = V. Eq. (3.7.1) simplifies to

ui(x,t) = % /oo u;(k, V, ¢, z) explik(x cos ¢ + ysin ¢ — V)| k*dk. (3.7.3)

—0oQ
The self-similar case occurs when the problem lacks a characteristic length or
time scale, such that the dependence on x and t enters only through x/¢ and ",

in the sense that

ui(x,t) = t"u;(x/t, 1). (3.7.4)

Such solutions are said to be homogeneous of degree n in (x,¢). A similar rela-
tionship holds in the Fourier domain, leading to considerable simplification of the

integrals in Eq. (3.7.1). This is the subject of Section 4.6.1.
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This Chapter, essentially in this form except for changes in notation, appeared in:

Dunham, E. M. (2005), Dissipative interface waves and the transient re-
sponse of a three-dimensional sliding interface with Coulomb friction, J.

Mech. Phys. Solids, 53, 327-357.

For consistency with this article, the interfacial phase velocity ¢ will be designated

as ).

4.1 Abstract

We investigate the linearized response of two elastic half-spaces sliding past
one another with constant Coulomb friction to small three dimensional pertur-
bations. Starting with the assumption that friction always opposes slip velocity,
we derive a set of linearized boundary conditions relating perturbations of shear
traction to slip velocity. Friction introduces an effective viscosity transverse to the
direction of the original sliding, but offers no additional resistance to slip aligned
with the original sliding direction. The amplitude of transverse slip depends on
a nondimensional parameter n = cy7y/ vy, where 7y is the initial shear stress, 2v
is the initial slip velocity, p is the shear modulus, and ¢, is the S wave speed.
As n — 0, the transverse shear traction becomes negligible, and we find an az-

imuthally symmetric Rayleigh wave trapped along the interface. As n — oo, the
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inplane and antiplane wave systems frictionally couple into an interface wave with
a velocity that is directionally dependent, increasing from the Rayleigh speed in
the direction of initial sliding up to the S wave speed in the transverse direc-
tion. Except in these frictional limits and the specialization to two dimensional
inplane geometry, the interface waves are dissipative. In addition to forward and
backward propagating interface waves, we find that for n > 1, a third solution to
the dispersion relation appears, corresponding to a damped standing wave mode.
For large amplitude perturbations, the interface becomes isotropically dissipative.
The behavior resembles the frictionless response in the extremely strong perturba-
tion limit, except that the waves are damped. We extend the linearized analysis
by presenting analytical solutions for the transient response of the medium to
both line and point sources on the interface. The resulting self-similar slip pulses
consist of the interface waves and head waves, and help explain the transmission
of forces across fracture surfaces. Furthermore, we suggest that the n — oo limit
describes the sliding interface behind the crack edge for shear fracture problems
in which the absolute level of sliding friction is much larger than any interfacial

stress changes.
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4.2 Introduction

Boundaries of elastic solids are waveguides along which evanescent modes prop-
agate. Boundary conditions couple the otherwise independently propagating P
and S waves. In the case of a free surface, evanescent P and S waves interfere con-
structively to form the Rayleigh surface wave. Transient disturbances also excite
head waves, in which trapped P waves convert to .S waves that radiate away from
the interface.

In a similar manner, trapped modes may exist along internal interfaces. A
variety of possible interfacial conditions leads to an assortment of these waves. For
welded contact between dissimilar materials, these are Stoneley waves, which exist
as true trapped modes only for a particular range of material contrast (Stoneley,
1924; Cagniard, 1962). Frictionless interfaces (i.e., those for which the sides of
the interface remain in contact, but offer no shear restoring tractions) support
generalized Rayleigh waves. Achenbach and Epstein (1967); Weertman (1963)
studied the existence of modes along such interfaces, which simplify to a pair of
Rayleigh waves in the limit that the materials on either side become identical.

The addition of friction complicates the analysis. Even with simple Coulomb
friction, to which we restrict our attention in this work, a rich variety of behaviors

exist due to the nonlinearity of the system as it undergoes sticking and slipping
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events. Much of the previous work has focused on stability properties of frictional
sliding. As shown by Adams (1995), steady sliding between a dissimilar material
pair under Coulomb friction is unstable with respect to two dimensional (2D)
perturbations in the direction of the original motion for a wide variety of material
pairs and frictional levels. The nature of this instability is related to the existence
of the generalized Rayleigh waves, which cause changes in normal traction (Ranjith
and Rice, 2001). The amplitude grows until the interface either sticks or opens.
The problem lacks an intrinsic length scale, and there is consequently no bound
on the growth rate of short wavelength perturbations. Ranjith and Rice (2001)
proposed a regularization scheme based on experiments (Prakash and Clifton,
1993; Prakash, 1998) to fix this ill-posedness by introducing a finite time or length
scale with which the system responds to changes in normal stress, providing a limit
to how rapidly short wavelength perturbations grow. In the limit that the material
pair becomes identical, slip perturbations are stable since they do not alter the
normal traction. The solution reduces to the pair of Rayleigh waves found for
frictionless contact, independent of the level of friction. From the perspective
of a global energy balance, the energy lost as frictional heat is balanced by the
additional strain energy associated with the higher level of initial stress. This
independence is well known for 2D pure mode shear cracks (Freund, 1989; Broberg,

1999a).
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In this work, we restrict our attention to an identical material pair, but extend
the analysis to three dimensions (3D) by considering perturbations at an arbitrary
angle with respect to the initial sliding direction. For most of the analysis, we
restrict our attention to small perturbations under a linearized approximation.
In this case, the overall direction of sliding is only slightly altered by the pertur-
bation. In 3D, the vector nature of friction must be taken into account under
the assumption that friction directly opposes the instantaneous sliding velocity.
This issue was taken up by Cho and Barber (1999) in the context of a frictionally
sliding mass elastically coupled to a driving force. Depending on the anisotropy

of the coupling and the level of friction, sliding may be stable or unstable.

4.3 Problem Statement

Consider an infinite medium containing a planar interface at z = 0 and subject
to an initial compressive —o and shear 7y load, where the x axis is aligned with the
shear load and oy > 0. The medium is isotropic and linear elastic, characterized
by a shear modulus ;z and P- and S-wave speeds ¢, and ¢,. For convenience, in
this Chapter, we refer to the plane of the interface as horizontal, with the positive
z axis extending vertically. Further assume that the two half-spaces are sliding

relative to each other along the = axis with velocities +vg, for z > 0 and z < 0,
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Figure 4.1: Model geometry showing the 3D nature of the problem. A small
perturbation (v, v,) about the steady state velocity vy is applied. We study these
perturbations in the form of plane waves propagating at some angle ¢ with respect
to the original sliding direction, as marked by the dashed lines in the top view.

under constant Coulomb friction f = 795/0¢. We introduce a perturbation to the
system, and seek the response under the requirement that frictional resistance
remains constant in magnitude but rotates to remain antiparallel to the local
sliding velocity. A schematic diagram of the geometry is given in Fig. 4.1.

For simplicity, we write the boundary conditions for z = 0" only; a similar form
holds for z = 0. Denoting the perturbation without a subscript and Cartesian

unit vectors as e, and e,, we write

(10 + 0gz)€5 + 0y2€y _ (vo + vg)es + vyey
—00 + 04, V(o + v5)% + (vy)?

(4.3.1)

Displacement components of the perturbation are denoted as u;, particle velocities
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as v;, and stresses as 0;;. Under the assumption that the perturbed fields are small
with respect to the initial conditions, this linearizes to
Ogz Ozz Uy

o
+ e, + e, ="e,. 4.3.2
e Tge, 1 Tk, = L, (12)

(

This assumption represents the main simplification in our study, limitations of
which are discussed below. Perturbations to the slip velocity in the direction of
the initial sliding decouple from perturbations to stress at first order. Instead,
shear and normal stresses couple to maintain the required friction level in the
original sliding direction.

This boundary condition may be further simplified by restricting ourselves to
the specific class of problems in which slip is antisymmetric across the interface,
which sustains a symmetric normal displacement that keeps the two sides in con-
tact. As we have shown in Eq. 3.4.4, this symmetry sets ¢,, = 0. Since there is no
change in the normal stress, o,, = 0. Of course, this symmetry assumption fails
if the medium has some external boundary, for example, near the earth’s surface
for a dipping fault. Hereafter, we restrict our attention to the half-space z > 0.

The complete set of linearized boundary conditions we use in this study (with

the exception of Section 4.7) is then
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Ozz = 0
Oy2/To — Uy/vg = 0
0,. = 0. (4.3.3)

The transverse boundary condition introduces an effective viscosity set by the
steady state conditions. We can compare the magnitude of the viscous traction
increase to the instantaneous elastodynamic response of the interface to changes
in slip velocity. Slip velocity perturbations are accompanied by the release of a
pair of horizontally polarized S waves emitted normal to the interface, decreasing
the shear traction (Brune, 1970; Rice, 1993). This radiation damping response is
expressed in the transverse direction as o,, = —puwv,/cs. Thus, we have two com-
peting effects; the relative importance of them is captured by the nondimensional

transverse viscosity parameter

n = csTo/ 1yp. (4.3.4)

The special value of n = 1 corresponds to a precise balance between transverse
shear traction decreasing due to radiation damping and increasing due to the
effective viscous friction. As n — 0, frictional resistance becomes negligible, the

transverse boundary condition becomes oy, = 0, and the interface is effectively
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frictionless with respect to the perturbations. For n — oo, friction dominates, the
boundary condition becomes v, = 0, and the interface is constrained to slip only
in the original sliding direction. The small perturbation assumption actually fails
in the strict 7 — oo limit, since for finite 7y this implies that vy — 0. However, so
long as the perturbation amplitude is small enough that second order terms can
be neglected, we find that the solution for any n > 1 is effectively identical to
that obtained in the strict n — oo limit.

For shear fracture problems, the value of 1 roughly measures the ratio of the
absolute value of stress to the stress drop, which has qualitatively been shown to
determine the amount of transverse slip (Madariaga, 1976; Day, 1982b; Spudich,
1992; Andrews, 1994; Guatteri and Spudich, 1998). This can be understood in
the following manner. As a crack propagates along an originally locked interface
with stress drop A7 and sliding friction 7y, particle velocities at the interface
will be of order vy ~ ¢;AT/u, as required by radiation damping. This velocity
will be somewhat uniform over an area on the sliding surface sufficiently removed
from the crack edge, where much higher velocities are expected, provided that
the rupture process has been relatively homogeneous. Forces are transmitted
across this sliding surface by elastic waves, which are appropriately modeled as
perturbations of a frictionally sliding interface. Such forces are generated, for

example, by the failure of a small heterogeneity or by the extension of some
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portion of the crack edge. Transverse resistance is parametrized with n ~ 75/Ar,
which is much greater than unity when A7 < 7. It is consequently appropriate
to consider the n — oo limit under these conditions.

There are several limitations of this model. Our analysis describes the behav-
ior of waves removed from the crack edge; impingement of these waves on the
edge results in a complex set of diffractions that we do not consider. Further-
more, the amplitude of the perturbation must be small compared to the original
sliding conditions for the linearized analysis to hold. We consider large amplitude
perturbations later in this paper (Section 4.7), finding that for extremely strong
perturbations the interface responds isotropically, as if frictionless except with the
waves being damped. Finally, we have assumed that the original sliding rate is
spatially uniform. If it instead varies, then our analysis will apply only to those
components of the perturbed fields having a wavelength much smaller than the
spatial variation length of the parameter n. In this case, the waves will adapt to
the local value of 7, as follows from the ideas developed by Woodhouse (1974) on
surface wave propagation through regions of slowly varying properties.

This paper is organized in the following manner. The analysis begins by de-
composing the elastodynamic response in terms of plane waves (Section 4.4). We
continue in Section 4.5 with a study of the homogeneous (source-free) problem. We

prove the existence of two nondispersive interfacial modes, similar to the Rayleigh

95



CHAPTER 4. EXCITATION OF WAVES ON FRICTIONAL INTERFACES

waves found along frictionless interfaces. The two modes correspond to forward
and backward propagating waves, but are otherwise identical. Friction couples
the inplane and antiplane wave systems, making the phase velocity dependent on
the direction of propagation with respect to the original sliding direction. The
effective viscous friction in the transverse direction damps the modes. Forn > 1, a
third root to the dispersion relation comes into existence, corresponding to a dissi-
pative standing wave mode. In Section 4.6, we extend this analysis by solving for
the transient response to point and line sources applied directly on the interface.
The self-similar solutions are obtained using the method of Willis (1973). The so-
lution consists of direct P and S waves, the interface waves studied in Section 4.5,
and head waves resulting from P to S conversion along the interface. We conclude
in Section 4.7 with a discussion of the fully nonlinear boundary conditions (4.3.1)

for large amplitude perturbations.

4.4 Plane Wave Decomposition

Our analysis is carried out by representing the solution as a superposition
of plane waves. This decomposition was discussed in detail in Chapter 3. The
perturbations to the displacement and stress fields are given by Eqns. (3.3.19)-

(3.3.20) and (3.3.25)-(3.3.26).
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We keep k real and positive, but extend €2 to the complex plane as required
by the Laplace transform. The branch cuts of the square roots lie in the complex
phase-velocity plane such that oy, > 0, Ra; > 0 for all  to satisfy the radiation
condition at infinity (i.e., that all fields vanish as z — 00), consequently extending

from ¢, to 0o, —¢, to —oo for oy, and from ¢, to oo, —¢; to —oo for a;.

4.5 Interface Waves

Let us begin our analysis by studying the source-free problem with the set of
boundary conditions defined in Eq. (4.3.3). Applying these boundary conditions
yields a homogeneous system of equations. For a nontrivial solution to exist, the

determinant of the coefficient matrix, given by

D(Q,¢) = (R + Rcos® ¢ + (1 — a?) sin? ¢, (4.5.1)

where ¢ = iascs/nQ and R = 4asa, — (1 + o?)? is the Rayleigh function, must
vanish. Since the problem lacks a characteristic length or time scale, the dispersion
relation (4.5.1) is independent of £ and the waves are nondispersive. As we shall
show, €2 is complex except in certain limits, making the waves unstable if I > 0
or dissipative if I < 0. We note that if D(RQ + i3, ¢) = 0, then D(—RQ +

i3Q,¢) = 0 as well, corresponding to the equivalence of wave propagation in
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either direction. In contrast to other problems, the roots do not occur in complex
conjugate pairs.

The waves are dissipative and the sliding is stable to perturbations in all di-
rections, except in special limits for which the waves are neutrally stable and
nondissipative. Using the argument principle of complex analysis, we show that
two roots always exist, and when the effective transverse viscosity becomes suffi-
ciently large (n > 1) a third root comes into existence (as described in appendix

A.1). We label this third root € and the previous two Q.

4.5.1 Propagating Waves

First we concern ourselves with the two roots that always exist. A numerical
solution of the dispersion relation shows that these roots lie in the stable region
of the complex phase-velocity plane. They correspond to forward and backward
propagating modes, and are a generalization of the Rayleigh waves that exist for
frictionless contact.

Let us examine the condition for neutral stability. For this to occur, I = 0.
Our solution is a superposition of evanescent P and S waves decaying exponen-
tially away from the interface and has a phase velocity less than both wave speeds.
Under these restrictions, the term of the dispersion relation (4.5.1) containing 7 is

imaginary, while the remaining terms are real. Since both the real and imaginary
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parts of this equation must separately be zero, a solution exists only if (R = 0 and
Rcos? ¢+ a2(1 — a?)sin® ¢ = 0. For arbitrary 7, this is the case only when ¢ = 0
or ¢ = m/2. These correspond to the standard 2D inplane and antiplane loading
geometries, respectively. As is well known, the inplane loading geometry supports
interfacial Rayleigh waves (Achenbach and Epstein, 1967; Weertman, 1963, 1980).
The antiplane solution is {2 = c¢,, showing that a horizontally polarized S wave
may propagate at grazing incidence to the interface without altering any trac-
tion components. However, this does not correspond to a trapped wave, since its
amplitude is independent of distance from the interface. In both of these geomet-
rical limits, the coefficient of friction no longer enters into the elastodynamics of
the problem, as occurs in the analytical solutions for 2D cracks (Freund, 1989;
Broberg, 1999a).

