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Non-stiff narrow-stencil finite difference

approximations of the Laplacian on curvilinear

multiblock grids

Martin Almquist∗ Eric M. Dunham∗,†

Abstract

The Laplacian appears in several partial differential equations used
to model wave propagation. Summation-by-parts–simultaneous ap-
proximation term (SBP-SAT) finite difference methods are often used
for such equations, as they combine computational efficiency with prov-
able stability on curvilinear multiblock grids. However, the existing
SBP-SAT discretization of the Laplacian quickly becomes prohibitively
stiff as grid skewness increases. The stiffness stems from the SATs that
impose inter-block couplings and Dirichlet boundary conditions. We
resolve this issue by deriving stable SATs whose stiffness is almost in-
sensitive to grid skewness. The new discretization thus allows for large
time steps in explicit time integrators, even on very skewed grids. It
also applies to the variable-coefficient generalization of the Laplacian.
We demonstrate the efficacy and versatility of the new method by ap-
plying it to acoustic wave propagation problems inspired by marine
seismic exploration and infrasound monitoring of volcanoes.

1 Introduction

Partial differential equations (PDEs) that feature the Laplacian include the
second order wave equation. For wave-dominated equations, high-order finite
difference methods are computationally efficient [9], assuming that the solu-
tion is smooth and the domain not too complex. Finite difference operators
with the summation-by-parts (SBP) property [11] lead to energy-stable dis-
cretizations when combined with suitable methods for imposing boundary
and interface conditions. Weak enforcement via simultaneous approxima-
tion terms (SATs) [3] has proven successful in a wide range of applications
[6, 23]. A key property of the SBP-SAT method is that it lends itself well to
curvilinear multiblock grids, which are necessary in most applications.
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For second order differential operators in general, narrow-stencil second-
derivative SBP operators [14, 13] provide superior solution accuracy com-
pared to applying a first-derivative operator twice. As a rule of thumb, the
global convergence rate is one order higher [14] and the numerical dispersion
relation mimics the exact dispersion relation better for marginally resolved
modes [10]. Hence, we only consider narrow-stencil operators in this paper.
However, the gain in accuracy comes at the cost of more involved stability
analysis.

Key properties of the discrete Laplacian that guarantee energy stability
for hyperbolic problems are symmetry and negative semidefiniteness with re-
spect to a discrete inner product (see for example [1]). The current state-of-
the-art SBP-SAT discretization of the Laplacian was presented by Virta and
Mattsson [28], who were the first to derive a symmetric negative semidef-
inite discretization for Dirichlet boundary conditions on curvilinear multi-
block grids. However, as we demonstrate in Section 2, the spectral radius
of the discretization by Virta and Mattsson grows rapidly as grid skewness
increases. Hence, it forces explicit time integrators to use very small time
steps unless the grid is almost Cartesian. We here improve the method by
deriving a new discretization whose spectral radius is much less sensitive to
grid skewness. The two methods use the same SBP operators and differ only
in the SATs for Dirichlet boundary conditions and inter-block couplings. The
SATs for Neumann boundary conditions are identical.

Although we use the acoustic wave equation in two dimensions in the
numerical experiments, the new discretization is in no way specific to wave
equations or two dimensions. Rather, what we present is a symmetric and
negative semidefinite discrete Laplacian that may be used to discretize other
PDEs, for example the Schrödinger and heat equations. Furthermore, the
new discretization is presented for d spatial dimensions and applies to the
generalized Laplace operator ∇ · b(~x)∇.

This paper only considers weak enforcement of boundary and interface
conditions using SATs, but it is possible to combine SBP operators with
strong enforcement by, for example, injection [4] or ghost points [20, 31].
In fact, for certain classes of boundary and interface conditions, the ghost
point technique yields a significantly smaller spectral radius than SATs [31].
We stress that the purpose of this paper is not to find the finite difference
discretization of the Laplacian with the smallest possible spectral radius for
a given set of boundary conditions. Instead, the purpose is to improve the
general-purpose SBP-SAT framework by showing how to impose Dirichlet-
type boundary conditions and couple grid blocks with less stiffness than with
the existing SBP-SAT method.

The rest of this paper is organized as follows. Section 2 compares the
new method with the current state-of-the-art method by Virta and Mattsson
[28]. Sections 3 through 8 derive the new method and prove that it is sta-
ble. Section 9 demonstrates the efficacy of the new method by solving two
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application problems inspired by marine seismic exploration and infrasound
monitoring of volcanoes.

2 Comparison with Virta and Mattsson, 2014.

This section presents the main result: the new method, derived in subsequent
sections of this paper, is significantly more efficient than the method in
Virta and Mattsson (VM) [28] when the grid is curved. To compare the
two methods, we will consider the second order wave equation with constant
coefficients and homogeneous Dirichlet boundary conditions,

ü = ∇2u, ~x ∈ Ω′,
u = 0, ~x ∈ ∂Ω′.

(1)

For the spatial discretization we use diagonal-norm SBP operators [13] of
interior orders q = 2, q = 4 and q = 6. Near boundaries, the accuracy drops
to order q/2. As a rule of thumb, one typically observes global convergence
rates of order min(q, q/2+2) for the wave equation [22], but the convergence
rate can be both lower and higher in special cases [29, 30]. By the rule of
thumb, we expect convergence rates of orders 2, 4, and 5, respectively, in
this paper. The boundary conditions are enforced using either the VM SATs
or the new SATs.

Section 2.1 shows that the spectral radius of the discrete Laplacian (in-
cluding SATs) grows much faster with grid skewness with the VM SATs than
with the new SATs. This implies that the VM method requires smaller time
steps in explicit time steppers, or more iterations for convergence in implicit
time steppers combined with iterative solvers.

Section 2.2 compares the two methods in terms of CPU time required to
satisfy a given error tolerance. For this comparison we use a mildly curved
multiblock grid on the unit disk and an explicit time stepper. Although
the VM method is slightly more accurate on a given grid, the new method
is significantly more efficient because it allows for much larger time steps.
In light of Section 2.1, we anticipate that a more skewed grid would only
increase the efficiency gap in favor of the new method.

2.1 Spectral radius as a function of grid skewness

Let Ω′ be the parallelogram domain depicted in Figure 1a. By varying the
angle ϕ, we obtain a family of parallelograms whose base and height are of
unit length and whose bottom and top boundaries are horizontal. The grid
lines are chosen to be equidistant and parallel to the domain boundaries.
For ϕ = π/2, Ω′ is square and the grid is Cartesian. As ϕ decreases, grid
skewness increases. For the experiments in this subsection, we let the grid
consist of 31× 31 points.
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Figure 1: (a) The parallelogram-type domain used to compare spectral radii.
(b) The spectral radii of the second order discretization matrices, normalized
so that the new method has radius 1 for ϕ = π/2. The new method is much
less sensitive to grid skewness.

Discretizing (1) in space with the SBP-SAT method yields the semidis-
crete equation

ü = Du. (2)

Using the VM SATs and the new SATs derived in later sections of this
paper lead to different D matrices, DVM and Dnew. Let ρ(D) denote the
spectral radius of D. Figure 1b compares ρ(DVM) and ρ(Dnew) for the
second order accurate discretizations, for π/6 ≤ ϕ ≤ π/2. The spectral radii
are normalized by ρ(Dnew) on the Cartesian grid given by ϕ = π/2. The
new method has a smaller spectral radius for all ϕ, but the difference is most
apparent for small ϕ. As ϕ decreases, the spectral radius of the new method
grows much more slowly than that of the VM method.

Figure 2 shows the spectral radii of the fourth and sixth order accurate
discretizations, which exhibit similar behavior.

2.2 Computational efficiency on a multiblock grid

We here let Ω′ be the unit disk, in which case the model problem (1) has
exact solutions

uα,β(r, θ, t) = Jα(βr) sinαθ cos βt, (3)

where (r, θ) are the polar coordinates, α ∈ Z, Jα is the order α Bessel
function of the first kind, and β is a root of Jα. We set α = 5 and
β = 22.2177998965612, which is the fifth nonzero root of J5. The result-
ing solution at time t = 0 is shown in Figure 3a. We use the multiblock grid
configuration in Figure 3b. We rewrite the semidiscrete system of equations
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Figure 2: The spectral radii of the fourth and sixth order discretization
matrices, normalized so that the new method has radius 1 for ϕ = π/2. The
new method is much less sensitive to grid skewness.

as a first order system in time and use the classical fourth order Runge–
Kutta method to integrate until time t = 1, where we measure the relative
ℓ2 errors. To isolate the accuracy of the spatial discretization, we here use
the same time step for the two methods. Let the number of grid points in the
center block be m×m and define the reference grid spacing h = 1/(m− 1).
We here set ∆t = 0.05h for both methods.

(a) Initial data

-1 1
-1

1

(b) Coarse grid for the unit disk

Figure 3: (a) Exact solution at time t = 0. (b) The multiblock grid configu-
ration used in the computations.

Figure 4a shows that the two methods converge with the same rates. The
VM method consistently yields the smaller error, which is clearly visible in
the sixth order case. For second and fourth order, the difference in error is
so small that the curves are nearly indistinguishable.
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Of more practical relevance than the error as a function of grid spacing
is the CPU time required to satisfy a given error tolerance. To compare the
CPU times, we let both methods use the largest stable time step (determined
by eigenvalue computations). Since the new method has a smaller spectral
radius, it ends up using a significantly larger time step. For an example grid,
with the configuration in Figure 3b and 41 × 41 grid points in the center
block, the time step ratios are

second order: ∆tnew/∆tVM = 6.69,

fourth order: ∆tnew/∆tVM = 6.46,

sixth order: ∆tnew/∆tVM = 5.84.

(4)

Figure 4b shows the errors as functions of CPU time. For a given order of
accuracy, the larger time steps allow the new method to reach the same error
level faster, even though the VM method is slightly more accurate on a given
grid.
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(b) Computational efficiency

Figure 4: ℓ2 errors as functions of (a) grid spacing and (b) CPU time.

3 Notation conventions

We use the convention to sum over repeated subscript indices so that

uivi =

d∑

i=1

uivi, (5)

where d denotes the number of spatial dimensions. The summation conven-
tion applies to inner products too, i.e.,

(ui, vi) =

d∑

i=1

(ui, vi) . (6)
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For variable coefficients a(~x), we use the symbol a also in the discrete case,
which then is understood to denote a diagonal matrix with the values of
a(~x) on the diagonal. The outward unit normal n̂ is regarded as a variable
coefficient that takes non-zero values only at boundary points. In the discrete
setting, the value of n̂ at edge and corner points varies with context. When
integrating over a face, n̂ is understood to denote the unit normal to that
face even at edge and corner points.

4 Coordinate transformations

As a model problem that includes the Laplacian, we will consider the second
order wave equation,

aü = ∂xi
b∂xi

u, ~x ∈ Ω′, t ∈ [0, T ],
Lu = 0, ~x ∈ Γ′, t ∈ [0, T ],

(7)

where a > 0 and b > 0 are variable coefficients, Γ′ = ∂Ω′, and the linear
operator L represents well-posed boundary conditions. Introduce a one-to-
one mapping xi = xi(ξ1, ..., ξd) from Ω = [0, 1]d to Ω′. Let J be the
matrix with elements Jij = ∂xj/∂ξi, and let J = det(J ). Similarly, let
Kij = ∂ξj/∂xi. By the chain rule,

∂xi
= Kij∂ξj . (8)

The following metric identities are well known (see [24]):

JKij∂ξj = ∂ξjJKij . (9)

Using first (8) and then (9), we have

∂xi
b∂xi

= Kij∂ξjbKij∂ξj =
1

J
∂ξjJKijbKij∂ξj . (10)

For convenience we introduce the notation

∂i = ∂ξi , αijkℓ = KijJKkℓ. (11)

It follows that
aü = ∂xi

b∂xi
u ⇔ Jaü = ∂jαijikb∂ku. (12)

Henceforth, we will consider the transformed wave equation on the unit cube
Ω:

Jaü = ∂jαijikb∂ku, ~ξ ∈ Ω, t ∈ [0, T ],

L̃u = 0, ~ξ ∈ Γ, t ∈ [0, T ],
(13)

where Γ = ∂Ω and L̃ is the transformation of L.
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4.1 Integrals

We will use the L2 inner product and norm:

(u, v)Ω =

∫

Ω

uv dΩ, ‖u‖2Ω = (u, u)Ω . (14)

Similarly, we write

(u, v)Γ =

∫

Γ

uv dΓ, ‖u‖2Γ = (u, u)Γ . (15)

Note however, that (·, ·)Γ is not an inner product but a bilinear form, and ‖·‖2Γ
is not a norm but a semi-norm. Further, we define γ such that dΓ′ = γ dΓ
is the surface area element. With this notation, we have

(u, v)Ω′ = (u, Jv)Ω (16)

and
(u, v)Γ′ = (u, γv)Γ . (17)

4.2 Normal derivatives

Let n̂ = [n1, . . . , nd] denote the outward unit normal to Ω′, and let ν̂ =
[ν1, . . . , νd] denote the unit normal to Ω. Using integration by parts, we
have

(u, ∂xi
v)Ω′ = (u, niv)Γ′ − (∂xi

u, v)Ω′ . (18)

By instead using the integration-by-parts formula in the reference coordi-
nates, we can also derive

(u, ∂xi
v)Ω′ = (u, J∂xi

v)Ω = (u, JKij∂jv)Ω
= (u, JKijνjv)Γ − (∂jJKiju, v)Ω
= (u, JKijνjv)Γ − (JKij∂ju, v)Ω

=

(
u, γ

J

γ
Kijνjv

)

Γ

− (∂xi
u, Jv)Ω

=

(
u,

J

γ
Kijνjv

)

Γ′

− (∂xi
u, v)Ω′ .

(19)

where we used (9). Since u and v are arbitrary in (18) and (19), it follows
that the normal components are related through

ni =
J

γ
Kijνj . (20)

Hence, the normal derivative on Ω′ can be expressed as

∂u

∂n̂
= ni∂xi

u = νj
J

γ
KijKik∂ku = νj

αijik

γ
∂ku. (21)
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5 Summation-by-parts operators

Consider finite-difference approximations of derivatives using an equidistant
grid that includes the boundary points of an interval [xℓ, xr]. In this paper,
we consider diagonal-norm SBP operators only. That is, the so-called norm
matrix Hx has the structure

Hx = hdiag(w1, . . . , ws, 1, . . . , 1, ws, . . . , w1), (22)

where h denotes the grid spacing and the wi are positive dimensionless
weights. The first-derivative SBP operators Dx ≈ ∂x have the property

HxDx +DT
xHx = −eℓe

T
ℓ + ere

T
r (no sums over x, ℓ, r), (23)

where
eℓ =

[
1, 0, . . . , 0

]T
, er =

[
0, . . . , 0, 1

]T
. (24)

The narrow-stencil second derivative operators Dxx(b) ≈ ∂xb∂x derived in
[13] are based on the same norm matrix and have the property

HxDxx(b) = −DT
xHxbDx −Rxx(b)− eℓbℓe

T
ℓ D̂x + erbre

T
r D̂x,

(no sums over x, ℓ, r),
(25)

where D̂x approximates the first derivative. Note that for the SBP operators
considered in this paper, Dx 6= D̂x. If Dx = D̂x, then the SBP operators
Dx and Dxx are said to be fully compatible [15]. The difference between the
two first-derivative approximations will play an important role in the coming
stability analysis and we define

∆Dx = Dx − D̂x. (26)

The SBP operators derived in [13] have D̂x that are accurate of order q/2+1,
i.e., one order higher than the boundary closure of Dx. This implies that
∆Dxu is zero to order q/2 for all u that are restrictions of smooth functions
to the grid.

The matrix Rxx(b) is symmetric positive semidefinite and consists of
undivided difference approximations in such a way that u

TRxx(b)u is zero
to order q [13].

5.1 Positivity properties

It follows immediately from (22) and (24) that we have

Hx = hdiag(0, w2, . . . , ws, 1, . . . , 1, ws, . . . , w2, 0)

+ hw1eℓe
T
ℓ + hw1ere

T
r

≥ hw1eℓe
T
ℓ + hw1ere

T
r .