For any other values of ¢, we must place restrictions on 7 to obtain nondissi-
pative modes. This occurs in the limiting cases 7 — 0 and n — oo. As discussed
earlier, the n — 0 limit reduces the interface to a frictionless surface with respect
to the perturbations. The antiplane wave system decouples from the inplane wave
system, and we find two solutions to the dispersion relation, both independent of
¢ and the geometry of the loading system. The first, {2 = ¢,, is the antiplane
solution like that found when ¢ = 7/2. The second solution occurs when R = 0,

and the interface wave is the usual Rayleigh wave, as for the inplane loading geom-
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etry. When 1 — oo, the antiplane wave system does not decouple and the phase
velocity of the interface wave depends on the direction of propagation, increasing
monotonically from the Rayleigh speed at ¢ = 0 to the S wave speed at ¢ = 7/2,
as shown in Fig. 4.2.

The particle motion for these modes is proportional to

R 211 2
Up X COS¢ |:e—k:apz _ + as( + O‘/s)e—kzasz]

202
: cot2 pR — a2(1 + a2
Uy O SIn (0] [ek%z + ¢ 25( s)e—kasz
20
1 2
U, iape_kapz — i%e—kasz’ (4.5.2)
oF

which is valid for arbitrary ¢ and . We specifically focus on the interface waves in
the n — oo limit. Similar to Rayleigh waves, the motion is retrograde elliptical at
the interface and prograde elliptical at depth. The depth at which the horizontal
component goes to zero is roughly independent of ¢. As ¢ increases, more of
the inplane wave motion, which acts against the effective viscosity, converts to
antiplane motion. This is illustrated in Figs. 4.3 and 4.4. For these, and all
remaining plots, the material is a Poisson solid (¢, = v/3¢;)-

Except in the special limits discussed previously, the interface waves are dis-
sipative. Fig. 4.5 shows the numerical solution of the dispersion relation (4.5.1).

We see that the decay rate is most pronounced for n = 1 and ¢ approaching 7 /2.
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These figures reveal an interesting feature, namely that the phase velocity can
exceed the S wave speed within a certain region of parameter space. This occurs
close to the region of maximum damping, but for larger n. Unlike the nondissi-
pative cases discussed previously in which the fields exponentially decayed away
from the interface with no oscillation (purely evanescent modes), extension to
complex values of phase velocity introduces oscillations that modulate the expo-

nential decay.

4.5.2 Damped Standing Wave

As shown in the previous Section, two roots of the dispersion relation (4.5.1)
correspond to frictionally damped Rayleigh waves. Here we show that the third
root, which comes into existence for n > 1 (see appendix A.1 for a proof of this),
is a frictionally damped standing wave. As noted earlier, if RQ+iS2 is a solution,
so is the backward propagating mode —RS2 + iSQ2. It follows that for only one
root to exist, it must be nonpropagating (i.e., Q2 = 0). We restrict our search
to the imaginary axis and again numerically solve the dispersion relation (4.5.1).
Fig. 4.6 shows the dependence of 32 on ¢ and 7. The dissipation rate increases
as 7 decreases and appears to diverge at n = 1, abruptly vanishing below this
critical value.

We can understand the physical significance of 7 = 1 by comparing the effec-
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Figure 4.2: Interface wave speed as a function of azimuthal angle ¢ in the n — oo
limit. The speed at ¢ = 0 corresponds to the Rayleigh wave speed for the material.
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Figure 4.3: Displacement amplitudes, normalized by u,(z = 0), as a function of
distance from the interface in the n — oo limit for various ¢. At ¢ = 7/2, the

interface wave becomes a purely antiplane S wave with amplitude independent of
distance from the interface.
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Figure 4.4: Horizontal displacement amplitudes, normalized by u,(z = 0), as
a function of distance from the interface in the n — oo limit for various ¢. The
fields are rotated to show the parallel (u,s,) and perpendicular (uperp) components,
which would represent the inplane and antiplane wave systems in the free surface

limit. As ¢ — /2, the perpendicular component increases in amplitude, revealing
the coupling between the wave systems.
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Figure 4.5: Real and imaginary parts of the phase velocity. The heavy contour
delimits the boundary at which R = ¢,; to the right of this, the waves have
supershear phase velocities.
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tive transverse viscosity to the instantaneous radiation damping response. This
special value corresponds to an exact balance of radiation damping and friction.
Increasing levels of friction (n > 1) force an instantaneous increase in transverse
traction with transverse slip. A flow of energy from the steady state driving is
required to satisfy this condition, resulting in a net dissipation within the system.

The decay rate is typically larger for this mode than for the two propagating
modes, particularly when 7 is less than approximately 10. Consequently, it has
little signature in the long-time response of the system to transient excitations,
but does influence how rapidly the system decays into its asymptotic limit. We

investigate this mode further in appendix A.2.

4.6 Transient Response

We now turn to the transient problem in which the interface is subject to an
excitation in the form of point step-function stress drop of amplitude S (having
units of force). The resulting displacement field serves as the Green function for
a general time-dependent shear traction distribution on the interface. A similar
solution was constructed by Harris and Day (1997) in their study of inplane shear
cracks along a 2D bimaterial interface, and the application of the related solution

for free surfaces to shear fractures is discussed by Richards (1979).
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Figure 4.6: Dissipation rate for the standing wave mode as a function of 7 for

various ¢.
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Our boundary conditions on the interface are now

0p: = —SH(t)d(x)d(y)
vz _p% —
oo
0, = 0, (4.6.1)

where H(-) is the Heaviside step function and §(-) is the Dirac delta function.

Applying the boundary conditions in Fourier-Laplace space yields

S

P = _WQi cos p(1 + ()a
S
S .
H = ml sin p[CR+ o2(1 — a?2)]. (4.6.2)

These results are used with the expressions (3.3.19) -(3.3.20)to find the dilatational
and shear components of the displacement fields. For notational convenience, we

write these as

S
Wk 6.2) = —mmes (OO + 0], (463)

where ¢ = z,y, 2. The relevant expressions are
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f2(2,9)
f7 (8, 9)
13(Q,0)
fy (€, 9)
£, 9)
£ (8, 9)

2i cos® ¢(1 + () a

—ifcos® §(1 + Q)as(1 + &7) — sin 9[CR + (1 — of)] /s }
2isin ¢ cos (1 + ¢)as

—isingcos p{(1 + QJay(1 +af) + [(R+ a3 (1 — af)]/as}
—2cos (1 + Q)asey

cos (1 + ¢)(1 + o). (4.6.4)

4.6.1 Inversion of Transforms

To invert the transforms to the space-time domain, we use the inversion tech-

nique of Willis (1973). The Fourier-Laplace domain solution for any field is

broken into dilatational and shear contributions. Only the inversion for the S

wave term will be presented; the P term is similar. Writing this contribution as

U(Q, k,0)e~*s the inversion formula can be written as

u(t’ x’ y7 Z)

00+i0 2w [e's)
= (2m)3lim o / df / dkk?
0 0

e—0 — 000

U(Q, k,0) explik(zcosf + ysinf — Qt) — ka,z — ke.(4.6.5)

The factor of e7*¢ ensures convergence of the integral and becomes particularly
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useful when evaluating a later result numerically. By virtue of the self-similarity
of u (it is homogeneous of degree —2), we have k*U(Q, k,0) = U(Q,1,0). This

permits us to evaluate the k£ integral to get

oo+10
u(t,z,y,2) = i(2m)~ 3hm dH/

U (Q,1,0)
zcosh +ysinh — Qt +io,z + ie

oo+10

(4.6.6)

The €2 integral can be evaluated by closing the contour with a semicircle at infinity
in the upper half of the complex phase-velocity plane and using the residue theo-
rem. We denote this path I'. The poles of U lie on or below the real axis; hence,
the only singularity of the integrand within the contour is possibly a pole from the
denominator at = Q, where €, is the solution to Q,t — X —i(1—Q2/c?)'/?z = ic
with X = zcosf + ysinf. This is recognized as the equation defining the well-
known Cagniard path C, which is traditionally expressed in terms of the horizon-
tal slowness or ray parameter ', and physically corresponds to generalized ray

arrivals. The relevant solution is

HX +ie) +i2{t2 — [(X +i€)? + 22]/c2} /2
12 — 22/c2 ’

Q, = (4.6.7)

the other root lies either outside I' or on the Riemann sheet that does not satisfy

the radiation condition.
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The path of this pole through the complex phase-velocity plane occurs as
follows, where the observer position (X,z) is assumed fixed and the path is
parametrized by t. At t = 0, Q, = —cs\/m/z — 10 below the real axis.
As t increases to t; = z/cs, the pole moves left just below the real axis out to
Qs = —oo —i0. For ¢ infinitesimally greater than ¢, {2 moves into the contour
[' at €2, = 0o +i0. The pole then moves to the left just above the real axis with
increasing ¢ until t = /X2 + 22/c,. At this point, Q, = c¢,v/ X2 + 22/X + i0.
When inverting for the P wave contribution, this is always to the right of the
rightmost branch point. For the S wave contribution, however, this path crosses
the P wave branch point when sV X2+ 22 /X = ¢, which defines the locus of
observer positions at which head waves begin to appear. At this point, the pole
leaves the real axis and moves up and to the left until I€2; reaches a maximum
at t = v/2X2 + 22/c, and Q, = (V2X2+ 22 + i2)cs/2X. The pole then begins
approaching the origin, asymptotically following the path Q;, = (X + iz)/t as
t — oo. Fig. 4.7 shows the section of the path within I'.

Use of the residue theorem to evaluate the €2 integral forces us onto this path,

leaving

1 [ U, 1,0)H(t—t,)
u(t, oy, 2) = / apCe B O L), (4.6.8)

This remaining integral, physically corresponding to a superposition of 2D solu-
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tions at azimuthal angle #, must be performed numerically.

We can also extract the 2D response to a line force using the 3D formula.
We rotate our system of coordinates (x,y) in the plane of the interface by the
angle ¢ to (z',y'). The force is still applied along the z-axis, but the solution
is now independent of ¢’ (i.e., the boundary condition o,, = —SH (t)d(z)d(y) is
replaced by 0,, = —SH(t)§(z'), where S now has units of force/length). The 2D
limit in the Fourier-Laplace domain is obtained by multiplying the 3D solution
by 2md(k, ), which changes the degree of homogeneity of the displacement field to
—1. We thus invert instead for the velocity field, which is given by V(Q,k,0) =
—2miQk 26 (ky [k)U(2,1,0), where U is the 3D solution for the point force.

Inserting this into Eq. (4.6.8) (replacing displacement with velocity) collapses
the azimuthal integral. The two contributions occur when # = ¢ and 0 = ¢ + 7,

which are complex conjugates of each other. Hence,

QSU(QS’ 15 ¢)H(t - ts)

1
Tt i1 - %)

where 7 = /22 + y? replaces X in Eq. (4.6.7).

&

v(t,r,z) = , (4.6.9)
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Figure 4.7: Representation of the integration contour I' and the Cagniard path
C in the complex phase-velocity plane. Branch points, branch cuts, and interface
wave poles are also shown. The Cagniard path encounters the P wave branch
point if the observation point lies within the region where head waves are present.
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4.6.2 Line Source

We present the results of the line source first, which do not require any inte-
gration to compute. The pattern of wavefronts for a frictionless interface is shown
in Fig. 4.8. Four arrivals occur for the inplane geometry. These are the cylindrical
dilational and S wavefronts, the Rayleigh wave, and head waves. In the antiplane
geometry, only the cylindrical S wavefront exists. For z > 0, particle velocities

are obtained using Eqgs. (4.6.3) and (4.6.9) as

fid(Qpa P)H(t — z/cp)

vi(t,r, 2) = —S o o
H D(Qy, 9)[t +1F (1 — )71/

fz’s(Qsa ¢)H(t - Z/Cs)
D(Q, )t +i%(1 - )72

(4.6.10)

with the f; given in Eq. (4.6.4). There are two limits in which the solutions are
independent of 7; these occur when ¢ = 0 and ¢ = 7/2, corresponding to pure
inplane and pure antiplane geometries for which the solution to our problem is
well known. For mixed-mode cases the dependence on 7 emerges, as shown in
Fig. 4.9. The four wave arrivals characteristic of the inplane free surface are
slightly modified, with the interface wave discussed previously taking the place of
the Rayleigh wave.

We have verified these 2D results using the spectral boundary integral method-

ology proposed by Geubelle and Rice (1995) to calculate the interfacial particle
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velocity. Results are computed using 512 spatial grid points with the point force
distributed over the central two nodes, and the interfacial friction obeying the
linearized boundary condition (4.3.3). Fig. 4.10 shows agreement between the
numerical and analytical solutions for ¢ = n/4 and variable . Small values of
7, approaching the frictionless limit, show a distinct separation between S and
Rayleigh wave arrivals resulting from the independent propagation of the inplane
and antiplane wave systems. As 7 increases, the increasing transverse resistance
couples the antiplane wave system into the interface wave, which dominates the

arrivals.

4.6.3 Point Source

For the 3D point force problem, the displacement fields are obtained using

Egs. (4.6.3) and (4.6.8) as

2 d
1 (Qpa Q)H(t - Z/Cp)
wilt, 2,9, 2) = / de[ i z
A Jo QD(Qy, O)[t +igh (1 — F)1/22]

fis(Qs:g)H(t— z/cs)
O, D(, )]t +i%(1 — L)-1/24]

,(4.6.11)

Figs. 4.11 and 4.12 show the displacement fields at z = 0. Again, the analytical
solutions are verified numerically with a boundary integral solution. In this case,

only 256 grid points were used in each direction, with the point force distributed
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Figure 4.8: Wavefronts radiating from a line stress drop through the origin for a
frictionless interface at z = 0 in inplane geometry. P and S denote the cylindrical
P and S waves, R is the Rayleigh wave, and H is the § head wave excited by
evanescent P waves along the interface. For the antiplane geometry, only the S
wave is present.

76



CHAPTER 4. EXCITATION OF WAVES ON FRICTIONAL INTERFACES

4 @=3118  @=172

v ut/S

rlc t
S

Figure 4.9: Particle velocities for a 2D line source with step-function time depen-
dence for various ¢ and 7. A comparison with the wavefronts generated along a
frictionless interface (Fig. 4.8) reveals that increasing n couples the inplane and
antiplane wave systems. This is particularly evident at intermediate angles close
to the interface.
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Figure 4.10: Interfacial particle velocities for a 2D line source with step-function
time dependence for ¢ = w/4 and various 7. The solid line is the analytical
solution; the points are computed using a boundary integral methodology. Wave
arrivals are labeled as in Fig. 4.8. At this angle, the coupling between the inplane
and antiplane wave systems is most evident. For small n, the S and Rayleigh
arrivals are distinctly separated. As 7 increases, the wave systems couple and
these arrivals merge into a single interface wave.
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over the central four nodes.

The nature of the 3D solution as a superposition of 2D plane waves is evi-
dent. For small values of n, antiplane S waves increasingly decouple from the
inplane solution and separate arrivals at the S and Rayleigh speeds appear. As
7 increases, the waves coalesce into the direction-dependent interface wave that
appeared during the study of the homogeneous problem. These waves carry the
static displacement field for the z and y-components on the interface. In contrast,
the vertical component shows a gradual approach to the static solution. In addi-
tion to the interface waves, head waves begin at the P wave arrival. Increasing 7

focuses more energy into the head waves.

4.7 Nonlinear Effects

Our investigation has thus far been limited to the assumption that the per-
turbations are small enough that the linearization of Eq. (4.3.1) to Eq. (4.3.3) is
valid. Departures from the linearized friction law will be most pronounced near
the interface wave arrival, where the largest amplitudes of slip velocity occur. The
point and line force solutions investigated previously are singular at the arrival
of the interface wave, consequently violating the small amplitude assumption.

Of course, these solutions should be used in the context of constructing a finite
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Figure 4.11: Interface displacement for a 3D point source at the origin with step-
function time dependence. In the n — oo limit, the head wave pattern elongates
along the original sliding direction, as seen for u, and u,. A close examination
of the figures, particularly u,, shows that two distinct S and Rayleigh wavefronts
exist for n — 0, while only one wavefront, corresponding to the directionally
dependent interface wave, appears as n — oo.
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Figure 4.12: Interfacial displacement history pnru,/S for a 3D point source with
step-function time dependence for various ¢ and 7. The solid line is the analytical
solution; the points are computed using a boundary integral methodology. Wave
arrivals are labeled as in Fig. 4.8. In contrast to intermediate angles (Fig. 4.10),
the effect of varying n is more subtle in these standard inplane and antiplane
directions.
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source by superposition, which renders the linear analysis valid for sufficiently
small amplitude sources of sufficient extent.

To study the nonlinear problem, we consider applying a large perturbation
ol%ad > 73. The corresponding velocities at the interface will be much larger than

Vg, which we consequently neglect. In this case, the shear boundary conditions

reduce to

Vg

2 2
\/ Vg T Uy

Uy

2 2’
VU T vy

The response is now isotropically dissipative, with the total shear traction vector

To+ 0zz = To

(4.7.1)

Oyz = To

aligned antiparallel to the slip velocity perturbation, irrespective of the initial
sliding direction. Because of the isotropy, we expect the response to be similar in
nature to the frictionless response, except that the perturbations will be damped.
The dissipation rate will increase with perturbation amplitude, since slip velocities
will increase while the magnitude of the total shear traction remains equal to 7.

Having established the accuracy of our numerical methodology in the previ-
ous Sections by comparison to our analytical solutions, we are in the position
to test our ideas by applying perturbations of arbitrary amplitude with the non-

linear boundary condition (4.3.1). For simplicity, we restrict ourselves to 2D and
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consider the step function application of a spatially distributed shear load in the z-
direction having a gaussian shape, i.e., 01%%4(¢, z,y) = Sexp(—2"2/L?)H (t), where
the primed coordinates and the line load are inclined at an angle ¢ = 7/4 with
respect to the unprimed coordinates and the unperturbed motion.

Fig. 4.13 shows the slip velocity on the interface as a function of load ampli-

tude. As expected, the interface behavior changes from the linearized response to

a frictionless response as the amplitude grows.

4.8 Discussion

We have shown that steady state sliding between two identical elastic halfs-
paces is stable with respect to slip perturbations at any orientation with respect to
the original sliding. The basic effect of friction is to introduce a preferred direction
of slip along which the energy driving the steady state motion is precisely balanced
by the energy dissipated during slip. Transverse motions encounter an effectively
viscous frictional resistance that increases with transverse slip velocity, leading
to additional dissipation of energy from the system. Friction influences wave
propagation by coupling the antiplane and inplane wave systems. The source-free
response is characterized by the existence of damped interface waves, whose phase

velocity depends on both the steady state conditions and the direction of propa-
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Figure 4.13: Comparison of the interfacial velocity history puv,/Sc, for a 2D gaus-
sian load with step-function time dependence for various load strengths S at
z'/L = 4 with the nonlinear boundary condition (4.3.1). The load is inclined at
the angle ¢ = 7/4 with respect to the direction of original sliding. The initial
conditions are such that n = 3. As the load strength is increased, the interface
behavior changes from the linearized response to a frictionless response.
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gation with respect to the initial sliding direction. We find that for higher levels
of friction, corresponding to nn > 1, a third root of the dispersion relation comes
into existence and is related to whether or not the instantaneous response of the
system to transverse slip is a decrease or increase in transverse traction. This is a
standing wave mode with a rapid decay rate; consequently, it has little signature
in the long-time response of the system.

We also solved the transient problem corresponding to the application of point
and line tractions on the interface, showing that the response consists of P and
S waves, interface waves, and head waves. The solutions provide insight into
the speed at which shearing forces are transmitted across the interface to drive
decohesion or failure of as yet locked areas. For cracks with a stress drop that is
small compared to the absolute value of stress, the transmission of these forces
is best understood not by decomposing the response into inplane and antiplane
components, but instead by considering the directionally dependent phase velocity
of the interface waves in the large n limit. An example of these waves appears
in the form of slip pulses emitted from the failure of localized asperity contacts
when the surrounding interface is frictionally sliding, as may occur during dynamic
fracture (Dunham et al., 2003).

Direct application of the linearized results is limited to small perturbations

occurring within an area of nearly constant slip velocity, and to motions preced-
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ing the arrival of waves diffracted off of the crack edge. For large perturbations,
the linearized analysis breaks down. In the nonlinear regime, the interface be-
comes isotropically dissipative, yielding a response similar to that of a frictionless
interface, except that the waves are damped.

This study raises the question of whether or not the viscous damping that
characterizes the 3D response is sufficient to stabilize sliding along a bimaterial
interface, at least within some range of parameter space. This will require a study

of the appropriate dispersion relation.
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Steady State Ruptures
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This Chapter, essentially in this form except for minor changes, appeared in:

Dunham, E. M., and R. J. Archuleta (2005), Near-source ground motion
from steady state dynamic rupture pulses, Geophys. Res. Lett., 32, 1.03302,

doi: 10.1029/2004GL021793.

which is reproduced by permission of American Geophysical Union.

5.1 Abstract

Ground motion from two-dimensional steady state dynamic ruptures is exam-
ined for both subshear and supershear rupture velocities. Synthetic seismograms
demonstrate that coherent high-frequency information about the source process
rapidly attenuates with distance from the fault for subshear ruptures. Such records
provide almost no resolution of the spatial extent of the stress breakdown zone. At
supershear speeds, S waves radiate away from the fault, preserving the full source
spectrum and carrying an exact history of the slip velocity on both the fault-
parallel and fault-normal components of motion, whose amplitudes are given by
a function of rupture speed that vanishes at /2 times the S-wave speed. The
energy liberated from the strain field by the passage of a supershear rupture is
partitioned into fracture energy dissipated within the fault zone and far-field S-

wave radiation. The partition depends on both the rupture velocity and the size
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of the breakdown zone.

5.2 Introduction

Evidence for ruptures exceeding the S-wave speed continues to mount, most
recently in the 2002 M, 7.9 Denali Fault earthquake (Ellsworth et al., 2004;
Dunham and Archuleta, 2004). The ground motion recorded 3 km from the fault
at Pump Station 10 exhibited a set of pulses unlike any previously recorded. In
light of this record and to further explain features appearing in the model of this
event by Dunham and Archuleta (2004), we turn our attention to the near-source
ground motion of dynamic ruptures. In particular, we discuss how the resolution of
dynamic rupture parameters from near-source records depends on rupture speed.

As a starting model, we investigate two-dimensional (2D) rupture pulses of
finite length L, propagating at some steady state velocity V' in the positive x
direction along the fault plane y = 0. We shall refer to the z and y directions as
fault parallel (FP) and fault normal (FN). The material on either side of the fault
is identical, isotropic, and linear elastic, with shear modulus 4 and P- and S-wave
speeds ¢, and c,;. The steady state assumption implies that we are modeling only
the coherent portion of the fields due to a smooth rupture process, and not the

incoherent high-frequency radiation that results from breaking through small-scale
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heterogeneities.

We specify the shear traction 7(x) within the slip zone (unlike kinematic mod-
els, which would specify slip). Following Broberg (1978, 1989), expressions for
the velocity and stress fields, both on and off of the fault, are written in terms
of a single integral expression of 7(x) over the slip zone, weighted by a singular
kernel. The expressions are derived in appendix B. Rice et al. (2005) has recently
evaluated the integral in closed form for the specific case of subshear ruptures in
which the shear traction decreases linearly with distance behind the rupture front.
In order to accommodate any general 7(z) and to extend the model to supershear
speeds, we numerically evaluate this integral at each observation point, requiring
quadrature routines specifically designed to handle integrable and Cauchy-type
singularities in the integrand (Piessens et al., 1983).

The elastic fields may be separated into dilatational and shear parts, each
governed by the wave equation with the appropriate wave speed. Under steady
state conditions, the governing equations become two-dimensional in x — V't and

y. A general field f at speed V' may be written as

where fP and f° result from a displacement field u = u? +u? satisfying Vxu? =0

and V - u® = 0. Using Fourier analysis, we write
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f . Vt y / fj zkw (z—Vt) e_k:va]ydk (522)

where a; = /1 —V?2/ c? and j = p or s. This decomposes the response into plane

waves el(ka2+kiy=wt) “gubject to the dispersion relation w = ¢; k2 + k2, and to the
condition that the FP phase velocity equals the steady state velocity: w/k, = V.
For V < ¢,, both the P and § waves are inhomogeneous. Their amplitude decays
exponentially with distance as the observation point moves away from the fault,
with the decay length set by the FP wave number £, and the velocity-dependent
factor oj. When ¢, < V < ¢,, ay becomes imaginary, and the S waves radiate

away from the fault; i.e.,

Polo—Vi,y) = / Jo (kg e Br VO g (5.2.3)

where s = /V?/c2—1. The shear field on the fault is transported without
attenuation to observation points off of the fault, enabling a precise determination

of the source properties from near-source records of supershear ruptures.

5.3 Subshear Ruptures

Let us begin with subshear ruptures. We take ¢ = 0 such that z — V¢ — x and

place the origin of our coordinate system at the leading edge of the slip zone. We
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use the linear distance-weakening model of Palmer and Rice (1973) in which

T+ (p —1)z/R, —R<z<0
T($)={ ( )/ = (5.3.1)

Try -L <z <-R.

Fig. 5.1 shows the velocity field and synthetic seismograms. The motion is
predominantly in the FN direction, and the synthetics are virtually identical to
those from steady state kinematic models (e.g., (Luco and Anderson, 1983)). As
expected on the basis of the Fourier decomposition, increasing the distance be-
tween the observer and the fault filters the high frequency components of the
wavefield excited by the source process (e.g., (Aki and Richards, 2002), p.524).
We can estimate the minimum resolvable wavelength for the shear component of
the fields AJ; at some distance y away from the fault in the following manner:
Information at a particular frequency becomes irresolvable when its amplitude
drops to some fraction, say 5%, of its amplitude on the fault, leading to the con-
dition e~27s¥/Xuin ~ 0.05. For V ~ 0.85¢5, A%, ~ y. An even stricter restriction
exists for the dilatational fields. This echoes a similar conclusion by Guatteri and
Spudich (2000), and demonstrates the fundamental difficulty inversions face when
using records from subshear ruptures, even without finite bandwidth limitations.

On the other hand, our analysis supports the use of kinematic modeling for sub-

Rayleigh ruptures, and emphasizes that the parameterization of the slip velocity
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function will have little effect on the ground motion, so long as the final slip and

rise time are preserved.

5.4 Supershear Ruptures

The ground motion from supershear ruptures is shown in Fig. 5.2. Planar
wavefronts emanate from the leading and trailing edges of the slip zone. Preceding
the arrival of the Mach front is the dilatational field, characterized by a circular
pattern of rotation around the slip zone. Unless the observer is on the fault, this
results in predominantly FP motion, particularly as V' — ¢,. In this limit, the P
waves become homogeneous and propagate at grazing incidence to the fault with
a purely FP particle motion.

The fields change character as V' crosses v/2¢,, the speed at which the S-wave
radiation vanishes (Eshelby, 1949). This follows from the expression for the shear

traction on the fault in terms of the displacement fields:

Ozy = b (Ouy /0y + Ouy /0x), (5.4.1)

or in the plane wave basis:

Oy = W (tkyug + ikyuy) . (5.4.2)
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Figure 5.1: Velocity field (a) and synthetic seismograms (b) for a subshear rupture
(V = 0.85¢5). In (a) the heavy black line denotes the slip zone and the heavy
green line the breakdown zone. We take 7, — 7, = 20MPa, y = 30GPa, L = 2km,
¢, = 6km/s, ¢, = v/3cs, and R = 0.5km. In (b) synthetic seismograms are
computed for several values of R as labeled, holding the final slip fixed by varying
T, — Tr. For R = 0.5, 0.2, and 0.05km, the equivalent slip-weakening distances
(i.e., the slip at x = —R) are D, = 0.744, 0.465, and 0.231m, the strength drops
are 7, — 7, = 20.0, 30.0, and 58.71MPa, and the fracture energies are G = 6.66,
6.23, and 6.03MJ/m?. Beyond several km from the fault, the records from all
cases are indistinguishable.
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Choosing a particular V' sets both the relative amplitudes of k£, and &, and the
ratio between u, and u, since it determines the propagation angle of the radiating
wave with respect to the fault. At V = v/2¢,, a precise balance occurs (kg = ky
and u, = —u,), implying that such a wave exerts no shear force on the interface.
Conversely, a change in shear traction on the fault (as we model the source pro-
cess) does not excite S waves. As V crosses v/2c,, the relative sign of stress and
displacement reverses, resulting in a reversal of the S-wave particle motion.

The ground motion from supershear ruptures contains a wealth of information.
The shear field carries an exact history of the slip velocity that appears in both
the FP and FN velocity components, as well as in all of the stress components.

The velocity fields carried by the S waves are given by

2_1
vy (z + Bsly]) = Sgl;(y) 22 " -Av(z + Bify]) (5.4.3)
and
1 62-1
(o + Blyl) =~ Sy Avla+ A1), (5.4.4

where Av(z) is the slip velocity on the fault. The record from even a single station
determines both V' (from the FP to FN ratio) and Aw.

The direct transport of the slip velocity function off of the fault results in
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large amplitudes of both velocity and acceleration, particularly if R/L < 1, as
laboratory measurements seem to indicate. As discussed in the previous Section, R
cannot be reliably estimated from current (sub-Rayleigh) ground motion records.
Consequently, the use of large values of R to resolve the breakdown process in
numerical models will result in an underprediction of the peak ground velocity

and acceleration when the rupture process is supershear.

5.5 Energy Balance

The energy balance for dynamic ruptures changes considerably at supershear
speeds. For subshear speeds, steady state pulses excite only inhomogeneous waves
that do not radiate into the far field. Consequently, all of the strain energy
liberated by allowing slip to temporarily relax the stress field dissipates within
the fault zone as fracture energy (Rice et al., 2005). At supershear speeds, the S
waves radiate and the flux of energy carried by these waves must be taken into
account. The proper balance of energy (per unit area advance of the rupture) is
(1o — 77)0 = G+ Gy, where 79 is the initial (and final) shear traction far in front of
(and behind) the slip zone, ¢ is the final slip, G is the fracture energy, and Gy is
the radiated S-wave energy (absent for V' < ¢;). The left member of this equation

is the work done by the remote stress field in excess of the residual stress, which
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Figure 5.2: Velocity field (a and ¢) and synthetic seismograms (b and d) for
supershear ruptures having speeds V = 1.3¢, and 1.6¢,. In (a) and (c) the heavy
black line denotes the slip zone and the heavy green line the breakdown zone. The
heavy blue lines in the seismograms mark the portions of the records during the
passage of the radiated S waves. Parameters are given in the caption of Fig. 5.1.
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is the energy available for rupture from the elastic medium. The radiated S-wave

energy can be calculated by integrating the FN flux of energy over the slip zone:

0

Gs = 2gS(V/cs)p/ v2(z,y = 0)dx, (5.5.1)

—L

where

gs(V/es) = (85 — 1)/ (85 + DI/ B (5.5.2)

Dimensional arguments require G (and Gj) to take the form h(V/cs, R/L)(1,—
7.)2R/p. For subshear ruptures h factors into two terms, the first dependent on
V/cs and the second on R/L. This factorization does not carry over to supershear
ruptures (Broberg, 1989). Fig. 5.3 shows the partition of energy as a function
of R/L and V/c,. As R/L decreases, most of the energy is radiated, with the
exception of a small range of velocities surrounding V/2¢s, since no S waves are

excited at this speed.
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This Chapter, essentially in this form except for minor changes, appeared in:

Dunham, E. M., and R. J. Archuleta (2004), Evidence for a supershear
transient during the 2002 Denali Fault earthquake, Bull. Seismol. Soc.

Am., 94, S256-S268.
and

Dunham, E. M., P. Favreau, and J. M. Carlson (2003), A supershear tran-

sition mechanism for cracks, Science, 299, 1557-1559.

6.1 Diffraction Effects

The allowed velocity regimes and supershear transition mechanism follow from
a study of the waves that transmit shearing forces from within the breakdown
zone to the unbroken material ahead of the rupture front. To illustrate this,
we consider a semi-infinite mode II crack constrained to the plane ¥y = 0 in a
homogeneous elastic medium, with fields depending on x and y only. The medium
is characterized by a shear modulus p and P- and S-wave speeds ¢, and c¢,. At
time ¢ = 0, the crack tip, which is moving along the positive x-axis at velocity V,
passes the origin.