(27)
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We define θH = w1 and write

Hx ≥ hθHeℓe
T
ℓ + hθHere

T
r , (28)

or, equivalently,

u
THxu ≥ hθH(eTℓ u)

2 + hθH(eTr u)
2 for all u. (29)

Let xℓ,mb
and xr,mb

denote the mbth grid points from the left and right
boundaries:

xℓ,mb
= xℓ + (mb − 1)h, xr,mb

= xr − (mb − 1)h. (30)

Let bℓ,min and br,min denote the minimum of b over the mb leftmost and
rightmost grid points:

bℓ,min = min (b(xℓ), b(xℓ + h), . . . , b(xℓ,mb
)) ,

br,min = min (b(xr,mb
), b(xr,mb

+ h), . . . , b(xr)) .
(31)

The SBP operators considered in this paper also satisfy the following posi-
tivity property, which is essential to the new method.

Lemma 1. The second-derivative SBP operators Dxx(b) of orders two, four,
and six, derived in [13], which can be decomposed as in (25), all satisfy

u
TRxx(b)u ≥ hθRbℓ,min(e

T
ℓ ∆Dxu)

2 + hθRbr,min(e
T
r ∆Dxu)

2 for all u, (32)

for some choice of mb and the dimensionless constant θR > 0.

Proof. See Appendix.

A property similar but not identical to (32) was used in [5], to prove
stability for the elastic wave equation with block interfaces. Because (32)
has never before been used in the SBP-SAT literature, we have determined
the values of θR numerically. We remark that θR depends on mb. We describe
how mb is chosen and how θR is computed in Appendix. Table 1 lists the
values of all the dimensionless constants for the SBP operators used in this
paper.

θH θR mb

second order 1/2 1.0000 2
fourth order 17/48 0.5776 4
sixth order 13649/43200 0.3697 7

Table 1: Values of θH (exact), θR (approximations, computed in Appendix)
and mb.
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5.2 Multi-dimensional first-derivative operators

Let operators with subscripts ξi denote one-dimensional operators corre-
sponding to coordinate direction ξi. The multi-dimensional first derivatives
Di ≈ ∂i and D̂i ≈ ∂i are constructed using tensor products:

Di = Iξ1 ⊗ Iξ2 ⊗ · · · ⊗ Iξi−1
⊗Dξi ⊗ · · · ⊗ Iξd , (33)

D̂i = Iξ1 ⊗ Iξ2 ⊗ · · · ⊗ Iξi−1
⊗ D̂ξi ⊗ · · · ⊗ Iξd , (34)

where the Iξi are one-dimensional identity matrices of appropriate sizes. In
analogy with the chain rule (8), we define

Dxi
= KijDj . (35)

We further define the difference between the two first-derivative approxima-
tions:

∆Di = Di − D̂i. (36)

The multi-dimensional quadrature is

H = Hξ1 ⊗ · · · ⊗Hξm. (37)

Let Γ−
i and Γ+

i denote the boundary faces where ξi = 0 and ξi = 1, respec-
tively. For integration over boundary faces, we define

HΓi
= Hξ1 ⊗ · · · ⊗Hξi−1

⊗Hξi+1
⊗ · · · ⊗Hξm. (38)

Note that HΓi
can be used to integrate over Γ+

i as well as Γ−
i .

For discrete integration over the volume, we write

(u,v)Ω,h = u
THv. (39)

Let eS denote a restriction operator that picks out only those solution values
that reside on the boundary segment S. For discrete integration over the
face Γ+

i , for example, we write

(u,v)Γ+
i ,h

= (eT
Γ+
i

u)THΓi
(eT

Γ+
i

v). (40)

If the surface S is the union of several faces, S = F1 ∪ ... ∪ Fm, we use the
convention that

(u,v)S,h = (u,v)F1,h
+ . . .+ (u,v)Fm,h , (41)

i.e., the integration is performed over one face at a time. If the integrand
contains the unit normal, its values at edges and corners are defined to be
the same as on the remainder of that face. As in the continuous case, we
define the norm and semi-norm

‖u‖2Ω,h = (u,u)Ω,h , ‖u‖2S,h = (u,u)S,h . (42)

With the notation established in this section, we have the discrete integration-
by-parts formula

(u,DibDjv)Ω,h
= (u, νibDjv)Γ,h − (Diu, bDjv)Ω,h

. (43)
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5.3 Multi-dimensional narrow-stencil second-derivative op-

erators

For any fixed i, we construct:

Dii(b) ≈ ∂ib∂i, (44)

by using the one-dimensional operator Dxx for each grid line. This gives the
multi-dimensional SBP property for the second derivative,

HDii(b) = −DT
i HbDi −Rii(b)− eΓ−

i
bΓ−

i
eT
Γ−

i

D̂i + eΓ+
i
bΓ+

i
eT
Γ+
i

D̂i,

(no sum over i).
(45)

The structure of Rii(b) in (45) is important and requires a closer look. Let
R̃ii(b) be the operator that performs the action of Rxx(b) for each grid line
in direction i. Further, define

Hi = Iξ1 ⊗ · · · ⊗ Iξi−1
⊗Hξi ⊗ Iξi+1

⊗ · · · ⊗ Iξm . (46)

Then,
Rii(b) = H−1

i HR̃ii(b) (no sum over i). (47)

The Rii matrices are symmetric positive semidefinite.
The property (45) can be equivalently written as

(u,Dii(b)v)Ω,h =
(
u, νibD̂iv

)

Γ,h
− (Diu, bDiv)Ω,h − u

TRii(b)v,

(no sum over i),
(48)

for all u and v.

5.4 Combining narrow-stencil derivatives and mixed deriva-

tives

Consider discretizing a term ∂ib∂j . Because we want to use narrow-stencil
second derivatives for the non-mixed second derivatives, the following nota-
tion will be useful:

Dij(b) =

{
Dij(b), i = j
DibDj , i 6= j

. (49)

Combining the two integration-by-parts formulas (43) and (48) leads to the
integration-by-parts formula

(u,Dij(b)v)Ω,h
=





(u, νibDjv)Γ,h − (Diu, bDjv)Ω,h
, i 6= j

(
u, νibD̂jv

)
Γ,h

− (Diu, bDjv)Ω,h − u
TRij(b)v, i = j

.
(50)
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5.5 Multi-dimensional positivity properties

To suppress unnecessary notation, we assume that the grid spacing in the
reference domain is h in each dimension (we stress that the analysis does not
rely on this assumption). It follows from (29) that, for any fixed j,

‖u‖2Ω,h ≥ hθH ‖νju‖2Γ,h . (51)

Using (51) we can derive

‖u‖2Ω,h =
1

d

d∑

j=1

‖u‖2Ω,h ≥ 1

d

d∑

j=1

hθH ‖νju‖2Γ,h =
hθH
d

‖u‖2Γ,h , (52)

which we summarize as

‖u‖2Ω,h ≥ hθH
d

‖u‖2Γ,h . (53)

The multi-dimensional positivity property that follows from (32) is

u
TRii(b)u ≥ hθR

∥∥∥νi
√
bmin∆Diu

∥∥∥
2

Γ,h
(no sum over i), (54)

where bmin denotes the minimum of b over the mb grid points closest to the
boundary Γ along each grid line. That is, to evaluate bmin at a given grid
point on Γ, one needs to evaluate b at the mb first grid points on the same
grid line orthogonal to Γ.

6 Continuous energy balance

We return to the transformed equation (13),

Jaü = ∂jαijikb∂ku. (55)

The energy method, i.e. multiplying (55) by u̇ and integrating over Ω, yields

(u̇, Jaü)Ω = (u̇, ∂jαijikb∂ku)Ω = (u̇, νjαijikb∂ku)Γ − (∂j u̇, αijikb∂ku)Ω
= (u̇, νjαijikb∂ku)Γ − (Kij∂j u̇, JKikb∂ku)Ω

=

(
u̇, bνj

αijik

γ
∂ku

)

Γ′

− (Kij∂j u̇, bKik∂ku)Ω′

=

(
u̇, b

∂u

∂n̂

)

Γ′

− (Kij∂j u̇, bKik∂ku)Ω′ .