To solve for the fields within the medium, we must specify boundary conditions

on the material directly on either side of the fault. In order that the fault does
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not open, we require continuity of normal displacement. Continuity of shear
and normal tractions across the interface follows from momentum conservation.
Furthermore, at each point on the fault, we must specify either slip or shear
traction. In contrast to a kinematic source representation, in which the slip field
is specified at every point on the fault, we follow the usual dynamic representation
by specifying shear traction behind the moving crack tip and slip (identically
zero) ahead. We require the stress field to be nonsingular at the tip, which is
accomplished by introducing a finite length or time scale over which the breakdown
in stress occurs, as in the cohesive zone models of Ida (1972); Palmer and Rice
(1973); Andrews (1976).

We then consider an advance of the crack tip over an infinitesimal time interval
dt. As the crack extends, the shear traction relaxes behind the crack tip. The
exact process by which this occurs depends on the specific friction law or fracture
criterion. The linearity of the governing equations allows us to construct the break-
down in stress as a superposition of line tractions (extending infinitely in the z-
direction), each applied at some distance z = —L behind the crack tip with ampli-
tude F' (force/length) and having step-function time dependence. Since the shear
traction at time ¢t = dt is specified, then F'(z) = [04y(t = 0,2) — 04, (t = dt, z)] dz,
where dz = Vdt and o;; are the components of the stress field created by slip.

This is illustrated in Fig. 6.1. The region of nonzero stress drop, in contrast to
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X

Figure 6.1: Schematic diagram illustrating the superposition of line tractions
(stress drops) for x < 0. The fault is locked for z > 0 and the crack advances at
velocity V' over an infinitesimal time interval dt.

the actively slipping area in the kinematic representation, is the only source of
elastic waves in the dynamic representation.
Letting u; be the components of the displacement field created by slip, we

formally define this mixed boundary value problem as
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ug(t,z,y=0) = Ofor Vi <z < oo
Owy(t,z,y=0) = —FH(@{)6(x+ L) for —co<z <Vt (6.1.1)

oy(t,z,y=0) = 0for —oo <z < o0,

where H () is the step function and §(z) is the delta function. The last equation,
which states that the normal stress is unchanged by slip, follows from symmetry
conditions that arise when requiring the continuity of both normal stress and
normal displacement.

Our approach to understanding dynamic crack growth is similar to that taken
by Freund (1972a,b), and our problem is related to his so-called fundamental
solution in the limit that L — 0. The advantage to keeping L finite is concep-
tual, affording us an insight into the elastodynamic processes occurring within the
breakdown zone.

We could further generalize this model by placing the stress drop some distance
off of the fault within a damage zone. In this case the superposition would be over
the volume containing the off-fault damage, rather than localized to the area of the
fault within the cohesive zone. Considering the problem from this perspective, the
transmission of forces to the unbroken area ahead of the crack tip occurs with the

broken fault behind the crack tip playing the role of an interfacial waveguide for
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the elastic waves emitted from within the damage zone. Since we have posed the
problem within the framework of a mixed boundary value problem, the transition
between the regions in which we specify shear traction and those in which we
specify that slip vanishes (i.e., the crack edge) acts as a diffracting boundary. The
waves released by the stress drop overtake the crack tip and diffract off of it (see
Fig. 6.2).

The solution to our problem defines the Green function for some distribution
of shear tractions applied on the sliding surface of a moving crack. Known as a
transient weight function, it has a known analytical solution in the Fourier-Laplace
domain (Freund, 1974; Brock, 1982; Kuo and Chen, 1992; Freund, 1989; Broberg,
1999a). However, since the problem possesses a characteristic length, the solution
is not self-similar and requires multiple integrations to invert the transforms and
extract the space-time history of the velocity and stress fields. Inversion of these
transforms is, to the best of our knowledge, absent from the literature except for
the use of asymptotic theorems to study the evolution of the stress intensity factor.
Consequently, we present instead a numerical solution using the boundary integral
methodology proposed by Geubelle and Rice (1995). The slip velocity and shear
traction on the interface are shown as a function of position and time in Fig. 6.3
for a stationary crack tip. A similar solution is obtained for sub-Rayleigh crack

speeds; only when the crack velocity exceeds some wave speed does the wavefront
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Figure 6.2: Wavefronts generated by a stress drop (marked by the circle) located
some distance behind a stationary crack tip, after both P and S waves overtake the
crack tip. Rayleigh waves and body waves generated by Rayleigh waves diffracting
off of the crack tip are not shown to avoid excessive complication. The crack,
denoted by the heavy line, lies in the half-plane y = 0, x < 0. Direct and
diffracted waves are labelled, and H denotes a head wave resulting from P to S
conversion on the crack face.

106



CHAPTER 6. THE SUPERSHEAR TRANSITION

pattern change since these waves will no longer overtake the crack tip.

Up until the arrival of the P wave at the crack tip, the solution is self-similar
and identical to that of Lamb’s problem (a shear line force applied on the surface
of a traction-free half-space), which is used to validate the numerical method (see
the inset in Fig. 6.3). As such, the main features are well known. The line force
emits P and S waves with cylindrical wavefronts, as well as planar head waves and
an interfacial Rayleigh wave. A point on the fault begins to slip in the direction
of the applied traction at the simultaneous arrival of the P wave and a head wave
traveling along the interface at the P wave speed. This head wave is a radiating S
wave excited by evanescent P waves trapped on the fault surface. Forward sliding
continues until the arrival of the S wave, at which point slip reverses, with the
interface sliding in the direction opposite the applied traction. Reverse sliding
ceases when the Rayleigh wave arrives; positive slip velocity peaks at and decays
after its arrival, with slip reaching the steady-state value only asymptotically as
is characteristic in two dimensions.

There is a direct correlation between the allowed propagation velocity regimes
and the direction of slip relative to the applied traction, as pointed out by Das
(2003). For a given distribution in time and space of shear tractions (i.e., a
prescribed rupture history), we could calculate the slip velocity history, which

would be equivalent to that generated in Lamb’s problem plus a correction to
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Figure 6.3: Evolution of slip velocity (z < 0) and shear traction (z > 0) after the
step-function application of a line stress drop of magnitude F' at © = —L behind
a stationary crack tip. The color scale measures the non-dimensionalized slip
velocity and shear traction labeled at the top. The inset compares the numerical
slip velocity (points) just prior to wave arrivals at the crack tip to the analytical
solution for Lamb’s problem (solid line). The peak in shear traction associated
with the P to S wave conversion is labeled PS.

108



CHAPTER 6. THE SUPERSHEAR TRANSITION

account for diffractions off of the crack tip, which are further discussed below.
The rate of energy dissipation at each point on the fault is the product of the
shear traction and slip velocity, from which we see that only when the fault slips
in the direction of the applied traction is energy dissipated. Reverse motions,
which we have allowed in our problem to render it linear, are typically prevented
by friction; otherwise, this process would unphysically create energy.

Let us now take the steady-state limit of our problem. In this case, it is
more appropriate to consider fixing the distance L in a frame that moves with
the crack tip; such an analysis was conducted by Burridge et al. (1979) in their
study of the stability of supershear propagation velocities. In the steady-state
limit, only motions for which the apparent velocity along the fault matches that
of the crack tip remain (i.e., those having a ray parameter of V~!). For sub-
shear propagation velocities, this implies that the driving force is carried only by
evanescent P and S waves on the fault surface. A reversal in the direction of the
shearing force carried by these waves occurs at the Rayleigh speed, resulting in
the velocity range between the Rayleigh and S wave speeds becoming forbidden.
In the supershear regime, the P wave remains evanescent but the .S wave switches
from evanescent to radiating. The angle that the S wavefront makes with the
fault is the Mach angle arcsin(cs;/V’). The associated shear fields retain a finite

amplitude at infinity along the Mach cone. The only velocity at which the §
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wave vanishes is the well known /2 times the S wave speed (Eshelby, 1949).
The significance of this velocity appears clearly in the expression for the traction
components on a flat surface due to incident plane waves (e.g., (Aki and Richards,
2002, p.132)). In our case, the situation is reversed, with traction changes on the
surface exciting some superposition of plane waves. Our source is the application
of a shear traction, with the normal traction remaining constant. It follows from
the expressions in Aki and Richards (2002) that changes in shear traction moving
at V = v/2¢s will not excite S waves.

We now return to the general transient problem and consider the diffraction
pattern that emerges when steady-state conditions are not satisfied. This can
occur when the crack tip accelerates between two steady-state regimes or when
the magnitude of the stress drop is spatially heterogeneous. A simple illustration
of this phenomenon is the growth of an initially steady-state crack into a region
of increased stress drop (an asperity), as in the numerical study of Fukuyama and
Olsen (2002). If we constrain the crack velocity to remain constant through this
process, then the resulting fields can be constructed as a superposition of the fields
carried by the original steady-state crack and the fields generated by the additional
stress drop within the asperity applied some distance behind the moving crack
tip, the remainder of the fault behind the tip being traction-free. This additional

solution is exactly the transient diffraction problem we have solved. If we relax the
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constant velocity condition and allow the crack to grow spontaneously according to
some fracture criterion, then provided that the additional energy released within
the asperity is sufficient, the diffracted P and S waves will initiate supershear
growth. If this energy is sufficiently concentrated (by an abrupt large amplitude
asperity), then the crack tip will be driven forward continuously by these diffracted
waves to a supershear velocity. If the asperity amplitude is smaller, yet still large
enough to provide sufficient energy to power the supershear rupture, then the
diffracted S wave peak will build up gradually ahead of the crack tip and the
supershear transition will be discontinuous.

Another source of these transient features is the presence of an additional
diffracting boundary, such as the second crack tip (see, e.g., Fig. 1 of Eshelby
(1969)) or the healing front in a rupture pulse model. The multiple diffractions
between the two expanding crack tips generate the S wave stress peak that ap-
pears in analytical self-similar solutions for sub-Rayleigh cracks (Burridge, 1973;
Broberg, 1994, 1995; Freund, 1989; Broberg, 1999a). The supershear transition
appearing in the numerical experiments of Andrews (1976) on a bilaterally ex-
tending crack with homogeneous stress drop occurs by this mechanism. For an
expanding crack, these diffractions have significant amplitude only during nucle-
ation, where the characteristic length controlling the development of these features

is the nucleation zone size, as found by Andrews (1976). In this case the S wave
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peak builds up gradually, resulting in a discontinuous triggering of the supershear
rupture some distance ahead of the original sub-Rayleigh rupture.

For supershear propagation velocities, the Rayleigh and S waves released within
the breakdown zone will not overtake the crack tip. As self-similar analytical so-
lutions in this velocity regime reveal (Burridge, 1973; Broberg, 1994, 1995), slip
is not concentrated uniquely at the rupture front, as it is for sub-Rayleigh rup-
tures. A second peak in slip velocity travels at the Rayleigh speed. Similarly,
spontaneously propagating cracks that accelerate from sub-Rayleigh to supers-
hear velocities leave behind a secondary slip pulse at the Rayleigh speed. This
feature emerges naturally from our representation of crack growth as Rayleigh
waves generated within the breakdown zone that never reach the faster-moving
crack tip. If the supershear transition is triggered by an asperity, then these
Rayleigh waves derive their energy from the additional stress release within the
asperity. As we later discuss, the signature of these Rayleigh waves in seismic
radiation manifests almost entirely in ground motions perpendicular to the fault
plane.

The effect of friction on the fault will be to disperse these Rayleigh waves.
The dispersion relation for a linearized version of rate and state friction is given
by Rice et al. (2001). Depending on frictional parameters and sliding conditions,

larger wavelengths may unstably grow into the nonlinear regime until a stress drop

112



CHAPTER 6. THE SUPERSHEAR TRANSITION

occurs. In this way, the Rayleigh wave could be viewed as a secondary rupture.
Extension of this analysis to three dimensional crack propagation is compli-
cated. The representation of the breakdown zone consists of a superposition of
point shear tractions applied some distance behind an arbitrarily shaped moving
crack edge. Curvature of the crack edge focuses or defocuses the radiation released
by the tractions (Achenbach and Harris, 1978). Such focusing alone can be suffi-
cient to trigger localized supershear bursts (Dunham et al., 2003). Furthermore,
the driving force provided by the stress drop becomes directionally dependent.
Including friction and rotation of the slip vector introduces another nonlinearity
into the problem. An exact solution for a point stress drop in three dimensions,
neglecting any diffractions but including a linearized treatment of rake rotation

under constant friction, is given by Dunham (2005).

6.2 Transient Supershear Bursts

Seismic data indicate fault ruptures follow complicated paths with variable
velocity due to inhomogeneities in initial stress or fracture energy. We report a
phenomenon unique to three dimensional cracks: locally stronger fault sections,
rather than slowing ruptures, drive them forward at velocities exceeding the shear

wave speed. This supershear mechanism differentiates barrier and asperity models
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of fault heterogeneity, previously regarded as indistinguishable. High strength
barriers concentrate energy, producing potentially destructive pulses of strong
ground motion.

Earthquakes are modeled as shear cracks propagating along fault planes. Het-
erogeneous stress and strength distributions lead to complex rupture histories.
Because elastic waves radiate from the concentrated region of maximum sliding
velocity at the rupture front, perturbations to its motion, particularly those induc-
ing propagation faster than the shear wave speed, are the source of high frequency
ground motions (Madariaga, 1983). Material heterogeneity is characterized by re-
gions of increased fracture energy, i.e., cohesive resistance to sliding, known as
barriers (Das and Aki, 1977a). Alternatively, ruptures in the asperity model fol-
low regions of high initial stress close to failure (Kanamori and Stewart, 1978).
This prestress variability is set by the residual stress field remaining from past
events combined with tectonic loading.

Spontaneous rupture occurs when the flux of kinetic and strain energy from
the prestress field into the rupture front (i.e., the energy release rate) overcomes
the local fracture energy. The trade-off between energy supplied from the prestress
field and fracture energy results in an underdetermined problem, making it difficult
to establish the source of fault heterogeneities (Guatteri and Spudich, 2000; Peyrat

et al., 2001). In fact, radiation from dynamic two dimensional (2D) cracks is
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identical for barrier and asperity models (Madariaga, 1983). Recent advances
in parallel computing enable us to investigate complex three dimensional (3D)
dynamic rupture propagation.

Large strike-slip earthquakes occur predominantly in mode II (slip parallel
to the direction of rupture propagation), for which the limiting velocity is usu-
ally the Rayleigh surface wave speed, cg. However, for a homogeneous medium
with high prestress or low fracture energy, speeds between the shear wave speed,
¢s, and longitudinal wave speed, c,, are allowed (Burridge, 1973; Andrews, 1976;
Broberg, 1994, 1995). Intersonic propagation, while theoretically predicted (Bur-
ridge, 1973), was only recently observed (Rosakis et al., 1999). Stable velocities
are centered around v/2c,, a peculiar speed at which crack growth is similar to sub-
sonic propagation (e.g., the Mach cones extending from the rupture front vanish)
(Burridge et al., 1979; Freund, 1979; Broberg, 1994, 1995).

Seismic data indicate that most earthquakes occur slightly below cg. With
the advent of strong motion seismograph networks in the near-field, inversions
and modeling of several major earthquakes suggest that supershear bursts occur
on sections of the fault close to failure. These include the 1979 Imperial Valley
(Archuleta, 1984), 1992 Landers (Olsen et al., 1997), and 1999 Izmit, Turkey
(Bouchon et al., 2000, 2001) earthquakes.

We model bilaterally expanding ruptures (shear cracks) by solving the elasto-
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dynamic wave equation in a 3D medium surrounding a rectangular planar fault.
Slip, the relative shear displacement between the two sides of the fault, is con-
strained to be horizontal. We nucleate ruptures by initially overstressing a vertical
section of the fault. We place periodic boundary conditions in the vertical direction
to simulate an infinite width mode II crack, and absorbing boundary conditions
on all other sides. Perturbations to the rupture front introduce a component of
mode III failure (i.e., slip parallel to the rupture front).

A uniform compressive stress acts on the fault, which is governed by a fracture
criterion relating shear traction to slip. In particular, we use a slip-weakening
cohesive zone model that constrains material failure processes to the fault plane
(Ida, 1972; Andrews, 1976). The fault starts at a prestress value, ogy. Slip initiates
when the shear stress reaches a critical static friction stress level, o, normalized to
unity. The stress then decreases linearly with increasing slip over a characteristic
distance (i.e., the slip-weakening distance, d.), after which the surfaces are left at
a constant sliding friction value, o, that we scale to zero. For unit area of new
fracture, the work done against cohesion is the fracture energy, G = o,d./2.

The supershear transition for 2D mode II cracks on homogeneous faults occurs
only if the prestress is sufficiently high. A stress peak traveling at ¢, ahead of a
sub-Rayleigh rupture exceeds the static stress, allowing the crack to jump to

intersonic velocities (Burridge, 1973; Andrews, 1976). Cracks become supershear
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after a distance (proportional to d.) that diverges as the prestress approaches
a numerically obtained critical value: oo = 0.38 (Andrews, 1976). For lower
prestress values, the crack’s terminal velocity is cg. This mechanism does not
apply to 3D cracks. Instead, the dimensionless ratio k of the energy release rate
(~ 02\/ 11, where p is the shear modulus) to fracture energy controls the supershear
transition (Madariaga and Olsen, 2000; Madariaga et al., 2000). The length scale
A determines stress concentration at the rupture front (i.e., the stress intensity
factor) and is specific to the geometry of the problem (e.g., fault width for a
rectangular planar fault).

We investigate cracks with prestress 0.3 < o0y < 0.4, which remain sub-
Rayleigh in the absence of any perturbations over the length of our fault. We
introduce a circular obstacle to the fault, either a barrier, which requires more
energy to break, or an anti-asperity: a region of lower prestress that decreases
the energy release rate. Either obstacle locally reduces k, suggesting that the en-
ergy balance would favor slower propagation or even arrest of the rupture. Model
parameters, including obstacle size, are consistent with observations.

We measure distances in terms of the uniform grid spacing, and scale y =
1 and ¢; = 1. We set the obstacle diameter to D = 40 and slip-weakening
distance to d. = 10. When rescaling to physically realistic values, note that

displacement requires an additional factor of (o, — of)/u. Thus, our barriers are

117



CHAPTER 6. THE SUPERSHEAR TRANSITION

1.2km(u/30GPa)(10MPa/(os — 0))(d./10cm) in diameter.

The anti-asperity model only slightly delays the rupture front, which moves
to regain its unperturbed shape after breaking the obstacle (Fig. 1 and movie
S1). The barrier model is much more complex (Fig. 1 and movie S2). The stress
concentration at the rupture front is initially insufficient to break the barrier.
The rupture temporarily halts as the stress grows to the higher static level inside.
Meanwhile, the faster-moving rupture front outside of the barrier encircles it,
breaking it from all sides. This is similar to the rupture of a single asperity of
high prestress, initiated from a point on the edge of the asperity (Das and Kostrov,
1983). The rupture fronts within the barrier converge to nearly a point, resulting
in a concentrated region of high slip velocity at the far side of the barrier. When
the barrier breaks, it emits an elliptical slip velocity pulse moving at cg in the
direction parallel to slip and at ¢, in the perpendicular direction, as well as a
weaker pulse moving at ¢, in the forward direction. Furthermore, the energy
concentration induces the transition to a rupture velocity slightly less than v/2¢,
(Fig. 2).

To explore this phenomenon, we varied both initial stress and barrier strength.
We found that maximum slip velocities within the barrier scale linearly with static
stress, rather than prestress as found in homogeneous models and assumed for all

ground motion predictions (Brune, 1970; Aki and Richards, 2002). We refer to
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this effect, resulting in slip velocities over an order of magnitude larger than at
the unperturbed front, as barrier focusing.

Barriers slightly stronger than the surrounding fault (1 < o5 < 1.3) only mildly
perturb the rupture front, which returns toward the stable planar configuration at
a sub-Rayleigh speed (Fig. 3). Above a critical strength (o &~ 1.3), the restoring
motion becomes supershear with a duration that, like the slip velocity, increases
linearly with barrier strength until o, ~ 3.5.

At the opposite extreme with the strongest barriers (o, > 7), the rupture front
splits as it breaks the material above and below the obstacle, coalescing on the far
side into a region of high slip velocity. This is caused by rupture front focusing,
in which two colliding fronts cause rapid stress drop (Fukuyama and Madariaga,
2000). This split-front focusing effect causes a burst of supershear propagation,
with a duration independent of the barrier strength.

When the barrier breaks, it releases a slip velocity pulse travelling at c,. If the
rupture has not moved too far past the barrier, this pulse carries sufficient energy
to enhance the duration of supershear propagation, already activated by split-
front focusing. Precise timing, occuring for 3.5 < o5 < 7, results in a resonance
during which the supershear front moves ahead of the unperturbed front.

Further numerical experiments showed that weak anti-asperities (o < 0) in-

duce a supershear transition due to split-front focusing. Low prestress values are
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necessary because the energy release rate into the rupture front is a non-local func-
tion of the prestress history (Freund, 1989). The size of the anti-asperity relative to
the crack length precludes large variations of the energy release rate, making anti-
asperities dynamically much less of an obstacle than barriers. An anti-asperity
taking the same time to break as a barrier with o, = 5 has 0p = —1.2, and
produces only 0.65 times the spatial duration of supershear propagation. Further-
more, formation of a high slip velocity region within the anti-asperity does not
occur as it does within the barrier (for which maximum slip velocity scales with
the barrier strength). The anti-asperity with oy = —1.2 produces only 13% of the
maximum slip velocity observed within the barrier. This limits the amplitude of
seismic waves released from the anti-asperity, preventing the rupture front from
overtaking its unperturbed position.

Our results show that existing parameters governing the supershear transition
on a homogeneous fault cannot characterize the complex dynamics of heteroge-
neous faults. Despite such idealizations as a perfectly circular barrier with uniform
properties, our simulations reveal unexpected phenomena that may be common
at many scales. Because ground motion is proportional to slip velocity (Aki and
Richards, 2002), barrier focusing releases intense seismic waves. Near-field seis-
mograms from the 1984 Morgan Hill earthquake show, in addition to the usual

phases from the hypocenter, a second large pulse in ground motion arriving about
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8 s later, traced to a region 14 km along strike from the hypocenter (Hatzell
and Heaton, 1986; Beroza and Spudich, 1988). Kinematic inversions suggest that
the region failed after being encircled by the rupture front (Beroza and Spudich,
1988), making this a likely candidate for our mechanism. The extreme amplitudes
of these pulses make them potentially destructive, suggesting that identifying cur-
rently unbroken barriers (from inversions of past events) must become a part of
seismic hazard analysis.

On a much smaller scale, our results apply to dynamic shear fracture of brittle
engineering materials. Laboratory experiments provide a convenient framework
for analysis of our phenomena. Furthermore, barrier focusing, and the corre-
sponding scaling of slip velocity with static stress rather than prestress, is unique
to three dimensional cracks. This scaling, which implies a local independence
from external loading, runs counter to fundamental fracture mechanics assump-
tions and likely extends to dynamic tensile failure of brittle materials common in

engineering applications.
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Figure 6.4: Consecutive snapshots showing slip velocity on the fault plane for the
anti-asperity (left) and barrier (right) models, both having x locally decreased
by a factor of 5. Locked regions of the fault are uncolored, and the black circle

marks the obstacle’s perimeter. Note that the color scale changes at each time
step.
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Figure 6.5: Space-time plot of slip velocity along the symmetry axis through the
center of the barrier, which lies at + = 15km. The four black lines show wave
speeds. Locked regions of the fault are uncolored.
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This Chapter, essentially in this form except for minor changes, appeared in:

Dunham, E. M., and R. J. Archuleta (2004), Evidence for a supershear
transient during the 2002 Denali Fault earthquake, Bull. Seismol. Soc.

Am., 94, $256-S268.

and

Dunham, E. M., and R. J. Archuleta (2005), Near-source ground motion
from steady state dynamic rupture pulses, Geophys. Res. Lett., 32, L03302,

doi: 10.1029/2004GL021793.

which is reproduced by permission of American Geophysical Union.

7.1 Abstract

Elastodynamic considerations suggest that the acceleration of ruptures to su-
pershear velocities is accompanied by the release of Rayleigh waves along the fault
from the stress breakdown zone. These waves generate a secondary slip pulse trail-
ing the rupture front, but manifest almost entirely in ground motion perpendicular
to the fault in the near-source region. We construct a spontaneously propagating
rupture model exhibiting these features, and use it to explain ground motions

recorded during the 2002 Denali Fault earthquake at pump station 10, located
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3 km from the fault. We show that the initial pulses on both the fault normal
and fault parallel components are due to the supershear stress release on the fault
while the later arriving fault normal pulses result from the trailing subshear slip

pulse on the fault.

7.2 Introduction

On November 3, 2002, a M, 7.9 earthquake shook central Alaska. Rupture
initiated at 22:12:41.0 UTC on the Susitna Glacier thrust fault before subsequently
transferring onto the Denali fault. After propagating 240 km east on this fault,
the rupture branched onto the Totschunda fault. Only one instrument, pump
station 10 (PS10), maintained by the Alyeska Pipeline Service Company, recorded
near-source ground motions. PS10 is located approximately 70 km east of the
epicenter along the Denali fault near the Trans Alaska Pipeline. Fig. 7.1 provides
a schematic map of the fault geometry. Finite fault inversions and geological
considerations support a right-lateral strike-slip mechanism on a nearly vertical
fault near PS10 (Eberhart-Phillips et al., 2003). Situated only 3 km north of the
fault, the station recorded a particularly interesting sequence of strong ground
motion pulses as the rupture extended past it. Fig. 7.2 shows the instrument-

corrected records, which have been rotated into fault normal (FN) and parallel

127



CHAPTER 7. SEISMIC OBSERVATIONS OF SUPERSHEAR RUPTURES

148W 146W 144W 142W

Figure 7.1: Fault geometry around PS10 (after Ellsworth et al. (2004)).

(FP) components (Ellsworth et al., 2004).

A single one-sided pulse (labeled A in Fig. 7.2) characterizes the FP compo-
nent. The pulse is narrow (approximately 3 s rise time) and roughly symmetric.
The FN component contains two similarly narrow pulses, the first (B) concurrent
with A. The second (C) arrives 2.6 s later and is only slightly smaller in amplitude.
Furthermore, about 6.5 s after the initial pulse, a broad motion (D) begins on the
FN component, comprising of motion toward and then away from the fault.

We focus on several features. First, the FP amplitude is approximately 1.5
times larger than FN. This is not typical of large strike-slip earthquakes, as dis-
cussed by Archuleta and Hartzell (1981); Hall et al. (1995). As several authors
have suggested (Ellsworth et al., 2004; Aagaard and Heaton, 2003) and we cor-
roborate, this is accounted for by supershear rupture speeds. However, kinematic
analyses which allow slip only once at the rupture front have failed to explain

pulses C and D. We show that these pulses arise naturally in dynamic models
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Figure 7.2: Instrument-corrected ground motions for PS10. The main velocity
pulses are labeled to clarify discussion in the text. The record begins at the P
wave arrival from the thrust event at 22:12:56.36 UTC (Ellsworth et al., 2004).
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that exhibit a transition from sub-Rayleigh to supershear rupture speeds; as such,
they are a uniquely transient feature not present in steady-state solutions. A con-
sideration of the dynamics of such a transition suggests that the breakdown in
stress occurring behind the rupture front releases interface waves along the weak-
ened fault that trail the faster-moving supershear front. These are essentially
Rayleigh waves dispersed by friction, although, depending on the stability of the
frictional sliding and rupture pulse width, these may be accompanied by a stress
drop. These interface waves cause additional slip but carry almost all of their
energy in FN motion (pulse C), hence their absence from the FP component.

As is well known, mode II cracks are allowed to propagate within two steady-
state velocity regimes: either below the Rayleigh wave speed (sub-Rayleigh) or
between the S and P wave speeds (supershear). Propagation between the Rayleigh
and S wave speeds is associated with energy generation rather than dissipation
within the breakdown zone, indicating that these velocities should be rejected as
unphysical. Theoretical studies suggested the possibility of supershear ruptures,
beginning over three decades ago with a study by Burridge (1973) of the self-
similarly expanding mode II crack with a critical stress fracture criterion. His
analytical solution showed that as a sub-Rayleigh crack extends, a peak in shear
stress traveling at the S wave speed develops ahead of the crack tip. For prestress

levels sufficiently close to the critical stress, this peak exceeds the critical level and
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could initiate a supershear rupture. This was later confirmed by the numerical
experiments of Andrews (1976), which extended the fracture criterion to a more
realistic condition requiring finite energy dissipation for crack growth.

Seismological observations suggest that supershear propagation has occurred,
at least locally, in a number of crustal strike-slip events. Archuleta (1984) con-
cluded that rupture velocities exceeding the S-wave speed were necessary to ex-
plain records from the 1979 Imperial Valley event. Strong motion recordings of the
1999 Izmit and Diizce events suggest supershear growth, at least in one direction
(Bouchon et al., 2000, 2001). Waveform modeling of regional records from the
2001 Kunlunshan earthquake also indicates supershear velocities (Bouchon and
Vallée, 2003).

Recent laboratory studies by Rosakis and coworkers (Rosakis et al., 1999; Xia
et al., 2004) provided experimental verification of supershear crack growth. Sev-
eral numerical (Geubelle and Kubair, 2001; Fukuyama and Olsen, 2002; Dunham
et al., 2003) and analytical (Huang and Gao, 2001, 2002; Samudrala et al., 2002;
Kubair et al., 2002; Guo et al., 2003b) studies have focused on properties of and

mechanisms for triggering supershear propagation.
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7.3 Spontaneous Modeling

We construct a simple rupture model exhibiting a transition from sub-Rayleigh
to supershear propagation, and show that the ground motion explains several
features recorded at PS10. We use a staggered-grid finite difference code with
second order explicit time stepping (Favreau et al., 2002). The method converges
spatially at eighth order away from the fault and has perfectly matched layer
absorbing boundaries on all sides, except the free surface, to prevent artificial
reflections from contaminating the solution. Slip is constrained to be horizontal,
rendering the dynamics insensitive to the absolute stress level. Reverse slip is
prohibited.

Since the station is located only 3 km from the Denali fault and many tens of
kilometers from the Susitna Glacier and Totschunda faults, we model the rupture
process on only one straight fault segment. The dynamic inverse problem pushes
the limits of current computational capabilities (Peyrat and Olsen, 2004), so we
use trial and error forward modeling. For simplicity, and to demonstrate that a
supershear transition is the only feature required to match the ground motion, we
assume that all material and frictional properties are uniform with depth.

We use a simple friction law that exhibits both slip-weakening and healing

behaviors. The two parameter law requires that a slip-weakening distance D
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and healing time T be specified at each point on the fault. We define the non-
dimensionalized stress as § = (0, — 0f)/(0, — 0f), where o, and o are the yield
stress and sliding friction. The stress evolves following

fov 1—86

5+ (7.3.1)

b =
once the fault begins to slip. Slip velocity is defined as dv = v,(y =07) — v, (y =
0) and reverse slip is forbidden. This friction law was introduced by Nielsen and
Carlson (2000), and provides a convenient way to include healing. For T — oo,
it reduces to an exponential slip-weakening law. Note that the slip-weakening
distance D for this model is twice that used in the standard linear slip-weakening
model (Andrews, 1976) having the same fracture energy.

We artificially nucleate the rupture by slightly overstressing a region 61 km
from the station, chosen to match the distance to the intersection of the Susitna
Glacier and Denali faults. As several models have suggested (Harris et al., 1991;
Harris and Day, 1993; Kase and Kuge, 1998; Magistrale and Day, 1999; Anderson
et al., 2003), ruptures jump between faults almost exclusively when the initial
rupture reaches the edge of the original fault. Dynamic modeling of the transfer
from the Susitna Glacier to Denali fault by Aagaard et al. (2004) suggests that

this occurs about 10 s after initiation. The arrival time of pulses A and B then

places a lower bound on the average rupture velocity from the intersection of
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the faults to PS10 of 0.75¢s, neglecting any time spent during nucleation on the
Denali fault. Assuming that pulses A and B are associated with a supershear
rupture (propagating at about 1.5¢,) and pulse C with a Rayleigh wave, then
the separation in time between these pulses requires the supershear transition to
have occurred about 30 km before PS10. Combined with the assumption that
slip transfers from the Susitna Glacier fault to the Denali fault about 10 s after
nucleation (Aagaard et al., 2004), we estimate an initial sub-Rayleigh rupture
speed of about 0.5-0.6c;. In our models, the rupture begins bilaterally on the
Denali fault, but we introduce a barrier 10 km to the west, consistent with surface
slip measurements (Eberhart-Phillips et al., 2003), that arrests propagation in that
direction. The initial stress level is selected such that the rupture is sub-Rayleigh,
and no healing is used initially.