(56)

The volume integrals satisfy

(u̇, Jaü)Ω =
1

2

d

dt

∥∥√au̇
∥∥2
Ω′

, (57)
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and

(Kij∂j u̇,Kikb∂ku)Ω′ =
1

2

d

dt

∑

i

∥∥∥
√
bKij∂ju

∥∥∥
2

Ω′

=
1

2

d

dt

∑

i

∥∥∥
√
b∂xi

u
∥∥∥
2

Ω′

.

(58)

We define the energy E as

E =
1

2

∥∥√au̇
∥∥2
Ω′

+
1

2

∑

i

∥∥∥
√
b∂xi

u
∥∥∥
2

Ω′

, (59)

which allows us to write (56) as

dE
dt

=

(
u̇, b

∂u

∂n̂

)

Γ′

. (60)

7 Semidiscrete energy balance

We discretize the transformed problem (13) in space as

Jaü = Djk(αijikb)u+ SAT, (61)

where SAT imposes the boundary conditions and will be specified later. The
discrete energy method amounts to multiplying (61) by u̇

TH from the left,
which leads to

(u̇, Jaü)Ω,h = (u̇,Djk(αijikb)u)Ω,h
+ u̇

TH(SAT ). (62)

We have

(u̇, Jaü)Ω,h =
1

2

d

dt

∑

i

∥∥∥
√
Jau̇

∥∥∥
2

Ω,h
=

1

2

d

dt

∥∥√au̇
∥∥2
Ω′,h

. (63)

The integration-by-parts formula (50) yields

(u̇,Djk(αijikb)u)Ω,h
=

=
∑

k

(
u̇, νkαikikbD̂ku

)
Γ,h

+
∑

k,j 6=k

(u̇, νjαijikbDku)Γ,h

− (Dju̇, αijikbDku)Ω,h
−
∑

k

u̇
TRkk(αikikb)u

= (u̇, νjαijikbDku)Γ,h −
∑

k

(u̇, νkαikikb∆Dku)Γ,h

− (KijDju̇, JbKikDku)Ω,h −
∑

k

u̇
TRkk(αikikb)u

= (u̇, νjαijikbDku)Γ,h −
∑

k

(u̇, νkαikikb∆Dku)Γ,h

− 1

2

d

dt

(
∑

i

∥∥∥
√
bDxi

u

∥∥∥
2

Ω′,h
+
∑

k

u
TRkk(αikikb)u

)
.

(64)

14



We define the discrete normal derivative Dn̂ as

Dn̂ = νj
αijik

γ
Dk −

∑

k

νk
αikik

γ
∆Dk, (65)

and the discrete energy E as

E =
1

2

∥∥√au̇
∥∥2
Ω′,h

+
1

2

∑

i

∥∥∥
√
bDxi

u

∥∥∥
2

Ω′,h
+

1

2

∑

k

u
TRkk(αikikb)u, (66)

so that the discrete energy rate reads

dE

dt
= (u̇, bDn̂u)Γ′,h + u̇

TH(SAT ). (67)

By comparing (65) with (21) and recalling that ∆Dku is zero to order q/2,
we conclude that Dn̂ approximates ∂/∂n̂. Further, since the Rkk are pos-
itive semidefinite and u

TRkku is zero to order q, the discrete energy E is
nonnegative and approximates the continuous energy E defined in (59).

7.1 Enforcing Neumann boundary conditions

Homogeneous Neumann boundary conditions, i.e.,

∂u

∂n̂
= 0, ~x ∈ Γ′, (68)

are energy-conserving for the continuous equation, c.f. (60). By inspecting
(67), we see that the discrete energy E will be conserved, and hence the
scheme will be energy-stable, if we can find a SAT that is consistent with
(68) and satisfies

u̇
TH(SAT ) = − (u̇, bDn̂u)Γ′,h . (69)

Let F denote the set of all faces, i.e. F = {Γ−
1 , . . . ,Γ

−
d ,Γ

+
1 , . . . ,Γ

+
d }. We

achieve (69) by setting

SAT = −H−1
∑

f∈F

efγHfb(e
T
f Dn̂u− 0). (70)

7.2 Enforcing Dirichlet boundary conditions

Homogeneous Dirichlet conditions, i.e.,

u = 0, ~x ∈ Γ′, (71)

are energy-conserving for the continuous problem. As opposed to the case
with Neumann conditions, we cannot choose consistent SATs that make the
boundary terms in the energy rate vanish. Instead, we will show that a
slightly different energy ED ≈ E is conserved.
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General SATs of the form

SAT = H−1
∑

f∈F

BT efγHf (e
T
f u− 0) (72)

lead to
u̇
TH(SAT ) = (Bu̇,u)Γ′,h . (73)

We set B = C − A, where A is symmetric. Inserting this ansatz in the
discrete energy rate (67) yields

dE

dt
= (u̇, bDn̂u)Γ′,h + (Cu̇,u)Γ′,h − (Au̇,u)Γ′,h . (74)

For symmetry we will need

(Cu̇,u)Γ′,h = (bDn̂u̇,u)Γ′,h , (75)

which implies C = bDn̂. We then obtain

dE

dt
= (u̇, bDn̂u)Γ′,h + (bDn̂u̇,u)Γ′,h − (Au̇,u)Γ′,h

=
d

dt

(
(bDn̂u,u)Γ′,h −

1

2
(Au,u)Γ′,h

)
.

(76)

We now obtain the energy balance

dED

dt
= 0, (77)

where

ED = E − (bDn̂u,u)Γ′,h +
1

2
(Au,u)Γ′,h . (78)

To prove stability, it remains to prove that we can choose A so that ED is
a nonnegative quantity. Loosely speaking, we will need A to be sufficiently
positive. Note that ED (just like E) is a high-order approximation of the
continuous energy E because the boundary integrals are zero to the order of
accuracy due to the boundary condition.

To prove that ED is nonnegative, we need to use the positivity of E.
Since the indefinite term in (78) is a surface integral, we shall bound E from
below by relevant surface integrals. The terms in E that stem from the
Laplacian are

1

2

∑

i

∥∥∥
√
bDxi

u

∥∥∥
2

Ω′,h

︸ ︷︷ ︸
Term 1

and
1

2

∑

k

u
TRkk(αikikb)u

︸ ︷︷ ︸
Term 2

. (79)
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Applying the positivity property (53) to Term 1 yields

∑

i

∥∥∥
√
bDxi

u

∥∥∥
2

Ω′,h
=
∑

i

∥∥∥
√
JbDxi

u

∥∥∥
2

Ω,h

≥ hθH
d

∑

i

∥∥∥
√
JbDxi

u

∥∥∥
2

Γ,h

=
hθH
d

∑

i

∥∥∥∥∥

√
Jb

γ
Dxi

u

∥∥∥∥∥

2

Γ′,h

.

(80)

Now consider Term 2. To simplify the notation, we define

ηk = αikikb (no sum over k). (81)

Applying the positivity property (54) yields

∑

k

u
TRkk(ηk)u ≥ hθR

∑

k

∥∥νk (
√
ηk)min

∆Dku
∥∥2
Γ,h

= hθR
∑

k

∥∥∥∥∥νk
(√

ηk
)
min√
γ

∆Dku

∥∥∥∥∥

2

Γ′,h

.

(82)

Using (80) and (82), we obtain

2ED ≥ hθH
d

∑

i

∥∥∥∥∥

√
Jb

γ
Dxi

u

∥∥∥∥∥

2

Γ′,h

+ hθR
∑

k

∥∥∥∥∥νk
(√

ηk
)
min√
γ

∆Dku

∥∥∥∥∥

2

Γ′,h

− 2 (bDn̂u,u)Γ′,h + (Au,u)Γ′,h .

(83)

Expanding the indefinite term (bDn̂u,u)Γ′,h yields

(bDn̂u,u)Γ′,h =
(
b

(
νj

αijik

γ
Dk −

∑

k

νk
αikik

γ
∆Dk

)
u,u

)

Γ′,h

=

(
bνj

KijJKik

γ
Dku,u

)

Γ′,h

−
(
∑

k

νk
ηk
γ
∆Dku,u

)

Γ′,h

=

(
bJ

γ
Dxi

u, νjKiju

)

Γ′,h

−
∑

k

(
νk

ηk
γ
∆Dku, |νk|u

)

Γ′,h

.