We distinguish between two types of supershear transitions observed in our
simulations. In the first, the S wave stress peak that triggers the transition is
released during nucleation (as in Andrews (1976)). Even for a properly resolved
nucleation process with the slip-weakening laws used, an overestimate of the criti-
cal crack length (due to using an inappropriately large value of the slip-weakening
distance) will result in a physically premature transition. If ruptures nucleate from
much smaller patches and the slip-weakening distance that governs fully dynamic

propagation is much larger than that governing nucleation (as experimental and
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numerical work indicates), then numerical results exhibiting this type of transi-
tion are incorrect. Instead, a preferable type of transition would be one in which
nucleation generates a negligible shear diffraction peak and some other process,
such as growth into a region of increased stress drop (Fukuyama and Olsen, 2002)
or focusing by rupture front curvature (Dunham et al., 2003), builds the peak to
a critical level. To ensure this, we trigger the supershear transition by increasing
the initial stress level in an asperity beginning about 30 km from the hypocenter
(see Fig. 6), and make sure that diffractions from the nucleation process have
negligible influence on rupture growth.

The short rise times at PS10 are inconsistent with a traditional crack model,
indicating that the actively slipping region is quite narrow, as appears to be typ-
ical in the earth (Aki, 1968; Archuleta and Day, 1980; Heaton, 1990). Several
mechanisms are known to generate rupture pulses, which are recognized as an al-
ternative and equally valid solution to the elastodynamic equation (Freund, 1979;
Broberg, 1999a; Nielsen and Madariaga, 2004). Strong slip rate weakening is one
possibility (Cochard and Madariaga, 1994; Madariaga and Cochard, 1994; Perrin
et al., 1995; Zheng and Rice, 1998). A friction law containing restrengthening on
a short time scale can also generate rupture pulses (Nielsen and Carlson, 2000).
Rupture pulses also result from interaction with geometrical heterogeneities, such

as strength heterogeneities or fault borders that transmit arrest phases to initi-
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ate healing (Archuleta and Day, 1980; Day, 1982a; Johnson, 1990; Beroza and
Mikumo, 1996).

We present three models. The first (I) allows slip to 10 km depth and lacks
healing. With these constraints, we were unable to match the short rise time on
the FP component. Decreasing the slip-weakening distance does not alter the
FP rise time, and actually makes FN pulse B too narrow. Instead, we tried two
approaches to decrease the rise time. Our second model (II) allows slip to 10
km depth but adds a healing time of order one second (only within the asperity
region). In these first two models, a healing front emanates from the western side
of the Denali fault when the rupture arrests there, creating a rupture pulse about
16 km wide. The pulse width remains constant until the rupture encounters the
region of high prestress, where the supershear transition begins. The third model
(IIT) lacks healing, but restricts slip to 5 km depth. In this case, the rupture
pulse width is about 8 km, and is controlled by the fault width rather than by the
stopping phase from the western end of the fault. The model parameters and fault
geometry are summarized in Table 7.1 and Fig. 7.3. Snapshots of the rupture
history of our models are shown in Fig. 7.4 and Movies 1-3. Fig. 7.5 compares
our synthetics to the corrected data. We allow a linear shift in time since the
nucleation process is artificial. We scale the amplitude of our synthetics to match

pulse A identically; this sets the magnitude of the stress drop o, — o (Table 7.1).
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Figure 7.3: Model fault geometry and initial stress conditions (the solid line corre-
sponds to model I; see table 1 for the parameters of the other models) used in the
spontaneous rupture calculations. PS10 is marked with a triangle. Hypothetical
stations spaced every 2.5 km between 20 km and 80 km, where we also compute
ground motions, are denoted by small circles. L, denotes the distance to the
asperity, approximately 30 km. The initial stress profile marked by the dashed
line shows the minimum width of the asperity required by the record of PS10, as
discussed at the end of the text.
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Figure 7.4: Snapshots of the fault surface with the color scale measuring slip
velocity for (a.) model I (no healing, slip to 10 km depth, shown every 1.83 s),
(b.) model II (including healing, slip to 10 km depth, shown every 1.83 s), and (c.)
model IIT (no healing, slip to 5 km depth, shown every 1.65 s). Time advances
from bottom to top. The solid white lines show wave speeds (Rayleigh, S, and P
from bottom to top). The dashed white line marks the position of the station.
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Figure 7.5: Comparison between recorded and synthetic ground motions at PS10
for (a.) model I (no healing, slip to 10 km depth), (b.) model IT (including healing,
slip to 10 km depth), and (c.) model III (no healing, slip to 5 km depth).
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parameter model I  model II model II1
I 32.4GPa
Cs 3.4km/s
Cp 5.89km/s
grid spacing Az 125m
time step At 4.09ms
distance to station 61km
distance to asperity L, 24.375km 27.375km  28.75km
fault width 10km 10km 5km
6 (outside asperity) 0.45 0.45 0.7
6 (within asperity) 0.7 0.77 0.87
Oy —Of 28.4MPa  40.0MPa  31.5MPa
D 1.43m 2.01m 1.58m
T 00 1.47s 00

Table 7.1: Parameters for our three models.

Let us begin with model I. When the rupture enters the region of increased
prestress, the transient diffractions appear and accelerate the rupture from 0.65¢;
to 1.6¢,. It continues at the supershear velocity as it passes the station. The
supershear rupture takes the form of a pulse of expanding width, with the healing
front trailing at the S wave speed. The fault is locked after this healing front
until the Rayleigh arrival, in accordance with the elastodynamic considerations
discussed previously. This corresponds to the forbidden velocity region that occurs
when the slip direction attempts to reverse itself. Our theoretical model also
predicts a Rayleigh wave behind the supershear front, which manifests itself here
as a secondary slip pulse. This model gives too large of a rise time on FP to be

consistent with the data. In contrast, we find the width of FN pulses B and C to
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be far less sensitive to the slip duration. However, the dip in amplitude between
these pulses is controlled by the slip duration, and the strong dip seen in the data
suggests that the fault has negligible slip between the supershear rupture front
and the secondary Rayleigh rupture pulse.

There are several features that are not predicted by the two dimensional theo-
retical model, which neglects both the finite width of the fault and the free surface.
The propensity of ruptures near the free surface to become supershear has been
noted by several researchers (Aochi, personal communication, 2002) (Gonzalez,
2003), and is related to phase conversion at the free surface. This phenomenon
can be seen in Fig. 7.4 and Movies 1-3, in which the supershear rupture front
emerges at the free surface and spreads laterally down the rupture front. Note
also the change in the slip velocity pattern across a line extending back from where
the rupture front meets the free surface, as well as where it intersects the bottom
edge of the fault (particularly evident in the last several snapshots). The angle
that this line makes with the horizontal is the S wave Mach angle, indicating that
behind this wavefront, S waves converted by the free surface cause increased slip
velocity.

In model II, we add frictional healing to decrease the rupture pulse width.
In this case, the healing front follows at approximately the same speed as the

supershear rupture front. To match the short rise time of pulse A requires a
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healing time 7T of order one second (Table 7.1). This generates a complicated stress
history on the fault because there is an additional stress drop associated with the
secondary slip pulse. Healing raises the stress levels such that a sufficiently large
perturbation (provided by the Rayleigh wave) destabilizes the frictional sliding to
generate a secondary rupture. This does not occur in the previous model, where
the secondary slip pulse is closer to a true Rayleigh wave that propagates without
altering the fault tractions. However, the healing is too strong for the secondary
pulse to persist, and it dies out after propagating about 30 km.

This healing time does not necessarily imply a rapid restrengthening, but
may be interpreted as evidence of a characteristic time arising from some un-
modeled source process that locks the fault. Such a value could be related to a
smaller length scale characterizing strength or stress heterogeneities, which has
been shown to control the rupture pulse width (Beroza and Mikumo, 1996). We
test this hypothesis in model III, which introduces the smaller length scale sim-
ply by limiting slip to 5 km depth. This achieves a comparably short rise time
without the use of healing. In this case, the rupture pulse width is controlled by
the fault depth, as in Day (1982a). The healing front moves at the same speed as
the supershear rupture front.

The amplitude and duration of pulses A, B, and C are well matched for mod-

els IT and III. The simplicity of our models allows us to explain the relationship
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between fault processes and the ground motion pulses. We show the evolution
of FP and FN ground motions for model IIT as the rupture transitions to super-
shear velocities in Fig. 7.6, and for all models in Movies 4-9. We also present
seismograms for this model at hypothetical stations before and after PS10 in Fig.
7.7, which highlight the fact that the PS10 record exhibits characteristics of both
supershear and sub-Rayleigh ruptures.

Before encountering the high stress region, the radiation pattern is character-
istic of steady-state sub-Rayleigh ruptures in that FN dominates FP in amplitude.
The FP radiation pattern is characterized by four lobes (nodal on the fault plane)
that give rise to two one-sided pulses recorded at a fixed receiver. The pattern is
effectively that of a dislocation source. On the right-moving block, the FN motion
preceding the rupture is away from the fault and trailing the rupture is in toward
the fault. This results in the typical two-sided FN pulse. These characteristic
motions are discussed by Archuleta and Hartzell (1981); Hall et al. (1995) and
were observed, for example, in the 1966 Parkfield earthquake (Aki, 1968). As
the rupture pulse length increases (approaching a crack model), the two trailing
lobes on FP coalesce into a large tail. In addition, the downward FN motion
arrives later and diminishes in amplitude. The downward motion is thus directly
associated with the passage of the healing front.

Evidence of the supershear transition on the FP component comes as the rup-
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Figure 7.6: Snapshots of of the free surface showing (a.) fault parallel and (b.)
fault normal ground motion every 1.28 s from left to right for model III, on an
area extending 12.5 km to either side of the fault. Other models produce similar
ground motion. The color scale, which changes for each snapshot, measures FP
or FN velocity. Although the FP motion is antisymmetric across the fault, it is

plotted as symmetric for visualization purposes. The location of PS10 is marked
by the white triangle.
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Figure 7.7: Particle velocities for model III recorded at a number of hypothetical
stations every 2.5 km from 20 km to 80 km along a line parallel to and 3 km off
the Denali fault, as shown in Fig. 7.3. Adjacent traces are offset by 1 m/s with
the record corresponding to the station at 60 km centered about zero.
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ture begins to outrun the S waves, which ultimately lie behind a planar wavefront
emanating from the rupture front in a Mach cone. Arrival of this wavefront gives
rise to the large one-sided pulse (A). The amplitude of this feature increases as the
supershear rupture develops, until its amplitude dominates the FP motions (see
Fig. 7.7). In addition to the planar shear wavefront, the fully developed supers-
hear rupture possesses a two-lobed pattern preceding the main shear wavefronts
that must arise from P waves. The lack of a preliminary bump preceding pulse
A indicates that the rupture was not in steady-state conditions as it passed the
station. The small rise and plateau before pulse A arrives much too early to be
an indication of this feature. The trailing Rayleigh wave has negligible signature
in the FP ground motion.

The pattern of FN ground motion associated with the supershear transition
is more complex. A pair of one-sided pulses, with motion away from the fault on
the right-moving block, begin to emanate from the supershear rupture front along
the planar S wavefronts. These grow in amplitude as steady-state supershear
conditions are reached and correspond to pulse B. Note that the motion actually
peaks slightly before FP pulse A, consistent with the observations. This is because
the motion actually preceeds the Mach cone. This motion decreases to a minimum
between pulses B and C. Pulse C corresponds to the Rayleigh wave, and is similar

in characteristic to a typical subshear rupture. The dip between these peaks likely
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indicates that the fault has no significant slip between the supershear rupture front
and the Rayleigh wave. The amplitude of the trailing Rayleigh wave is particularly
sensitive to the frictional evolution of the fault. If accompanied by too large of a
stress drop (as could occur if the fault rapidly restrengthens), the Rayleigh wave
develops into a strong secondary rupture, accompanied by an amplitude increase
in these later motions. Also, if the triggering prestress is too large, the majority
of the energy goes into supershear motions at the expense of the Rayleigh pulse.
This places a strong constraint on the triggering prestress in our models, and we
find it to be just barely above the minimum required to initiate the supershear
transition.

We did not find it possible to exactly fit the negative FN pulse D. A similar
negative motion appears after the passage of a dislocation, and is associated with
the healing front in a rupture pulse model. An examination of the rupture histories
shows that our models exhibit an extremely narrow Rayleigh rupture pulse that
causes the negative FN pulse to arrive immediately after pulse C. We speculate
that pulse D corresponds to the passage of a healing front associated with a
Rayleigh pulse roughly twice as wide as observed in our models. In our models,
the Rayleigh wave is likely to be narrow because finite difference methods have
difficultly resolving surface waves. Furthermore, broadening of the Rayleigh wave

could also occur due to frictional dispersion, as is characteristic of any friction
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law possessing intrinsic time or length scales. Further work is needed to test this
hypothesis, but if true, then this record could provide valuable constraints on the

frictional properties of slipping faults.

7.4 Discussion

We have analyzed strong ground motion recordings from the 2002 Denali Fault
earthquake and conclude that they provide evidence of supershear rupture prop-
agation past PS10. A study of the waves generated within the stress breakdown
zone behind the rupture front sheds light on how the forces that drive supershear
propagation are transmitted to the unbroken region ahead of the rupture front. As
noted by Ellsworth et al. (2004), a supershear rupture leads to large amplitudes
on both the FP and FN components of motion. Rupture growth into a region
of increased stress drop triggers a set of transient diffractions that accelerate the
rupture from sub-Rayleigh to supershear velocities. This process is accompanied
by the release of a Rayleigh wave on the fault surface. This appears as a sec-
ondary slip pulse that manifests itself primarily in FN ground motion, explaining
late arriving FN pulses recorded at PS10 that are not explained in supershear
kinematic models. The separation in time of these FN pulses indicates that the

supershear transition occurred about 30 km before PS10.
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While our models show persistent supershear rupture well after PS10, this is
not required by the records of PS10 and occurs only because the high prestress
level used to trigger supershear growth is maintained thereafter. To place a lower
bound on the supershear propagation distance required to match the PS10 record,
we limited the width of the high stress region (Fig. 7.3). We found that a minimum
width of about 35 km is required to match the records. In this case, the supershear
rupture is transient. It persists beyond the high stress region and dies out about
30 km past PS10. When the secondary Rayleigh rupture pulse encounters this
region, it resumes its role as the only rupture front.

The narrow width of pulse A and the strong dip in amplitude between pulses B
and C are incompatible with a traditional crack model, indicating that the super-
shear rupture took the form of a narrow slip pulse. The same cannot be concluded
for the secondary Rayleigh rupture pulse, which we speculate was about twice as
broad as the pulse observed in our simulations. Our dynamic models demonstrate
that a narrow supershear pulse could arise either from frictional healing over a
time scale of 1.5 s or from the presence of a 5 km length scale characterizing the
stress distribution. While the rupture histories of these models differ (Fig. 7.4 and
Movies 1-3), the resulting ground motion at PS10 is nearly identical (Fig. 7.5). In
light of this, we emphasize that our models should not be interpreted as providing

an exact slip history of the fault, which cannot be determined uniquely from one
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record. Instead, our models contain only the minimum number of parameters
required to explain the main features of the record.

The multiple slip pulses that we observe in our dynamic models highlight the
difficulty kinematic models may have when fitting or inverting data that result
from supershear ruptures, particularly if supershear growth occurs in transient
bursts. Dynamical inversion efforts like those by Peyrat and Olsen (2004), while

presently extremely expensive computationally, are a possible future solution.