(84)

We obtain

2ED ≥ (Au,u)Γ′,h +
(
yi, Ỹ yi

)
Γ′,h

+
∑

k

(
zk, Z̃kzk

)
Γ′,h

, (85)
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where

yi =

[
νkKiku

Dxi
u

]
, Ỹ =

[
0 −1

−1 hθH
d

]
⊗ bJ

γ
, (86)

zk =

[
|νk|u

νk∆Dku

]
(no sum over k), (87)

and

Z̃k =




0 −ηk
γ

−ηk
γ

hθR
(ηk)min

γ


 . (88)

We need to choose A so that (Au,u)Γ′,h compensates for the zero entries in

Ỹ and Z̃k. We make the ansatz

A =
1

γ

∑

k

|νk|
(
τHηk + τR

η2k
(ηk)min

)
, (89)

where τH,R are penalty parameters that we have yet to choose. By noting
that
∑

k

|νk| ηk = b
∑

k

|νk|αikik = bJ
∑

k

|νk| KikKik = bJ
∑

k

νkνkKikKik

= bJνjKijνkKik,

(90)

we can write

A = b
J

γ
τHνjKijνkKik +

1

γ

∑

k

|νk| τR
η2k

(ηk)min

. (91)

We now obtain

2ED ≥ (yi, Y yi)Γ′,h +
∑

k

(zk, Zkzk)Γ′,h , (92)

where

Y =

[
τH −1

−1 hθH
d

]
⊗ bJ

γ
, Zk =




τR
η2k

γ (ηk)min

−ηk
γ

−ηk
γ

hθR
(ηk)min

γ


 . (93)

The matrices Y and Zk are positive semidefinite if

τH ≥ d

hθH
and τR ≥ 1

hθR
, (94)

respectively. We have now proven the following theorem.
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Theorem 2. The scheme

Jaü = Djk(αijikb)u+ SAT, (95)

with

SAT = H−1
∑

f∈F

(bDn̂)
T efγHf (e

T
f u− 0)

−H−1
∑

f∈F

∑

k

1

γ
|νk|

(
τHηk + τR

η2k
(ηk)min

)
efγHf (e

T
f u− 0),

(96)

is stable if

τH ≥ d

hθH
, τR ≥ 1

hθR
. (97)

In all simulations in this paper, we set τH = d/(hθH) and τR = 1/(hθR),
i.e., right on the limit of provable stability. The drawback to using larger
values of τH,R is that it increases the spectral radius.

We remark that the fundamental difference compared to the approach
of Virta and Mattsson [28] is that they did not utilize Lemma 1, and hence
not the positivity property (82), which is a consequence of Lemma 1. Hence,
they were forced to use a larger SAT to prove that ED is nonnegative, which
in turn caused the increase in spectral radius.

If the SBP operators Dx and Dxx are fully compatible, then ∆Dx = 0
and hence ∆Di = 0, which implies that the scheme in Theorem 2 is stable
with τR = 0.

8 Interfaces

Let Γ′
I denote the interface between two domains Ω′

u and Ω′
v. We use su-

perscripts u and v to denote variable coefficients that correspond to the two
different sides of the interface. We consider the problem

auü− ∂xi
bu∂xi

u = 0, ~x ∈ Ω′
u, t ∈ [0, T ],

av v̈ − ∂xi
bv∂xi

v = 0, ~x ∈ Ω′
v, t ∈ [0, T ],

u− v = 0, ~x ∈ Γ′
I , t ∈ [0, T ],

bu ∂u
∂n̂u + bv ∂v

∂n̂v = 0, ~x ∈ Γ′
I , t ∈ [0, T ],

(98)

augmented with suitable boundary conditions. The system (98) transforms
into

Juauü− ∂jα
u
ijikb

u∂ku = 0, ~ξ ∈ Ωu, t ∈ [0, T ],

Jvav v̈ − ∂jα
v
ijikb

v∂kv = 0, ~ξ ∈ Ωv, t ∈ [0, T ],

u− v = 0, ~ξ ∈ ΓI , t ∈ [0, T ],

bu ∂u
∂n̂u + bv ∂v

∂n̂v = 0, ~ξ ∈ ΓI , t ∈ [0, T ].

(99)
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Define the energies

Eu =
1

2

∥∥∥
√
auu̇

∥∥∥
2

Ω′

u

+
1

2

∑

i

∥∥∥
√
bu∂xi

u
∥∥∥
2

Ω′

u

, (100)

Ev =
1

2

∥∥∥
√
av v̇
∥∥∥
2

Ω′

v

+
1

2

∑

i

∥∥∥
√
bv∂xi

v
∥∥∥
2

Ω′

v

. (101)

Assuming energy-conserving boundary conditions, the energy method yields

d

dt
(Eu + Ev) =

(
u̇, bu

∂u

∂n̂u

)

Γ′

I

+

(
v̇, bv

∂v

∂n̂v

)

Γ′

I

= 0. (102)

Theorem 3. The scheme

Juauü− Djk(α
u
ijikb

u)u =−H−1AeΓI
γHΓI

(eTΓI
u− eTΓI

v)

+
1

2
H−1(buDu

n̂)
T eΓI

γHΓI
(eTΓI

u− eTΓI
v)

− 1

2
H−1eΓI

γHΓI
(eTΓI

buDu
n̂u+ eTΓI

bvDv
n̂v),

(103)

Jvavv̈ − Djk(α
v
ijikb

v)v =−H−1AeΓI
γHΓI

(eTΓI
v − eTΓI

u)

+
1

2
H−1(bvDv

n̂)
T eΓI

γHΓI
(eTΓI

v − eTΓI
u)

− 1

2
H−1eΓI

γHΓI
(eTΓI

bvDv
n̂v + eTΓI

buDu
n̂u),

(104)

where

A = τH
∑

k

(
1

γu
|νuk | ηuk +

1

γv
|νvk | ηvk

)

+ τR
∑

k

(
|νuk |

1

γu
(ηuk )

2

(
ηuk
)
min

+ |νvk |
1

γv
(ηvk)

2

(
ηvk
)
min

)
,

(105)

is a stable discretization of (99) if

τH ≥ d

4hθH
, τR ≥ 1

4hθR
. (106)

Proof. Define the discrete energies

Eu =
1

2

∥∥∥
√
auu̇

∥∥∥
2

Ω′

u,h
+
1

2

∑

i

∥∥∥
√
buDu

xi
u

∥∥∥
2

Ω′

u,h
+
1

2

∑

k

u
TRkk(α

u
ikikb

u)u (107)

and

Ev =
1

2

∥∥∥
√
avv̇

∥∥∥
2

Ω′

v,h
+
1

2

∑

i

∥∥∥
√
bvDv

xi
v

∥∥∥
2

Ω′

v,h
+
1

2

∑

k

v
TRkk(α

v
ikikb

v)v, (108)
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where
Du

xi
= Ku

ijDj , Dv
xi

= Kv
ijDj. (109)

The discrete energy method yields

d

dt
(Eu +Ev) = (u̇, buDu

n̂u)Γ′

I
,h + (v̇, bvDv

n̂v)Γ′

I
,h

+ SATu + SATv ,
(110)

where

SATu =− (Au̇,u− v)Γ′

I
,h +

1

2
(buDu

n̂u̇,u− v)Γ′

I
,h

− 1

2
(u̇, buDu

n̂u+ bvDv
n̂v)Γ′

I
,h

=− (Au̇,u− v)Γ′

I
,h +

1

2
(buDu

n̂u̇,u− v)Γ′

I
,h

− 1

2
(u̇, buDu

n̂u+ bvDv
n̂v)Γ′

I
,h

(111)

and

SATv =− (Av̇,v − u)Γ′

I
,h +

1

2
(bvDv

n̂v̇,v − u)Γ′

I
,h

− 1

2
(v̇, bvDv

n̂v + buDu
n̂u)Γ′

I
,h .

(112)

Moving all terms in (110) to the left-hand side yields

d

dt
EI = 0, (113)

where

EI = Eu + Ev +
1

2

[∥∥∥
√
A(u− v)

∥∥∥
2

Γ′

I
,h
− (buDu

n̂u,u)Γ′

I
,h

− (bvDv
n̂v,v)Γ′

I
,h + (buDu

n̂u,v)Γ′

I
,h + (bvDv

n̂v,u)Γ′

I
,h

]
.

(114)

Note that the discrete energy EI approximates the continuous energy Eu
+ Ev because the interface terms in (114) would be zero if the interface
conditions were fulfilled exactly. It remains to show that EI ≥ 0. We start
by expanding the indefinite terms. By (84) we have

(bDn̂u,u)Γ′

I
,h = (βDxi

u, νjKiju)Γ′

I
,h
−
∑

k

(
1

γ
ηk∆Dku, νku

)

Γ′

I
,h

, (115)

where we have defined β = bJ
γ
. Similarly, we have

(buDu
n̂u,u)Γ′

I
,h =

(
βuDu

xi
u, νuj Ku

iju
)
Γ′

I
,h
−
∑

k

(
1

γu
ηuk∆Dku, ν

u
ku

)

Γ′

I
,h

,
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(bvDv
n̂v,v)Γ′

I
,h =

(
βvDv

xi
v, νvjKv

ijv
)
Γ′

I
,h
−
∑

k

(
1

γv
ηvk∆Dkv, ν

v
kv

)

Γ′

I
,h

,

(buDu
n̂u,v)Γ′

I
,h =

(
βuDu

xi
u, νuj Ku

ijv
)
Γ′

I
,h
−
∑

k

(
1

γu
ηuk∆Dku, ν

u
kv

)

Γ′

I
,h

,

and

(bvDv
n̂v,u)Γ′

I
,h =

(
βvDv

xi
v, νvjKv

iju
)
Γ′

I
,h
−
∑

k

(
1

γv
ηvk∆Dkv, ν

v
ku

)

Γ′

I
,h

.

The positivity properties (80) and (82) yield

2Eu ≥ hθH
d

∑

i

∥∥∥
√

βuDu
xi
u

∥∥∥
2

Γ′

I
,h

+ hθR
∑

k

∥∥∥∥∥ν
u
k

(√
ηuk
)
min√

γu
∆Dku

∥∥∥∥∥

2

Γ′

I
,h

,

(116)

and

2Ev ≥ hθH
d

∑

i

∥∥∥
√

βvDv
xi
v

∥∥∥
2

Γ′

I
,h

+ hθR
∑

k

∥∥∥∥∥ν
v
k

(√
ηvk
)
min√

γv
∆Dkv

∥∥∥∥∥

2

Γ′

I
,h

.

(117)

Using (90), we can show that, for example,

∑

k

1

γu
|νuk | ηuk =

buJu
γu

νuj Ku
ijν

u
kKu

ik = βuνuj Ku
ijν

u
kKu

ik, (118)

and hence
A = τH

(
βuνuj Ku

ijν
u
kKu

ik + βvνvjKv
ijν

v
kKv

ik

)

+ τR
∑

k

(
|νuk |
γu

(ηuk )
2

(
ηuk
)
min

+
|νvk |
γv

(ηvk)
2

(
ηvk
)
min

)
.

(119)

Define

yi =




√
βuνuj Ku

iju√
βvνvjKv

iju√
βvνvjKv

ijv√
βuνuj Ku

ijv√
βuDu

xi
u√

βvDv
xi
v



, zk =




|νuk |u
|νvk |u
|νvk |v
|νuk |v

νuk∆Dku

νvk∆Dkv




(no sum over k). (120)

After some algebra we obtain

2EI ≥ (yi, Y yi)Γ′

I
,h +

∑

k

(zk, Zkzk)Γ′

I
,h , (121)
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where

Y =




τH 0 0 −τH −1
2 0

0 τH −τH 0 0 1
2

0 −τH τH 0 0 −1
2

−τH 0 0 τH
1
2 0

−1
2 0 0 1

2
hθH
d

0

0 1
2 −1

2 0 0 hθH
d




⊗ I, (122)

and

Zk =




τR
γu

(ηuk )
2

(ηuk)min

0 0 − τR
γu

(ηuk)
2

(ηuk)min

ηu
k

2γu 0

0 τR
γv

(ηvk)
2

(ηvk)min

− τR
γv

(ηvk)
2

(ηvk)min

0 0 − ηv
k

2γv

0 − τR
γv

(ηvk)
2

(ηvk)min

τR
γv

(ηvk)
2

(ηvk)min

0 0
ηv
k

2γv

− τR
γu

(ηuk )
2

(ηuk )min

0 0 τR
γu

(ηuk )
2

(ηuk )min

− ηu
k

2γu 0

ηu
k

2γu 0 0 − ηu
k

2γu

hθR(ηuk )min

γu 0

0 − ηv
k

2γv

ηv
k

2γv 0 0
hθR(ηvk)min

γv




.

The matrices Y and Zk are positive semidefinite if τH ≥ d
4θH

and τR ≥ 1
4θR

,
respectively.

In all experiments with interfaces in this paper, we set τH = d/(4θH)
and τR = 1/(4θR), i.e., right on the limit of provable stability.

9 Applications

In this section we will use the new method to solve two application problems.
To choose the time-step without having to compute eigenvalues of the spatial
discretization we use the procedure described below.

Consider first a single-block grid. Let c =
√

b/a denote the wave speed.
Let hi denote the grid spacing in the ξi-direction in the reference domain.
We compute approximate physical grid spacings h̃j as

h̃j =

√∑

i

(Jijhj)
2 no sum over j, (123)

and define
h̃ = min

j
h̃j . (124)
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Note that both h̃ and c are non-constant on the grid, in general. Let G
denote the set of all grid points. We compute the time step ∆t as

∆t = CFL×min
~y∈G

h̃

c

∣∣∣∣∣
~x=~y

, (125)

where CFL is a dimensionless constant that depends on the spatial order
of accuracy and the choice of time-integrator. For a multiblock grid, it only
remains to loop over all grid blocks and choose the smallest ∆t suggested by
any block.

For the example applications in this section we use the classical fourth
order Runge–Kutta method with the CFL values listed in Table 2. The
numbers have been tuned to yield time-steps that are slightly smaller than
the largest stable time-step, for the grid configurations that we have tried.
While we cannot guarantee that these CFL values yield stability for every
possible grid, they should at least provide a reasonable starting point.

second order fourth order sixth order

CFL 0.5 0.35 0.27

Table 2: CFL numbers used in the classical fourth order Runge–Kutta time-
integrator in the application problems, for different orders of spatial accuracy.

9.1 Marine seismic exploration with ocean-bottom nodes

The Marmousi2 velocity model [12] is a fully elastic velocity model. It is
an extension of the acoustic Marmousi model [25, 26], which has become a
standard benchmark problem for seismic imaging and full waveform inver-
sion. Figure 5 shows the P-wave speed cp in Marmousi2. The red line at
y = yI = −0.45 km marks the seafloor. Above the red line there is water, and
below the red line there is solid Earth. In this paper, we shall approximate

Figure 5: P-wave speed in the Marmousi2 velocity model. The horizontal red
line marks the fluid-solid interface at the seafloor.

the response of both ocean and solid as acoustic. The acoustic equations can
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be written on first order form as




ρ
∂vi
∂t

+ ∂xi
p = Fi

K−1∂p

∂t
+ ∂xi

vi = G

, (126)

where p is the pressure perturbation, vi is the particle velocity vector, ρ is
density, K is bulk modulus, and Fi and G are source terms. The Marmousi2
dataset provides density ρ and P-wave speed cp. We set the bulk modulus
to be K = ρc2p, so that the wave speed in (126) matches the P-wave speed
in the elastic model. Both ρ and K are spatially variable within the solid.
The system (126) may be written as a second-order equation for p only:

K−1∂
2p

∂t2
− ∂xi

ρ−1∂xi
p =

∂G

∂t
− ∂xi

ρ−1Fi. (127)

In seismic exploration, one attempts to solve optimization problems of the
form [7, 27]

min
ρ,K

M, (128)

where

M =
1

2

∑

i

T∫

0

wv,i(t) |vi(~xv, t)− vi,data(t)|2 dt

+
1

2

T∫

0

wp(t) |p(~xp, t)− pdata(t)|2 dt,

(129)

and vi and p satisfy (126) and appropriate boundary, interface, and initial
conditions. The data vi,data and pdata are measured by geophones and hy-
drophones, respectively, at the locations ~xv and ~xp. The weight functions
wv,i and wp may be used to window the signal in time. In practice one often
regularizes the optimization problem by minimizing M + S rather than M ,
where S is a regularization term. In this paper, we set S = 0 for simplicity.