7.5 Relationship to Steady State Solutions

Pump Station 10 from the Denali Fault earthquake offers the best near-source
record of a supershear rupture; however, the station captured waveforms resulting
from a particularly non-steady rupture process and exhibits motions characteristic
of both supershear and subshear ruptures (Fig. 7.8). In the dynamic model
by Dunham and Archuleta (2004), the rupture accelerates from 0.6¢; to 1.5¢;
approximately 25km before the station. This process generates a secondary slip
pulse moving at the Rayleigh speed. Ground motion pulses A and B (which have
a large FP to FN ratio) are generated by the supershear rupture, while pulses C
and D (almost entirely on the FN component) arise from the secondary slip pulse.

The rapid downward swing in pulse B marks the arrival of the shear field (compare
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with Fig. 5.2d). Direct extraction of the slip velocity function from the record is
not possible for two reasons. The transient emergence of the supershear rupture
just prior to the station causes nearly simultaneous arrival of the dilatational and
shear field. Furthermore, motions from the secondary slip pulse appear in the
tail of the supershear motions. The two-sided FN motions (C and D) are exactly
those expected from a subshear slip pulse (Fig. 5.1b), with C being associated
with the leading edge of the slip zone and D with the trailing edge. This constrains
the width of the slip pulse to approximately 15 km, much larger than appears in
the model by Dunham and Archuleta (2004), who chose parameters to match
the narrowness of pulses A and B (at the expense of truncating the width of the
secondary slip pulse). The record leaves an open question: What type of rupture
process or friction law results in a remarkably narrow supershear rupture pulse

but quite broad subshear slip pulse?
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Figure 7.8: Data and synthetic seismograms at Pump Station 10 (PS10) (a) and
a snapshot of the slip velocity on the fault plane (b) for the 2002 Denali Fault
earthquake from the dynamic model by Dunham and Archuleta (2004).
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The near-source ground motion of earthquakes is of particular interest in seis-
mology. On one hand, it is responsible for the loss of buildings and life, while on
the other hand, it offers the most complete set of information regarding the source
process. Our focus in this work has been how the character of this ground motion
changes with rupture speed, in particular when it exceeds the S-wave speed.

Material failure processes within fault zones release the strain energy stored
within the surrounding medium, leading to frictional dissipation and the gener-
ation of seismic waves. These waves transmit shearing stresses to the unbroken
region ahead of the rupture, allowing for further material failure. In this thesis, we
have examined in detail the properties of these elastic waves, including their inter-
action with the frictionally sliding portion of the fault and eventual diffraction off
of the rupture front. Much of the focus was devoted to the two-dimensional mode
IT rupture geometry, which is the dominant mode for crustal strike-slip earth-
quakes. In this case, waves with phase velocities up to the Rayleigh wave speed,
as well as those in the intersonic region between the S- and P-wave speeds, trans-
mit shearing stresses that extend the rupture. Those with phase velocities between
the Rayleigh and S-wave speeds transmit stresses of the opposite sign. This leads
to the existence of two rupture propagation velocity regimes: sub-Rayleigh and

intersonic, or as more commonly known in seismology, supershear.
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The limiting velocity of three-dimensional or mixed-mode ruptures is more
complicated, since the direction of slip breaks the symmetry of the rupture pro-
cess and the amplitude of excited P and S waves varies anisotropically within the
plane of the fault. To address this question, we studied the three-dimensional
problem of wave propagation in the vicinity of a frictionally sliding interface.
Steady sliding between two identical elastic half-spaces is stable with respect to
slip perturbations at any orientation with respect to the original sliding. Fric-
tion introduces a preferred direction of slip. Transverse motions encounter an
effectively viscous frictional resistance that increases with transverse slip velocity,
damping waves in the vicinity of the interface. Friction further influences wave
propagation by coupling the SH (antiplane) and P-SV (inplane) wave systems.
The source-free response is characterized by the existence of damped interface
waves, whose phase velocity depends on both the steady state conditions and
the direction of propagation with respect to the initial sliding direction. Two al-
lowed propagation velocity regimes exist in each direction, with the tendancy for
supershear ruptures greatly accentuated in the mode II direction.

The ground motion from supershear ruptures was our next focus. As a start-
ing model, we examined the two-dimensional problem of steady state ruptures
for speeds within both the sub-Rayleigh and supershear regimes. Synthetic seis-

mograms demonstrate that coherent high-frequency information about the source
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process rapidly attenuates with distance from the fault for sub-Rayleigh ruptures.
Such records provide almost no resolution of the spatial extent of the stress break-
down zone. At supershear speeds, S waves radiate away from the fault to form
a Mach front. These waves preserve the full source spectrum and carry an exact
history of the slip velocity on both the fault-parallel and fault-normal components
of motion, whose amplitudes are given by a function of rupture speed that van-
ishes at /2 times the S-wave speed. The waves generate particularly large peak
ground velocities and accelerations at unexpectedly far distances from the fault.
The extent of the breakdown zone, which is quite unimportant in determining the
ground motion for sub-Rayleigh ruptures, becomes a critical parameter. Numeri-
cal modeling of these ruptures requires the use of large values for the breakdown
zone size. If these values are much larger than those existing within the earth,
as the scaling of laboratory measurements indicate, this will lead to significant
underestimation of the peak ground motion.

We analyzed strong ground motion recordings from the 2002 Denali Fault
earthquake, concluding that they provide evidence of supershear rupture propa-
gation past a near-source seismograph station along the Trans Alaska Oil Pipeline,
pump station 10 (PS10). Rupture growth into a region of increased stress release
prior to PS10 triggers a set of transient diffractions that accelerate the rupture

from sub-Rayleigh to supershear velocities. This process is accompanied by the
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release of a Rayleigh wave on the fault surface. This interface wave appears as
a secondary slip pulse that manifests itself primarily in fault normal ground mo-
tion, explaining late-arriving fault normal pulses recorded at PS10 that are not
explained in supershear kinematic models. The separation in time of these fault
normal pulses indicates that the supershear transition occurred about 30 km be-
fore PS10. The minimum total distance of supershear propagation required to
match the records is approximately 65 km.

The narrow width of the recorded ground motion pulses are incompatible with
a traditional crack model, indicating that the supershear rupture took the form
of a narrow slip pulse. The same cannot be concluded for the secondary Rayleigh
rupture pulse, which we speculate was about twice as broad as the pulse observed
in our simulations. Our dynamic models demonstrate that a narrow supershear
pulse could arise either from frictional healing over a time scale of 1.5 s or from
the presence of a 5 km length scale characterizing the stress distribution. While
the rupture histories of these models differ, the resulting ground motion at PS10
is nearly identical. In light of this, we emphasize that our models should not be
interpreted as providing an exact slip history of the fault, which cannot be deter-
mined uniquely from one record. Instead, our models contain only the minimum
number of parameters required to explain the main features of the record. The

multiple slip pulses that we observe in our dynamic models highlight the diffi-
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culty kinematic models may have when fitting or inverting data that result from
supershear ruptures, particularly if supershear growth occurs in transient bursts.

The theoretical and observational work that we conducted argues for the in-
clusion of supershear ruptures in seismic hazard analysis. The generation of an
S-wave Mach front leads to extremely impulsive ground motion that persists far
from the fault. Evidence for the existence of supershear ruptures in nature is
quite solid, coming from both laboratory studies and seismic observations. The
unanswered question that must be addressed is how often these ruptures occur,

and on which faults will they appear.
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Appendices to Chapter 4

A.1 Roots of the Dispersion Relation

We can use the argument principle to demonstrate that depending on the value
of n, either two or three roots exist to the dispersion relation (4.5.1). This method
was used by Cagniard (1962) in his study of the existence of interface waves for
two solids in welded contact and by Achenbach (1973) for the Rayleigh function.
First, we recast the dispersion relation (4.5.1) in terms of wave slowness, setting

¢q=1/Q,d=1/c,, and s = 1/c,:

D(q) = n's7 (s> = ¢*)? R + Rcos® ¢ + s*(s* — ¢*) sin? ¢, (A.1.1)
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where R = 4¢?(d? — ¢*)*/?(s* — ¢%)}/? + (s> — 2¢%)?. The function is rendered single
valued by making a branch cut along the real axis in the complex g-plane between
+s. The sign of the radicals is given as follows, where (+,-) denotes a positive real
part and negative imaginary part: quadrant I (-,4+), IT (-,-), IIT (+,-), IV (+,4).
The number of zeros Z, including multiplicity, of D(g) within a closed contour T"

is given by

_ 1 [ D'q)
27 r (CI) ¢

(A.1.2)

since D(g) has no poles. We consider I' to be composed of two sections: [,
a counterclockwise circle at infinity, and I'y., a clockwise path surrounding and
infinitesimally close to the branch cut (see Fig. A.1). We consider the function
D(q) as a mapping of the complex g-plane to the complex D-plane, and let [ =
I, + I}, be the image of I'. Thus,

1L [dD

27Ti T

(A.1.3)

which is just the number of times that I encircles the origin.
Let us first consider I',. For n — 0, we drop the last two terms. For large
g, R = 2¢*(d? — s?) and thus D = in~'s7!(d? — s?*)¢3. T, encircles the origin

three times, giving three roots. For n — oo, we drop the first term and D =
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[2(d?— 5?) cos? ¢ — 5% sin? ¢]¢?, giving only two roots. Finally, for arbitrary nonzero
7, the first term dominates and the path contributes three roots.

The image of I'y, is somewhat complicated. We define the contour formally as
two line segments running parallel to the real axis, the first just above the axis
from ¢ = —s + i€ to ¢ = s + i¢, and the second just below the axis from g = s — ie
to ¢ = —s — ie. The segments are connected with semicircular contours centered
on the branch points ¢ = s with radius e. This is shown in Fig. A.1, along with
several labelled reference points. The contour is interpreted in the ¢ — 0 limit,
allowing us to expand for small e. Values of D(q) along the portion of the top line
segment in quadrant II are given to leading order in € as follows.

At A, ¢ = —s +ie and

RD = s*cos’¢
SD = s’Ves(—n's+4Vs? — d2cos® ¢). (A.1.4)

Along AB, ¢ = —p +ie with d < p < s, and

RD = (2p* —5?)? ~1\/s2 — p? + cos® @) + s°(s* — p®) sin® ¢
ID = 4p°\/s2 — p2\/p? — d2(—n"'s7' /52 — p? + cos® ). (A.1.5)

At B, ¢ = —d +ie and
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\

Figure A.1: Integration path in the complex slowness plane that encloses all
potential roots of the dispersion relation. Shown also are the branch points and
branch cuts.
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RD = (2d° — s*)*(—n7's7 "2 — d2 + cos® ¢) + s°(s* — d*) sin® ¢

ID = 4d®Vs? — d*Ved(—n"tsT V2 — d2 + cos® p). (A.1.6)

Along BC, g = —p + ie with p < d < s, and

RD = (—n7's™ /57 = p2 + cos? §) [4p* /5 — pPV/@ — 7 + (2 = 57| +
s%(s* — p*)sin® ¢

SD = dep(—n's7'y/s2 — p? + cos’ @) [2(52 —2p%) —

9 52_p2 d?_p?
2¢/s2 — p2/d? — p? +p (\/d2_p2+\/s2_p2 -

AP V82 — P @ — P+ (27 — 57

-1 —
epn s
/52 — p?

At C, ¢ = ie and

+ 2eps®sin® . (A.1.7)

RD = (1-nHs
SD = 0. (A.1.8)
The above results are extended to calculate the image path for the remaining

sections of 'y, by noting several symmetries of the various terms. We write the

dispersion relation as D(q) = D1(q) + D2(q) + D3(g), where the D; are the three
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terms as ordered in Eq. (A.1.1). Letting ¢ = gr +ig; where qg and ¢; are real, we
note that D(—qgr+1iq) is the complex conjugate of D(qgr+igr). Thus, the sections
of 'y, from ¢ in quadrants I and IIT are the complex conjugates of the sections from
g in quadrants IT and IV, respectively. Furthermore, RD;(qr —igr) = —RD:(qr +
igr) and SD1(qr — igr) = SD1(gr + iqr), while Dy(qr — iqr) = D2(qr +iqr) and
D3(gr —igr) = D3(qr+1iqr). Thus, when S¢ < 0, RD(g) > 0; hence, only sections
of T’y above the real axis can potentially have an image with negative real part.

We now show that for n > 1 the image path never encircles the origin, leaving
a total of three roots for the dispersion relation, while for n < 1, the image path
encircles once clockwise, leaving only two roots for the dispersion relation. Our
proof rests on the following logic. For the image path to encircle the origin at
least once, there must exist some ¢ on I'y, such that RD(¢q) < 0 when SD(q) = 0.
We prove that this is either never true and RD(g) > 0 when ID(q) = 0, or that
there is only one value of ¢ on I'y, such that RD(q) < 0 when SD(q) = 0, and as
g moves through this point ID(q) goes from negative to positive.

We consider the sign of RD(g) when SD(g) = 0. If D = 0 at A, RD >
0. Along AB, 3D = 0 when —n~'s7'y/s2 —p2 + cos2¢ = 0. At this point,
RD = s%(s% — p?) sin® ¢, which is always positive. A similar argument shows that
if 3D =0 at B, RD = s?(s? — d?) sin® ¢, which is always positive.

Along BC, we write
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RD = fR+s*(s*—p°)sin’¢

D 'R
> - T +4fg + 25 sin® ¢,

€p 84/ 8% — p?

where

R = 4p°\/s? —p?\/& —p? + (s — 2p°)°

f = —nls7'y/s2—p? +cos’

(A.1.9)

(A.1.10)

52—p2
g = 2(82—2p2—\/82—p2\/d2—p2) +p° (\/dg_p2 +

We will need that g > 0. This follows by noting that since

82_ 2 d2_ 2
2 p2+ 2 p2>2
d*—p 52 —p

then

g > 2\/82 _pQ(\/82 —p2— \/d2 —p2),

d2 _p2
82 _p2 '
(A.1.11)

(A.1.12)

which is clearly positive. Next, using D = 0 as a constraint, we can write

n'R? ssin[2g(s” — p?) — R

4gs+/s? — p? 29

RD =
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Since g > 0, the first term is positive. Likewise, the second term is positive if

the bracketed expression is positive. Some algebra and Eq. (A.1.11) shows that

2g(s? — p?) — R > s?h, where h = 3s? — 4p? — 4,/s2 — p2,/d? — p?. We need to

show h > 0. The extrema of h occur when

dh 52 _p2 d? _p2
o= (—2+\/d2_p2+\/82_p2) (A.1.14)

vanishes. A minimum occurs at p = 0, where h = s(3s — 4d) > 0 since d <

V/2s. Other extrema could exist if 2 = /52 — p2/+/d? — p2++/d2 — p?/+/5% — p%;
however, this requires the unphysical condition that d = s. It follows then that
h > 0, allowing us to conclude that RD > 0 if $D = 0 along BC.

At C, 3D =0 and RD = (1 —p~')s*. This is then the only location at which
SD = 0 with RD < 0, which only occurs when 7 < 1. For a point on Iy, just to

the left of C' (i.e., ¢ = —€ + i¢),

= —n"1(9s — 8d) + 25 + 2(3s — 4d) cos?® ¢. (A.1.15)

We show that this is negative for n > 1. As 7 decreases, the expression becomes
more negative; hence, it is sufficient to show that the expression is negative for
n = 1. For n = 1, the expression may be written as —(7s — 8d) + (6s — 8d) cos? ¢.

Since s > /2d, this is negative. Thus D < 0 at this point and the image path
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crosses the real axis to the left of the origin moving in a clockwise direction. We
conclude that for n < 1, the dispersion relation has two roots, and for n > 1 it

has three.