We introduce the residuals

ṽi(t) = wv,i(t) (vi(~xv , t)− vi,data(t)) ,

p̃(t) = wp(t) (p(~xp, t)− pdata(t)) .
(130)

As part of computing the gradient of M with respect to the material param-
eters, one may solve the adjoint equations [7, 27] for v†i and p†,





ρ
∂v†i
∂τ

+ ∂xi
p† = −ṽi(τ)δ(~x − ~xv)

K−1∂p
†

∂τ
+ ∂xi

v†i = p̃(τ)δ(~x − ~xp)

, (131)
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where τ = T − t is reverse time. Notice that the residuals ṽi and p̃ appear as
singular source terms at the receiver locations. The second-order equation
for p† only is

1

K

∂2p†

∂τ2
− ∂xi

ρ−1∂xi
p† =

∂p̃

∂τ
(τ)δ(~x − ~xp) + ṽi(τ)∂xi

ρ−1δ(~x− ~xv). (132)

Notice that (132) is of the form (7), with added source terms. We use the
technique developed in this paper to discretize the operator ∂xi

ρ−1∂xi
. Pres-

sure and the vertical velocity component are continuous across the fluid-solid
interface. The horizontal velocity component, however, may be discontinu-
ous. To avoid differentiating across the discontinuity, we use two grid blocks:
one for the water and one for the solid Earth. Expressed in terms of p†, the
interface conditions are

p†w − p†s = 0, y = yI ,

ρ−1
w

∂p†w
∂n̂w

+ ρ−1
s

∂p†s
∂n̂s

= 0, y = yI ,
(133)

where subscripts w and s denote water and solid sides, respectively. The
interface conditions are of the same form as those considered in (98) and we
may use the interface discretization presented in Theorem 3.

References [16, 21] describe how to discretize δ and ∂xi
δ. When using

qth order finite difference stencils in the interior, the discretizations of δ and
∂xi

δ satisfy q and q + 1 moment conditions, respectively. The distribution
∂xi

δ satisfies
(ui, ∂xi

δ(~x− ~xv))Ω′ = −∂xi
ui|~x=~xv

, (134)

for all smooth fields ui. Let ui denote the restriction of ui to the grid.
A discrete approximation d

′
xi,~xv

≈ ∂xi
δ(~x − ~xv) is required to satisfy the

moment conditions [21]
(
ui,d

′
xi,~xv

)
Ω′,h

= −∂xi
ui|~x=~xv

, (135)

for all ui that are polynomials of degree less than or equal to q. To solve
(132), we actually need to consider moment conditions for ∂xi

ρ−1δ(~x− ~xv).
Integration by parts yields

(
ui, ∂xi

ρ−1δ(~x− ~xv)
)
Ω′

= −ρ−1∂xi
ui|~x=~xv

. (136)

The moment conditions on d
′
xi,~xv,ρ−1 ≈ ∂xi

ρ−1δ(~x− ~xv) are thus

(
ui,d

′
xi,~xv,ρ−1

)
Ω′,h

= −ρ−1∂xi
ui|~x=~xv

, (137)

for all ui that are polynomials of degree less than or equal to q. Given d
′
xi,~xv

that satisfies the appropriate moment conditions, we note that we may set

d
′
xi,~xv,ρ−1 = ρ−1(~xv)d

′
xi,~xv

, (138)
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and satisfy the required moment conditions on d
′
xi,~xv,ρ−1 . Because we solve

the equations on second order form, no smoothness conditions are required.
The far-field boundaries are treated with super-grid-scale absorbing lay-

ers [2, 17]. At the water surface, we impose the Dirichlet condition p = 0.
We use the classical fourth order Runge–Kutta method for time integration.

We attempt to set up simulations that are representative of the adjoint
equations in marine seismic exploration. Let W denote the Ricker wavelet
[18, 19] with peak frequency f centered at time t0, i.e.,

W (t) = (1− 2π2f2(t− t0)
2)e−π2f2(t−t0)2 . (139)

We choose f = 5 Hz and t0 = 0.2 s, and set

ṽi(τ) = AvW (τ), i = 1, 2 and
dp̃

dτ
(τ) = ApW (τ). (140)

To illustrate the difference between the two different adjoint sources, we
run two separate simulations with only one active source in each. We place
the sources at the same location, but on opposite sides of the water-solid
interface. That is, we set ~xv =

[
10.5 km, yI−

]
and ~xp =

[
10.5 km, yI+

]
.

Let c0 = 1500 m/s and ρ0 = 1010 kg/m3 denote reference values for
sound speed and density of water. We define non-dimensional pressures and
velocities as

p†nd =
p†

ρ0Ap
, v†i,nd =

v†i c0
Ap

, (141)

in the case of only hydrophone data, and

p†nd =
c0p

†

fAv
, v†i,nd =

v†i ρ0c
2
0

fAv
, (142)

in the case of only geophone data. Figure 6 shows snapshots of p†nd, com-
puted with the fourth order (q = 4) spatial discretization. The left column
corresponds to having only hydrophone data (ṽi = 0, i = 1, 2), and the right
column corresponds to having only geophone data (p̃ = 0). The bottom
row shows space-time plots of pressure at the seafloor, on the ocean side
(y = yI+). Figure 7 shows the horizontal component of v†i,nd in the same
way.
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Figure 6: Left column: Hydrophone data source. Right column: Geophone
data source. The top three rows show snapshots of pressure. The bottom row
shows space-time plots of pressure in the water at the seafloor, i.e., at y = yI+.
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Figure 7: Left column: Hydrophone data source. Right column: Geophone
data source. The top three rows show snapshots of horizontal velocity. The
bottom row shows space-time plots of horizontal velocity in the water at the
seafloor, i.e., at y = yI+.

Figures 6 and 7 show that, despite placing the singular sources right
on the fluid-solid interface, there are no visible artifacts from the source
discretizations. Further, Figure 6 shows that the simulated pressure is con-
tinuous across the interface, as prescribed by (133). Because the interface
conditions are imposed weakly, the discrete pressure values on the two sides
of the interface are actually only equal to the order of accuracy, but this
small difference is not visible to the eye. Figure 7, on the other hand, shows
that a discontinuity in the horizontal velocity component develops at the
interface. Despite the discontinuity, there are no signs of numerical artifacts
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arising from the interface treatment.

9.2 Resonant infrasound tones of Volcán Villarrica

In [8] it was demonstrated how infrasound can be used to track the surface
of the lava lake in the crater of Volcán Villarrica (Chile). The position
of the lava lake may in turn be used to forecast volcanic eruptions. The
nearest infrasound station is located about 4 km northwest of the crater. To
obtain a relevant crater topography we use a two-dimensional average of the
three-dimensional crater geometry in [8], see x ∈ [−173 m, 173 m] in Figure
8b. The conduit, centered at x = 0 m, is approximated to have perfectly
vertical sides. Figure 8a shows the full computational domain. Outside of the
crater region, we let the topography be described by a degree five polynomial
that approximately matches the elevation drop of the Villarrica mountain in
the northwest direction. We assume constant density ρ = 1 kg/m3 in the

(a) Coarse grid, full domain

(b) Finer grid, zoomed-in view of the crater region

Figure 8: (a) A coarse example grid, with only m = 3 grid points in the hor-
izontal direction inside the conduit. (b) A zoom on the crater region, showing
the m = 11 grid. The computations used m = 26.

atmosphere and introuduce the velocity potential φ such that

vi = ∂xi
φ, p = −ρφ̇. (143)
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We further approximate the sound speed c =
√
K/ρ as constant and set

c = 331 m/s. The acoustic equations (126) with Fi = 0, G = 0 are then
satisfied if

φ̈− c2∂xi
∂xi

φ = 0. (144)

The Laplacian in (144) is discretized using the scheme developed in this
paper, and we choose fourth order accuracy (q = 4) in the numerical exper-
iments. We use the classical fourth order Runge–Kutta method for time-
integration. The far-field boundaries are again treated with super-grid-scale
absorbing layers [2, 17]. The conduit walls and the mountain sides are mod-
eled as rigid walls, resulting in the boundary condition ~v · n̂ = 0. At the
conduit bottom we simulate movement of the lava lake by imposing the
boundary condition

~v · n̂ = −v0e
−

(t−t0)
2

2σ2 , (145)

with t0 = 1 s and σ = 0.13 s. The same boundary data were used in [8],
with the motivation that they include frequencies that are characteristic of
lava lake events.