A.2 Long-time Response of the System to Tran-

sient Excitations

We investigate how the roots of the dispersion relation (4.5.1) determine the
long-time response of the system to transient excitations, particularly to elucidate
the signature of the standing wave mode. For simplicity, we consider the response
of a single spatial Fourier mode to a step function stress drop, similar to the

analysis of Geubelle and Rice (1995). The boundary conditions are

Opy = _SH(t)eik(w cos ¢+y sin ¢)
e (A.2.1)
TR

0, = 0,

where S has units of force/area. The Laplace transformed solution for particle

velocity is

167



APPENDIX A. APPENDICES TO CHAPTER 4

0k, 6, 2) = FAR @)e o 4 f2(Q, )], (A2.2)

= D) |
where f¢ and f7 are defined in Eq. (4.6.4) and the exp[ik(x cos ¢ +ysin @)] in this

and following expressions is assumed. The inverse Laplace transform is

00+i0
vi(t, k, ¢, 2) = QE / devi(Q, k, ¢, 2)e F¥, (A.2.3)

™ oo—+i0

We close the inversion contour with a semicircle at infinity in the lower half-space,
as shown in Fig. A.2, similar to the procedure of Eason (1966). Integral terms
arise from distorting the contour around the branch cuts, corresponding to the
head waves. We obtain residue contributions from the poles that occur when
D(Q, ¢) = 0. These correspond to the propagating interface waves (denoted €. )
and standing wave mode (denoted €2p) discussed previously. We focus on these
residues, which provide the asymptotic solution in the vicinity of the interface in
the long-time limit, as described by Chao et al. (1961) in the context of a free

surface. These are simple poles, so their contribution to the inversion integral is
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-Ui(Qa k’ d)a Z)D(Qa ¢)

_ ] —ikQ4
Ui(t7k7¢72) - I 8D(Q,(]5)/69 _Q:Q+e t+
[vi(Q2, k, ¢, 2)D(, ¢) ] —ikQ_t
D)0 | o e + (A.2.4)

—Ui(Qa k,$,2)D(Q, ¢) o ikt
0D(Q, D)/ | gq,

In order to have a distinguishable signature, the decay rate of the standing wave
mode must be small in some region of parameter space where the residue is large.
We find that the residue of v, for this mode is an order of magnitude larger than
that of v, or v,, again suggesting that the physical nature of this mode is related
to the competition in the transverse direction between radiation damping and
the effective viscosity. Fig. A.3 shows the amplitude of the residue for v, as a
function of ¢ and n. It is largest for mixed mode perturbations and increases as n
decreases to unity (counteracting this, however, is the increasing decay rate as 7
decreases). As an example, we consider the case when ¢ = 37/8 and n = 10. We
compare the residue contributions to the exact response computed numerically by

the boundary integral methodology; results are presented in Fig. A.4.
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Figure A.2: Inversion contour for the Laplace transform, which is distorted around
the branch cuts. The contour is interpreted in the limit that the paths parallel to
the R-axis, here drawn slightly offset from it, converge upon it.
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Figure A.3: Standing wave mode residue contribution to a single Fourier mode
of v, under a step function stress drop. The amplitude is nondimensionalized by

csS/ .
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Figure A.4: Response of a single Fourier mode to a step function stress drop for
¢ = 37/8 and n = 10. The numerical solution is compared to the sum of all
residue contributions, which is dominated in the long-time limit by the oscillatory
decay from the propagating interface wave modes, rather than the standing wave

mode.
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Appendix B

Appendices to Chapter 5

B.1 Derivation of the Steady State Solution

Consider two identical isotropic linear elastic half-spaces, having a shear mod-
ulus ¢ and P- and S-wave speeds ¢, and c,, joined along the interface y = 0.
Along this fault a steady state two-dimensional rupture pulse propagates in the
positive x direction at a constant velocity V. The fields are a function of z — V¢
and y only, and for convenience we shall take ¢t = 0 such that z — V¢t — z in the
following expressions, equivalent to transforming into a frame of reference moving
with the rupture. We shall take the origin of the coordinate system to coincide
with the rupture front. On the fault, we specify the length of the slip zone L and

the shear traction within the slip zone 7(z). The mixed boundary value problem
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is defined formally as

vp(co <z < —-L,y=0) = 0

Ogy(—L<2<0,y=0) = 7(z) -1 (B.1.1)
v(0<z<o0,y=0) = 0
Oyy(—00 <z <o0,y=0) = 0, (B.1.2)

where v; are velocities, 0;; are stresses, and 7y is the initial shear stress on the fault
far ahead of and behind the slip zone. The healing process at the trailing edge of
the slip zone (z = —L) is assumed to be energy-neutral (i.e., it is accompanied by
neither dissipation nor release of energy).

We first consider the general case of an arbitrary 7(z), but later specialize to

the linear distance-weakening model of Palmer and Rice (1973):

{ T+ (1, — 7 )z/R, —R<2x<0

r(z) = (B.1.3)

Trs —L <z < —R,

where 7, is the peak strength, 7, is the residual strength, and R is the length of
the breakdown zone.
Expressions for the shear traction and slip velocity on the fault for both sub-

shear (V' < ¢s) and supershear (V' > ¢;) ruptures having an arbitrary 7(z) have
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been given by Broberg (1978, 1989), who also examined the off-fault fields only
in the limiting case of a vanishingly small breakdown zone. We present the com-
plete derivation for all fields, both on and off of the fault, at supershear speeds.
A recent derivation of the subshear expressions is given by Rice et al. (2005),
although they do not present results for the velocity fields. First, we decompose

the displacement field wu; into dilatational and shear components:

ui(r,y) = ug (z,y) + ui (2,y), (B.1.4)
governed by
0? 0?
(%2)@ + a—yQ) ug (z,y) = (B.1.5)
and
82 82
B+ as | Ul = B.1.
(-85 + 57 i) =0, (B.16)

with ap = /1= V?2/c and B, = \/V?/c2 — 1. The P-wave equation is elliptic
with evanescent (i.e., inhomogeneous) wave eigenfunctions. In contrast to the
subshear expressions, the S-wave equation at supershear velocities is now hyper-

bolic and its eigenfunctions are radiating S waves, which form a planar Mach front

extending from the rupture front.
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A solution to these equations, restricting ourselves to y > 0 for now and taking

into account the conditions V x u? =0 and V -u® =0, is

ub(z,y) = RP(z)

uy(v,y) = —pSP(zp)
Ui(.ﬁ, y) = _535(25)
uy(v,y) = S(z), (B.1.7)

where z, = x + i,y and z; = = + (,y. Here, P(z) is a function that is analytic

except across the slip zone, and S(z) is a real function. In terms of these functions,

oy = (8 — LIRP'(2) + 28,5 (2s), (B.1.8)

where the prime indicates differentiation with respect to the argument. Setting
this expression equal to zero on the fault, as required by the boundary condition

(B.1.2), yields

Bi-1
26,

This expression remains valid away from the fault under the substitution x — z;.

S'(z) = RP'(z). (B.1.9)

We use (B.1.9) to eliminate S’(z) and rewrite expressions for the fields in terms

of a new analytic function
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N(z) = 2ipay,P'(2), (B.1.10)
yielding
Uy = Y —SQN(z,) + B — SN (2)
T w20 P 4oy, °
V1 21
= —Z|igN s T QN(z,
o o= RN - E o)
1+ 32+ 20 21
Opw = b EQN(z,) + Gy SN (zs)
2ay, 20y,
2 _ 1 2
Omy = RN(z)+ (ﬁia ﬂ) SN (z)
pMs
pi—1
Oy = I[N (zp) — N(z5)]. (B.1.11)
P

IN(z) = —-SN(2), (B.1.12)

where the overbar denotes complex conjugation, an operation that replaces y by
—y (effectively reflecting the observation point across the fault). This implies that

N(z) = N(z); hence,
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SIN(z) = , , (B.1.13)

where N (z) = lim, o+ N(z). Inserting (B.1.13) into the traction boundary con-

dition (B.1.1) yields

B —iA T(x) — 79
N = N_ 2——" B.1.14
+@) =N+ ( )
for —L < z < 0, where A = 40,35 and B = (2 — 1)%. Writing
, B —iA
B B.1.15
‘ B+ iA’ ( )
yields
1 A
g = — arctan — (B.1.16)
T B
with 0 < ¢ < 1/2. This allows us to recast (B.1.14) as
Ni(z) = e ?™IN_(z)+
2i sin(mq)e”"™ [1(x) — 7o) - (B.1.17)
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This defines a Hilbert problem Muskhelishvili (1953), which is solved by first

introducing a solution X (z) to the homogeneous problem

X, (z) = e ?™IX _(z). (B.1.18)

Using this result to eliminate the factor e=2™ yields

N (z) = N-(z) isin(mg)e "™
X (@) - X_(a) T 2snm)

T(x) — 70
Xi(z)

(B.1.19)

An appropriate selection of X (z) for a semi-infinite crack is X(z) = z'7¢, and
for a pulse of length L is X(z) = 2'7%(z + L)?. The branch cut is taken along

—L <z <0,y =0. Defining

F(z) = (B.1.20)

and

T(z) — 70

f(x) = 2isin(rq)e™"™ X ()

(B.1.21)

allows us to rewrite (B.1.19) as

Fi(z) - F_(z) = f(2). (B.1.22)
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Using the Cauchy integral theorem to relate the value of F' at some point z away
from the fault to the jump in F across the slip zone (see Rice et al. (2005) for a
complete description) solves the equation as

L [° f(w)

F(z) =5~

= d E B.1.23

where E(z) is an entire function (i.e., a polynomial in z). Since the fields vanish

at infinity (except within the region of S-wave radiation), F(z) = 0. Thus,

N(z) = _sinE:Tq) 279z + L)7 x

’ T(w) — 7o
/_L (—w) 9w + L)% (w — 2) dw. (B.1.24)

Note that N(z) is of the form (7, — 7.)h(R/L,V/c;), which is quite different from
the scaling for subshear ruptures, in which the dependence on V/c;, here arising
through ¢, is absent. The physical reason for this is related to the velocity-
dependent S-wave radiation at supershear speeds. These waves alter the energy
balance within the breakdown zone and the concentration of the stress fields
around the rupture front.

To complete the solution, we must place a constraint on 7y by using the fact
that the fields vanish at infinity (outside of the radiating S-wave region). Inserting

(B.1.24) into (B.1.11) and taking the limit that z — oo ahead of the Mach front
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yields the constraint

_ sin(mq) [° 7(z)dx
= /_L it D (B.1.25)

For subshear ruptures, an analogous derivation yields

|4 N B% —
- | —aMm s oM
v = = |G SM ) + e )
v [1 321
= L |SRM(z) - B SgM
w o= R - BN )
= BT gy s QM
Oz 2, SM (%) + o M (2s)
(8 —1)°
= RM 2 SM
Oy RM (2,) + Lo B, SM (2s)
21
Oyy = 73@ S [M(zp) — M(25)], (B.1.26)
P
where
1
M(z) = —;zl/Z(z—FL)l/Qx

/0 T(w) = 7o dw. (B.1.27)

L ()2 (w+ L)Y (w — 2)

The expressions for the stress components have been given by Rice et al. (2005).
Note that M(z) takes the form (7, — 7,)h(R/L), and is independent on rupture

velocity (since for any subshear V, the fields in the singular model diverge with
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an inverse square-root singularity). This results in the ability to factor the speed
dependent function out of the expressions for the fields, which cannot be done for

supershear ruptures.

B.2 Shear-Wave Radiation from Supershear

Ruptures

In this section, we examine properties of the S-wave radiation from supershear
ruptures. First, note that the shear component of the fields given in (B.1.11)
involves only SN (z); consequently, when N (z) is purely real, no S-wave radiation
will be present. It is thus desirable to study the properties of N(z) in more detail.

Let us define

0 T(w) — 79
I(z) = d B.2.1
= |, T ™ (B2
which is the singular integral in (B.1.24). This has real and imaginary parts given
by
’ [7(w) — 7] (w — 2r)
RI(z) = d B.2.2
0= | T D 22
and
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S (2) = ° [T(w) — 70] 21 w
s = [ )i+ L)1 [(w — 2 + 2 (B.23)

where zp = Rz and z; = Sz. Now let us take the limit that z; — 0, equivalent to
letting the observation point approach the fault. Care must be taken in (B.2.3),

and we note that

lim 2 = xd(w — ). (B.2.4)

Thus,

_ 0 T(w) — 7o w
R (z) = /_L (—w) 1w 1 D)(w = x)d , (B.2.5)

which is interpreted in the Cauchy principal value sense when —L < x < 0, and

S(z) =7 (B.2.6)

for —L < z < 0; otherwise, I, (z) = 0.
Now we shall examine the behavior of N(x) on the fault. Ahead of the slip

zone (z > 0), SI(z) = 0 and we are left with the purely real expression

Now) = B e g gy

/0 T(w) = 7o duw. (B.2.7)
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This result applies away from the fault as well, upon the substitution x — z; since
zs is also real. Since the S-wave terms involve only SN (z,), this proves that the
S waves vanish ahead of the § Mach front, defined by z + 5|y| = 0.

Within the slip zone (—L < z < 0), (B.1.24) reduces to the complex expression

Ni(z) = Ln(ﬁq)e_”q{(—:rs)l_q(:r: + L)? x

™

. R—,

—1 (mw) 7w + L)"(w — x)

+im [T(x) — 7o) }, (B.2.8)

which can be used in (B.1.11) to verify that o,y (—L < z < 0) = 7(x) — 7o.
Behind the slip zone (x < —L), I, (z) = 0 and (B.1.24) reduces to the purely

real expression

No(r) = S0 pymap 1y x

’ [7(w) = 7]
/_ = dw. (B.2.9)

1=¢(w + L)4(w — x)

Equations (B.2.7)-(B.2.9), when combined with (B.1.11), reveal an important re-
sult: § waves radiate only from the slip zone, as would be expected if working
from the representation theorem.

Consequently, we focus on the behavior of the fields off of the fault between
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the passage of the Mach front originating from z = 0 and that from x = —L (i.e.,
when —L < z, < 0). First, we observe that the slip velocity Av on the fault may
be written in terms of IN(z) only as

V3241

Av(z) = — W o SN, (z). (B.2.10)

Using this in the off-fault expressions for velocity (B.1.11) yields

I A N B2 —1
VIl 1 #-1
v, = — [E%N(zp)] ~ 35, g} n 1Av(zs), (B.2.12)

which proves that both components of the off-fault velocity fields trace out the
exact slip velocity function on the fault during the passage of the S waves. The
usefulness of this feature rests on the separation of the shear and dilatational
fields, which occurs for points sufficiently removed from the fault.
We also use our results to obtain the fracture energy G and final slip §. We
merely numerically integrate the following expressions
1 [0

G = v/, Av(z) [r(x) — 7] dx (B.2.13)

and
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0
d= l/ Av(z)dz, (B.2.14)
Vi

where Av(z) is also obtained by numerical integration. Note that (B.2.13) and
(B.2.14) are strictly valid only for steady state conditions. We find no problems
with this procedure, and validate our numerical results against the analytical
solution for subshear ruptures having a specific 7(x) given by Rice et al. (2005).

Dimensional considerations allow GG to be written as

G = h(R/L,V/cs)(1, — 7)*R/ . (B.2.15)

Only for subshear ruptures can h(R/L,V/c,) be factored into the product of
f(V/es) and g(R/L), as follows from the discussion after equations (B.1.24) and
(B.1.27).

At supershear speeds, not all of the work done by the remote stress field in
excess of friction goes into fracture energy, as is the case for subshear ruptures
Rice et al. (2005). Instead, there is a flow of energy out to infinity associated with
the radiating S waves. Let us denote this energy flux (per unit area advance of
the rupture) as G. This quantity may be calculated by integrating the outward
energy flux associated with the shear field over the slip zone. The fault-normal

component of the energy flux is given by
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Fy = —OpyUs — Oyyy,

(B.2.16)

which may be simplified by eliminating the second term using o,, = 0, and G is

given by

9 0
Gs = V/—L Fy(z)dz

(B.2.17)

under steady state conditions. The factor of two arises from radiation leaving

both sides of the fault. Substituting only the shear part of the field expressions

in (B.1.11) for the stress and velocity components in (B.2.16), and using (B.2.10)

to eliminate SN, () in favor of Av(z) yields

0

Gs = ZQS(V/cs)p/ Av(z)*dz,

—-L

where p is the density of the medium and

1 (32-1\"
gs(v/cs)zg<g;+1) :

Dimensional considerations show that G, like GG, takes the form

Gy = hy(R/L,V/c,)(1, — )" R/,

187

(B.2.18)

(B.2.19)

(B.2.20)



APPENDIX B. APPENDICES TO CHAPTER 5

such that the energetics of supershear ruptures depends strongly on both the size

of the breakdown zone and the rupture velocity.
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