We define a non-dimensional pressure as

pnd =
p

ρcv0
. (146)

Figure 9 shows snapshots of pnd. Figure 10 shows space-time plots of pnd

Figure 9: Snapshots of non-dimensional pressure pnd

at position x = 0, i.e., within and above the conduit. One can observe how
the initial pressure pulse, propagating upwards, is partly reflected at the
top of the conduit. Figure 11a shows the recorded pressure at the location
corresponding to the nearst infrasound station, for different conduit lengths.
Figure 11b shows the corresponding frequency spectra. The longer the con-
duit, the lower the crater resonance frequency and the higher the quality
factor.
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Figure 10: Space-time plot of pressure at horizontal position x = 0 m, i.e.,
within and immediately above the conduit. The dashed black lines mark the
top of the conduit (lower line) and the crater rim (upper line).

10 15 20 25 30 35
time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Conduit length: 50 m
Conduit length: 100 m
Conduit length: 150 m
Conduit length: 200 m

(a) Pressure time series

0 0.5 1 1.5 2 2.5 3
frequency (Hz)

0

10

20

30

40

50

60

70

80

90 Conduit length: 50 m
Conduit length: 100 m
Conduit length: 150 m
Conduit length: 200 m

(b) Pressure frequency spectrum

Figure 11: (a) Pressure recorded at the nearest infrasound station, 4 km from
the crater. (b) Fourier amplitude spectrum of the time series in (a).

This simulation illustrates the benefits of the curvilinear multiblock finite
difference discretization. The method takes topography into account without
using staircasing, which might introduce artifacts. Further, it imposes the
solid wall boundary condition accurately and stably.

10 Conclusions

We have improved the SBP-SAT method for discretizing the Laplacian on
curvilinear multiblock grids in d dimensions. Compared to the previous
state-of-the-art method by Virta and Mattsson [28], the new method is sig-
nificantly less stiff, in particular when the grid is highly skewed. On a sim-
ple curvilinear multiblock grid for the unit disk, the largest stable time-step
when solving the wave equation with explicit time-stepping is approximately
6 times larger with the new method. Although the method by Virta and
Mattsson is typically slightly more accurate on a given grid, our numerical
experiments show that the new method is significantly more efficient in terms
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of CPU time required to achieve a given error tolerance. Further, our results
indicate that for more complex grids, which will inevitably contain highly
skewed grid cells, the time-step ratio will be even larger in favor of the new
method.

The difference compared to the method by Virta and Mattsson lies solely
in the SATs for Dirichlet boundary conditions and interface couplings. In
essence, the new method is less stiff because the SATs are smaller in magni-
tude. The reason we were able use smaller SATs and still prove stability is
the novel positivity property in Lemma 1, which was not used by Virta and
Mattsson.

To illustrate the usefulness of the new method, we have applied it to two
problems inspired by marine seismic exploration and infrasound monitoring
of volcanoes. The seismic exploration problem uses a Cartesian two-block
grid with a discontinuity in material parameters at the ocean floor, where the
ocean couples to the seabed. The numerical method handles both the fluid-
solid coupling and singular source terms (both δ functions and derivatives
of δ functions), placed right at the fluid-solid interface, without signs of
numerical artifacts. The volcano monitoring problem involves non-trivial
topography that requires a curvilinear multiblock grid. Again, the discrete
solution shows no sign of numerical artifacts.

MATLAB code that reproduces all figures in this paper is available at
https://bitbucket.org/martinalmquist/laplacian_curvilinear.
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Appendix: proof of Lemma 1

By construction, Rxx(a) is linear in its argument so that, for all functions
a, b and scalars C,

Rxx(a+ b) = Rxx(a) +Rxx(b),

Rxx(Ca) = CRxx(a).
(147)

Further, Rxx is symmetric positive semidefinite in the sense that, for all
a(x) ≥ 0,

Rxx(a) = RT
xx(a) ≥ 0. (148)

For detailed information about the structure of Rxx we refer to [13]. It
follows from linearity and positive semidefiniteness that if a(x) ≥ b(x), then

Rxx(a) = Rxx(b+ a− b) = Rxx(b) +Rxx(a− b) ≥ Rxx(b). (149)
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Given grid endpoints xℓ and xr, we define cutoff points at the mbth grid
point from the boundaries:

xℓ,mb
= xℓ + (mb − 1)h, xr,mb

= xr − (mb − 1)h. (150)

Let bℓ,min and br,min denote the minimum of b(x) over the mb leftmost and
rightmost grid points,

bℓ,min = min (b(xℓ), b(xℓ + h), . . . , b(xℓ,mb
)) ,

br,min = min (b(xr,mb
), b(xr,mb

+ h), . . . , b(xr)) .
(151)

Let χℓ,r denote the indicator functions

χℓ(x) =

{
1, x ≤ xℓ,mb

0, x > xℓ,mb

, χr(x) =

{
0, x < xr,mb

1, x ≥ xr,mb

. (152)

Assuming that there are at least 2mb grid points, then xℓ,mb
< xr,mb

and
hence, for all nonnegative functions b,

b(x) ≥ b(x) (χℓ(x) + χr(x)) = b(x)χℓ(x) + b(x)χr(x)

≥ bℓ,minχℓ(x) + br,minχr(x).
(153)

We thus have

Rxx(b) ≥ bℓ,minRxx (χℓ) + br,minRxx (χr) . (154)

To determine the constant θR in the property

u
TRxx(b)u ≥ hθRbℓ,min(e

T
ℓ ∆Dxu)

2 + hθRbr,min(e
T
r ∆Dxu)

2, (155)

it is thus sufficient to consider u
TRxx(χℓ)u or, equivalently, uTRxx(χr)u.

We have determined θR by computing eigenvalues of

N(ζ) = Rxx(χℓ)− ζh(eTℓ ∆Dx)
T (eTℓ ∆Dx) (156)

for different values of the scalar ζ. Since Rxx(χℓ) is only semidefinite, it has
one or more zero eigenvalues. We define θR as the smallest value such that
N(θR) has negative eigenvalues. In practice, we compute the smallest value
such that the most negative eigenvalue of N(θR) is not within roundoff error
from zero. Let λmin(ζ) denote the smallest eigenvalue of N(ζ). Figure 12
shows |λmin(ζ)|+10−16 on a logarithmic scale, for the fourth order accurate
case. The grid spacing is h = 1 so that roundoff errors in the eigenvalue
computations are expected to be of order 10−16. It is evident that λmin(ζ)
is nonzero for ζ > 0.5776 = θR.

We remark that θR is independent of m, as long as the total number of
grid points m is at least 2mb. However, the value of θR increases with mb

and approaches an asymptotic value, as shown in Table 3. The drawback to
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Figure 12: Absolute value of the most negative eigenvalues of N(ζ), for
fourth order accuracy with mb = 4. The most negative eigenvalue becomes
significantly different from zero at ζ = 0.5776.

having large mb is that it requires computing the minimum of the coefficient b
over many grid points, which can potentially make bℓ,min and br,min smaller.
To minimize the penalty strength required for the stability proof, we would
like to maximize the products bℓ,minθR and br,minθR. We thus choose the
smallest value of mb that yields θR near the asymptotic value. Based on
Table 3 we choose mb = 2, 4, 7, for orders two, four and six. The same mb

values were chosen in [28] when computing similar constants for the matrix
Mxx(b) = DT

xHbDx +Rxx(b).

second order fourth order sixth order

mb = 1 0 0 0
mb = 2 1.0000 0 0
mb = 3 1.0000 0.1485 0
mb = 4 1.0000 0.5776 0
mb = 5 1.0000 0.5779 0
mb = 6 1.0000 0.5779 0.2318
mb = 7 1.0000 0.5779 0.3697

mb = 8 1.0000 0.5779 0.3697
mb = 9 1.0000 0.5779 0.3697

Table 3: Computed values of θR for different values of mb. The chosen
(mb, θR) pairs are indicated with boldface font.
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